Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. PNAS. 2011;108:20260–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch JP, Brown KM. New roots for agriculture: exploiting the root phenome. Philos Trans R Soc B Biol Sci. 2012;367:1598–604.
Article
Google Scholar
Fiorani F, Schurr U. Future scenarios for plant phenotyping. Ann Rev Plant Biol. 2013;64:267–91.
Article
CAS
Google Scholar
Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. High throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 2016. doi:10.1111/nph.14027.
PubMed
Google Scholar
Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L, Péchier P, Hamard P, This P, Simonneau T. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot. 2014;65:6205–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods. 2011;7:2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuberosa R, Sanguinetti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol. 2002;48:697–712.
Article
CAS
PubMed
Google Scholar
Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot. 2012;63:3485–98.
Article
CAS
PubMed
Google Scholar
Nagel KA, Kastenholz B, Jahnke S, et al. Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol. 2009;36:947–59.
Article
CAS
Google Scholar
Bengough AG, McKenzie BM, Hallett PD, Valentine TA. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot. 2011;62:59–68.
Article
CAS
PubMed
Google Scholar
Pfeifer J, Faget M, Walter A, Blossfeld S, Fiorani F, Schurr U, Nagel KA. Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation. Funct Plant Biol. 2014;2014(41):581–97.
Article
Google Scholar
Acuña TB, Wade LJ. Genotype × environment interactions for root depth of wheat. Field Crops Res. 2012;137:117–25.
Article
Google Scholar
Cairns JE, Impa SM, O’Toole JC, Jagadish SVK, Price AH. Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research. Field Crops Res. 2011;121:303–10.
Article
Google Scholar
Voisin A-S, Salon C, Munier-Jolain NG, Ney B. Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant Soil. 2002;242:251–62.
Article
CAS
Google Scholar
López-Bucio J, Cruz-Ramı́rez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6:280–7.
Article
PubMed
Google Scholar
Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.
Article
CAS
Google Scholar
Trachsel S, Kaeppler SM, Brown KM, Lynch JP. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil. 2011;341:75–87.
Article
CAS
Google Scholar
Vocanson A, Roger-Estrade J, Boizard H, Jeuffroy MH. Effects of soil structure on pea (Pisum sativum L.) root development according to sowing date and cultivar. Plant Soil. 2006;281:121–35.
Article
CAS
Google Scholar
Bourion V, Laguerre G, Depret G, Voisin AS, Salon C, Duc G. Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Ann Bot. 2007;100:589–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark RT, Famoso AN, Zhao KY, Shaff JE, Craft EJ, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 2013;36:454–66.
Article
CAS
PubMed
Google Scholar
Voisin AS, Cazenave AB, Duc G, Salon C. Pea nodule gradients explain C nutrition and depressed growth phenotype of hypernodulating mutants. Agron Sust Dev. 2013;33:829–38.
Article
CAS
Google Scholar
Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Phys. 2011;156:455–65.
Article
CAS
Google Scholar
Hargreaves CE, Gregory PJ, Bengough AG. Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil. 2009;316:285–97.
Article
CAS
Google Scholar
Nagel KA, Putz A, Gilmer F, et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol. 2012;39:891–904.
Article
Google Scholar
Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W. A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. Plant Cell. 2014;26:2390–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourion V, Rizvi SMH, Fournier S, de Larambergue H, Galmiche F, Marget P, Duc G, Burstin J. Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Gen. 2010;121:71–86.
Article
Google Scholar
Pages L. Mini-rhizotrons transparents pour l’étude du système racinaire de jeunes plantes. Application à la caractérisation du développement racinaire de jeunes chênes (Quercus robur). Can J Bot. 1992;70:1840–7.
Article
Google Scholar
Ytting NK, Andersen SB, Thorup-Kristensen K. Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) genotypes. Euphytica. 2014;199:233–45.
Article
Google Scholar
Topp CN, Iyer-Pascuzzi AS, Anderson JT, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. PNAS. 2013;110:1695–704.
Article
Google Scholar
Fang S, Clark R, Liao H. 3D quantification of plant root architecture in situ. In: Stefano M, editor. Measuring roots. Heidelberg: Springer; 2012. p. 135–148.
Hund A, Trachsel S, Stamp P. Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant Soil. 2009;325:335–49.
Article
CAS
Google Scholar
Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, Dupuy LX. A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica. J Exp Bot. 2014;65:2039–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Marié C, Kirchgessner N, Marschall D, Walter A, Hund A. Rhizoslides: Paperbased growth system for non-destructive, high throughput phenotyping of root development by means of image analysis. Plant Methods. 2014;10:13.
Article
PubMed
PubMed Central
Google Scholar
Fang SQ, Yan XL, Liao H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J. 2009;60:1096–108.
