Balitkabi. (2017). Pendekatan Baru Pemanfaatan Ubi Kayu untuk Industri Makanan Indonesia. http://balitkabi.litbang.pertanian.go.id/berita/pendekatan-baru-pemanfaatan-ubi-kayu-untuk-industri-makanan-indonesia/
Beyene G, Chauhan RD, Gehan J, Siritunga D, Taylor N. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration. Plant Mol Biol. 2022;109(3):283–99.
Article
CAS
Google Scholar
Booth RH. Cassava storage post-harvest deterioration and storage of fresh cassava roots. Colombia: CIAT; 1975.
Google Scholar
Bradbury MG, Egan SV, Bradbury JH. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J Sci Food Agric. 1999;79(4):593–601.
Article
CAS
Google Scholar
Buschmann H. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of Cassava (Manihot esculenta Crantz). Ann Bot. 2000;86(6):1153–60.
Article
CAS
Google Scholar
Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. Cassava breeding: opportunities and challenges. Plant Mol Biol. 2004;56:503–15.
Article
CAS
Google Scholar
Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem. 2007;55(18):7469–76.
Article
CAS
Google Scholar
Ceballos H, Okogbenin E, Pérez JC, Lopez-Valle LAB, Debouck D. Cassava. In: Bradshaw JE, editor. Root and tuber crops handbook of plant breeding. Berlin: Springer; 2010.
Google Scholar
Ceballos H, Hershey C, Becerra-López-Lavalle LA. New approaches to cassava breeding. Plant Breed Rev. 2012;36:427–504.
Google Scholar
Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA. Variation of quality traits in cassava roots evaluated in cultivars and improved clones. Euphytica. 2005;143:1–2.
Article
Google Scholar
Coelho DG, Fonseca KS, de Mélo Neto DF, de Andrade MT, Coelho Junior LF, Ferreira-Silva SL, do Nascimento Simões A. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava. J Food Biochem. 2019;43: e12840.
Article
Google Scholar
Cortés DF, Reilly K, Okogbenin E, Beeching JR, Iglesias C, Tohme J. Mapping genes implicated in post-harvest physiological deterioration (PPD) in cassava (Manihot esculenta Crantz). Euphytica. 2002;128:47–53.
Article
Google Scholar
FAO (2008). Food and agriculture organization of the United Nations, Rome. Italy. http://www.fao.org/news/.
FAO/IFAD. The world cassava economy facts trends and Outlook. Rome: The Global Cassava Development Strategy; 2000.
Google Scholar
FAOSTAT (2020). faostat.fao.org.
García JA, Sánchez T, Ceballos H, Alonso L. Non-destructive sampling procedure for biochemical or gene expression studies on post-harvest physiological deterioration of cassava roots. Postharvest Biol Technol. 2013;86:529–35.
Article
Google Scholar
Kawano K, Rojanaridpiched C. Genetic study on postharvest root deterioration in cassava. The Kasetsart J. 1983;17:14–26.
Google Scholar
Kizito EB, Rönnberg-Wästljung A-C, Egwang T, Gullberg U, Fregene M, Westerbergh A. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas. 2007;144(4):129–36.
Article
Google Scholar
Luna J, Dufour D, Tran T, Pizarro M, Calle F, García Domínguez M, Hurtado IM, Sánchez T, Ceballos H. Post-harvest physiological deterioration in several cassava genotypes over sequential harvests and effect of pruning prior to harvest. Int J Food Sci Technol. 2021;56:1322–32.
Article
CAS
Google Scholar
Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P. Knockdown of p-coumaroyl shikimate/Quinate 3’-Hydroxylase delays the occurrence of post-harvest physiological deterioration in Cassava storage roots. Int J Mol Sci. 2022;23(16):9231.
Article
CAS
Google Scholar
Mbinda W, Mukami A. Breeding for postharvest physiological deterioration in cassava: problems and strategies. CABI Agric Biosci. 2022;3:1.
Article
Google Scholar
Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL, Fregene M. Tolerance to postharvest physiological deterioration in Cassava roots. Crop Sci. 2010;50(4):1333.
Article
Google Scholar
Naziria D, Quayeb W, Siwokuc B, Wanlapatitd S, Viet Phue T, Bennetf B. The diversity of postharvest losses in cassava value chains in selected developing countries. J Agric Rural Dev Trop Ans Subtrop. 2014;115(2):111–23.
Google Scholar
Nduwumuremyi A, Melis R, Shanahan P, Theodore A. Interaction of genotype and environment effects on important traits of cassava (Manihot esculenta Crantz). Crop J. 2017;5(5):2214–5141.
Article
Google Scholar
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol. 2022;3:1–19.
