Skip to main content

Table 1 Species, containers and environmental conditions of the different experiments

From: RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation

Exp.

Species (genotype)

Experimental treatment

Number of replicates: pots (P) and RhizoTubes (RT)

Pot size (L)

Mean day temp (°C)

Mean night temp (°C)

Photoperiod (h)

RH

Nutrient solution

Inoculation

Substrate

1

Grapevine (V. vinifera L. cv. Marselan)

With or without mycorrhization

0 P, 4 RT

24

18

16

60 to 80 %

Solution 1

Symbivit®

Pro) (1 %v) for the “mycorrhiza” condition

Substrate A

2

Pea (Kayanne)

Low and high mineral nitrogen availability

5 P, 5RT

4

22

18

16

Solutions 3 and 4

Rhizobium P221 (108 CFU per plant)

3

Pea (Kayanne)

Genotype comparison

5 P, 5RT

4

Solution 2

3

Pea (Caméor)

5 P, 5RT

2

Solution 3

Substrate B

4

Brassica napus (Kadore)

Low and high mineral nitrogen availability

5 P, 5RT

4

Solutions 3 and 4

 

Substrate A

4

Vulpia myuros

5 P, 5RT

4

 

5

Pea (Caméor)

Optimum water nutrition and water deficit

5 P, 5RT

2

Solution 2

Rhizobium P221 (108 CFU per plant)

Substrate B

5

Medicago truncatula (J7)

5 P, 5RT

1

Solution 3

Rhizobium MD4 strain (108 CFU per plant)

6

Wheat (Triticum aestivum cv. Arezzo)

Monoculture or association between pea and wheat

0P, 4 RT

20

20

15

90 % (first week only) then 60 %

Solution 3

P. fluorescens C7R12 (1010 CFU per plant)

Substrate A

6

Pea (Pisum sativum cv. James)

0P, 4 RT

R. leguminosarum P221 (107 CFU per plant) and P. fluorescens C7R12 (1010 CFU per plant)

  1. The substrates and nutrient solutions used for plants grown in pots and RhizoTubes were similar for a given experiment. Substrate “A” was composed of a mixture of equal volumes of clay beads (Sorbix US-Special G, Damolin, Etrechy, France) and atapulgite (ARGEX NV, Belgium). Substrate “B” was composed of a mixture of equal volumes of sand (Biot sand, 0.8 to 1.6 mm, silica 100 %, Silice et réfractaires de la méditerranée, France) and perlite (Perligran Premium, Knauf Aquapanel, Germany). The nutrient solution numbered “1” used for control plants contained Plantin (10–10–10), Magplant–S and for Myc. plants Plantprod (14–0–14), NaH2PO4, 2H2O (1 %). The nutrient solution without mineral nitrogen numbered “2” was composed of 0.8 mM K2HPO4, 1.0 mM MgSO4, 2.5 mM CaCl2, 0.7 mM K2SO4 and 0.2 mM NaCl. The nutrient solution numbered “3” containing low amounts of mineral nitrogen (0.625 mM N) was composed of 0.16 mM KNO3, 0.24 mM Ca(NO3)2, 0.8 mM K2HPO4, 1 mM MgSO4, 2.27 mM CaCl2, 0.62 mM K2SO4 and 0.2 mM NaCl. The nutrient solution composed of high mineral nitrogen content (10 mM N) numbered “4” contained 1.88 mM KNO3, 2.81 mM Ca(NO3)2, 0.56 mM K2HPO4, 1 mM MgSO4, 2.5 mM NaNO3. The nutrient solutions 2 to 4 were supplemented with 50 µM iron Fe III-(EDTA), and oligo-elements. Oligo-elements were provided as 32 µM H3BO3, 10 µM MnSO4, 0.77 µM ZnSO4, 0.15 µM H24N6O24Mo7 and 0.32 µM CuSO4