Article
CAS
PubMed
Google Scholar
Ribeiro KM, Barreto B, Pasqual M, White PJ, Braga RA, Dupuy LX. Continuous, high-resolution biospeckle imaging reveals a discrete zone of activity at the root apex that responds to contact with obstacles. Ann Bot. 2014;113:555–63.
Article
CAS
PubMed
Google Scholar
Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX. Transparent soil for imaging the rhizosphere. PLoS One. 2012;7(9):e44276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP. Image-based high-throughput field phenotyping of crop roots. Plant Phys. 2014;166:470–86.
Article
CAS
Google Scholar
Ali-Khan ST, Snoad B. Root and shoot development in peas. I. Variability in seven root and shoot characters of seedlings. Ann Appl Biol. 1977;85:131–6.
Article
Google Scholar
McPhee K. Variation for seedling root architecture in the core collection of pea germplasm. Crop Sci. 2005;45:1758–63.
Article
Google Scholar
Thorup-Kristensen K. Root growth of green pea (Pisum sativum L.) genotypes. Crop Sci. 1998;38:1445–51.
Article
Google Scholar
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, et al. Branching out in roots: uncovering form, function, and regulation. Plant Physiol. 2014;166:538–50.
Article
PubMed
PubMed Central
Google Scholar
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol. 2014;65:639–66.
Article
CAS
PubMed
Google Scholar
Walter A, Spies H, Terjung S, Kusters R, Kirchgessner N, Schurr U. Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot. 2002;53:689–98.
Article
CAS
PubMed
Google Scholar
Shi L, Shi TX, Broadley MR, White PJ, Long Y, Meng JL, Xu FS, Hammond JP. Highthroughput root phenotyping screens identify genetic loci associated with root architectural traitsin Brassica napus under contrasting phosphate availabilities. Ann Bot. 2013;112:381–9.
Article
CAS
PubMed
Google Scholar
Leitner D, Felderer B, Vontobel P, Schnepf A. Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol. 2014;164:24–35.
Article
CAS
PubMed
Google Scholar
Moradi AB, Conesa HM, Robinson B, Lehmann E, Kuehne G, Kaestner A, Oswald S, Schulin R. Neutron radiography as a tool for revealing root development in soil: capabilities and limitations. Plant Soil. 2009;318:243–55.
Article
CAS
Google Scholar
Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil. 2012;352:1–22.
Article
CAS
Google Scholar
Pfeifer J, Kirchgessner N, Colombi T, Walter A. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. Plant Methods. 2015;11:1.
Article
Google Scholar
Rascher U, Blossfeld S, Fiorani F, et al. Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol. 2011;38:968–83.
Article
CAS
Google Scholar
van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Buehler J, Schurr U, Jahnke S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Phys. 2016;170:1176–88.
Google Scholar
Kim Khiook IL, Schneider C, Heloir MC, Bois B, Daire X, Adrian M, Trouvelot S. Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of resistance to downy mildew. J Microbiol Met. 2013;28:235–44.
Article
Google Scholar
Lemanceau P, Alabouvette C. Biological control of fusarium diseases by fluorescent pseudomonas and non-pathogenic fusarium. Crop Protection. 1991;10:279–86.
Article
Google Scholar
Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S, editors. Mycorrhizae: physiology and genetics. Paris: INRA; 1986. p. 217–221.
Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol. 2012;39:839–50.
Article
Google Scholar
Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza. 2009;19:81–90.
Article
PubMed
Google Scholar
Ruffel S, Freixes S, Balzergue S, et al. Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Phys. 2008;146:2020–35.
Article
CAS
Google Scholar
Jeudy C, Ruffel S, Freixes S, Tillard P, Santoni AL, Morel S, Journet EP, Duc G, Gojon A, Lepetit M, Salon C. Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytol. 2010;185:817–28.
Article
CAS
PubMed
Google Scholar
Moreau D, Milard G, Munier-Jolain N. A plant nitrophily index based on plant leaf area response to soil nitrogen availability. Agron Sustain Dev. 2013;33:809–15.
Article
CAS
Google Scholar
Moreau D, Voisin AS, Salon C, Munier-Jolain N. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain, leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth. J Exp Bot. 2011;2008(59):3509–22.
Google Scholar
Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza. 2004;14:185–92.
Article
PubMed
Google Scholar
Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G. Colonization of tomato root seedling by Pseudomonas fluorescens 92rkG5: spatio-temporal dynamics, localization, organization, viability and culturability. Microb Ecol. 2005;50:289–97.
Article
PubMed
Google Scholar
Han S, Cointault F, Salon C, Simon JC. Automatic detection of nodules in legumes by imagery in a phenotyping context. computer analysis of images and patterns. In: Azzopardi G, Petkov N, editors. Computer Analysis of Images and Patterns. Lecture notes in computer science. vol. 9257, Heidelberg: Springer; 2015. p. 134–145.