Article
Google Scholar
Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J Cell Mol Biol. 2011;67(1):145–56.
Article
CAS
Google Scholar
Pusdatin Kementan. (2020). https://www.pertanian.go.id/home/?show=page&act=view&id=61
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021.
Google Scholar
Rahmawati RK, Khumaida N, Ardie SW, Sukma D, Sudarso. Effects of harvest period, storage, and genotype on postharvest physiological deterioration responses in cassava. Biodiversitas. 2021;23:100–9.
Google Scholar
Reilly K, Gomez-Vasquez R, Buschmann H, Tohme J, Beeching JR. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol Biol. 2004;56(4):625–41.
Article
CAS
Google Scholar
Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol. 2007;64(1–2):187–203.
Article
CAS
Google Scholar
Rudi N, Norton GW, Alwang J, Asumugha G. Economic impact analysis of marker-assisted breeding for resistance to pests and post- harvest deterioration in cassava. Afr J Agric Resource Econom. 2010;4(2):110–22.
Google Scholar
Salcedo A, Siritunga D. Insights into the physiological, biochemical and molecular basis of postharvest deterioration in Cassava (Manihot esculenta) roots. Am J Exp Agric. 2011;1(4):414–31.
Google Scholar
Salcedo A, Valle AD, Sanchez B, Ocasio V, Ortiz A, Marquez P, Siritunga D. Comparative evaluation of physiological post-harvest root deterioration of cassava (Manihot esculenta) cultivars visual vs hydroxycoumarins fluorescent accumulation analysis. Afr J Agric Res. 2010;5(22):3138–44.
Google Scholar
Sánchez T, Dufour D, Moreno JL, Pizarro M, Aragón IJ, Domínguez M, Ceballos H. Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biol Technol. 2013;86:520–8.
Article
Google Scholar
Taniguchi T, Data ES, Burden OJ. Production of antifungal substances in cassava roots response to physiological and microbial deterioration. In: Uritani ED, Reyes, editors. Tropical root crops: postharvest physiology and processing. Tokyo: Japanese Science Society Press; 1984. p. 145–9.
Google Scholar
Tumuhimbise R, Melis R, Shanahan P. Genetic variation in cassava for postharvest physiological deterioration. Arch Agron Soil Sci. 2014;9:1333.
Google Scholar
Tumuhimbise R, Shanahan P, Melis R, Kawuki R. Genetic variation and association among factors influencing storage root bulking in cassava. J Agric Sci. 2015;153(7):1267–80.
Article
Google Scholar
Van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric. 2000;80(13):1866–73.
Article
Google Scholar
Vanderschuren H, Agusti J. Storage roots. Curr Biol. 2022;32(12):R607.
Article
CAS
Google Scholar
Vanderschuren H, Nyaboga E, Poon JS, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W. Large-scale proteomics of the Cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell. 2014;26(5):1913–24.
Article
CAS
Google Scholar
Vlaar PWL, van Beek P, Visser RGF. Genetic modification and its impact on industry structure and performance: post-harvest deterioration of cassava in Thailand. J Chain Network Sci. 2007;7:133–42.
Article
Google Scholar
Wenham JE. Post-harvest deterioration of cassava a biotechnological perspective. Rome: FAO; 1995.
Google Scholar
Wheatley C, Gómez G. Evaluation of some quality characteristics in cassava storage roots. Qualitas Plantarum Plant Foods for Human Nutrition. 1985;35(2):121–9.
Article
Google Scholar
Wheatley C, Lozano C, Gomez G. Post-harvest deterioration of cassava roots. In: Cock JH, Reyes JA, editors. Cassava research production and utilization. Cali: UNDP-CIAT; 1985. p. 655–71.
Google Scholar
Wu X, Xu J, Ma Q, Ahmed S, Lu X, Ling E, Zhang P. Lysozyme inhibits postharvest physiological deterioration of cassava. J Integr Plant Biol. 2022;64(3):621–4.
Article
Google Scholar
Xu J, Duan X, Yang J, Beeching JR, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol. 2013;161(3):1517–28.
Article
CAS
Google Scholar
Yan Y, Zhao S, Ding Z, Tie W, Hu W. Comparative transcriptomic analysis of storage roots in cassava during postharvest physiological deterioration. Plant Mol Biol Report. 2021;39:607–16.
Article
CAS
Google Scholar
Zainuddin IM, Fathoni A, Sudarmonowati E, Beeching JR, Gruissem W, Vanderschuren H. Cassava post-harvest physiological deterioration: from triggers to symptoms. Postharvest Biol Technol. 2018;142:115–23.
Article
Google Scholar
Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root via reduction of reactive oxygen species production. Plant Physiol. 2012;159(4):1396–407.
Article
CAS
Google Scholar