Luan F, Zeng J, Yang Y, He X, Wang B, Gao Y, et al. Recent advances in Camellia oleifera Abel: a review of nutritional constituents, biofunctional properties, and potential industrial applications. J Funct Foods. 2020;75:104242.
Article
CAS
Google Scholar
Zhang SY, Pan YG, Zheng LL, Yang Y, Zheng XY, Ai BL, et al. Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) And evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food Sci Nutr. 2018;7:1004–16.
Article
Google Scholar
Ye ZC, Yu J, Yan WP, Zhang JF, Yang DM, Yao GL, et al. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. Hortic Res. 2021;8(1):157.
Article
CAS
Google Scholar
He JH, Wu XH, Yu ZL. Microwave pretreatment of camellia (Camellia oleifera Abel.) Seeds: Effect on oil flavor. Food Chem. 2021;364:130388.
Article
CAS
Google Scholar
Kang L, Li PF, Wang AF, Ge XH, Li ZY. A novel cytoplasmic male sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad. Front Plant Sci. 2017;8:529.
Article
Google Scholar
Jia XY, Zhang XH, Qu JM, Han R. Optimization conditions of wheat mesophyll protoplast isolation. Agric Sci. 2016;7:850–8.
CAS
Google Scholar
Karamian R, Sharifzadeh A, Ranjbar M. Evidence of somatic embryogenesis and plantlet regeneration from protoplast culture of Muscari neglectum Guss. Afr J Agric Res. 2011;6(14):3247–51.
Google Scholar
Aoyagi H. Application of Plant Protoplasts for the production of useful metabolites. Biochem Eng J. 2011;56:1–8.
Article
CAS
Google Scholar
Kiełkowska A, Adamus A. An alginate-layer technique for culture of Brassica oleracea L. Protoplasts. 2012;48:265–73.
Google Scholar
Gieniec M, Siwek J, Oleszkiewicz T, Maćkowska K, Klimek–Chodacka M, Grzebelus E, et al. Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Sci Rep. 2020;10:18811.
Article
CAS
Google Scholar
Lin CS, Hsu CT, Yuan YH, Zheng PX, Wu FH, Cheng QW, et al. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiol. 2022;188(4):1917–30.
Article
CAS
Google Scholar
Grosser JW, Gmitter FG. Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tissue Organ Cult. 2011;104(3):343–57.
Article
CAS
Google Scholar
Xiao SX, Biswas MK, Li MY, Deng XX, Xu Q, Guo WW. Production and molecular characterization of diploid and tetraploid somatic cybrid plants between male sterile Satsuma mandarin and seedy sweet orange cultivars. Plant Cell Tissue Organ Cult. 2014;116(1):81–8.
Article
CAS
Google Scholar
Fu LL, Yang XY, Zhang XL, Wang ZW, Feng CH, Liu CX, et al. Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chin Sci Bull. 2009;54(17):3035–44.
Article
CAS
Google Scholar
Zhao ZG, Hu TT, Ge XH, Du XZ, Ding L, Li ZY. Production and characterization of intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus and their backcrossing progenies. Plant Cell Rep. 2008;27(10):1611–21.
Article
CAS
Google Scholar
Chen J, Yi Q, Song Q, Gu Y, Zhang J, Hu Y. A highly efficient maize nucellus protoplast system for transient gene expression and studying programmed cell death-related processes. Plant Cell Rep. 2015;34(7):1239–51.
Article
CAS
Google Scholar
Zhang Y, Su JB, Duan S, Ao Y, Dai JR, Liu J, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods. 2011;7(1):30.
Article
CAS
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
Google Scholar
Yu GH, Cheng Q, Xie ZN, Xu B, Huang BR, Zhao BY. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods. 2017;13:46.
Article
Google Scholar
Guo WW, Deng XX, Yi HL. Somatic hybrids between navel orange (Citrus sinensis) and grapefruit (C. paradisi) for seedless triploid breeding. Euphytica. 2000;116(3):281–5.
Article
CAS
Google Scholar
Cai X, Fu J, Guo W. Mitochondrial genome of callus protoplast has a role in mesophyll protoplast regeneration in Citrus: evidence from transgenic GFP somatic Homo-Fusion. Hortic. Plant J. 2017;3(05):177–82.
Google Scholar
Ortín-Párraga F, Burgos L. Isolation and culture of mesophyll protoplast from apricot. J Hortic Sci Biotechnol. 2003;78(5):624–8.
Article
Google Scholar
Honda C, Moriguchi T. High GUS expression in protoplasts isolated from immature peach fruits. Sci Hortic. 2006;109(3):0–247.
Article
CAS
Google Scholar
Peng Z, Tong HR, Liang GL, Shi YQ, Yuan LY. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant (Camellia sinensis L. O. Kuntze). Acta Agron Sin. 2018;44(03):463–70.
Article
Google Scholar
Zhou Y, Deng RF, Xu XL, Yang ZY. Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in the biosynthesis of specialized metabolites. Beverage Plant Res. 2021;1(1):1–9.
Article
Google Scholar
Tan BY, Xu M, Chen Y, Huang MR. Transient expression for functional gene analysis using Populus protoplasts. Plant Cell Tissue Organ Cult. 2013;114(01):11–8.
Article
CAS
Google Scholar
Kanwar K, Bhardwaj A, Deepika R. Efficient regeneration of plantlets from callus and mesophyll derived protoplasts of Robinia pseudoacacia L. Plant Cell Tissue Organ Cul. 2009;96(1):95–103.
Article
Google Scholar
Mukhtar I, Bajwa R, Nasim G. Isolation of mesophyll protoplasts from leaves of Dalbergia sissoo Roxb. J Appl Sci Environ Manage. 2012;6(1):11–5.
Google Scholar
Shen YM, Meng D, McGrouther K, Zhang JH, Cheng LL. Efficient isolation of Magnolia protoplasts and the application to subcellular localization of MdeHSF1. Plant Methods. 2017;13:44.
Article
Google Scholar
Lai Q, Wang YL, Zhou QY, Zhao Z. Isolation and purification of mesophyll protoplasts from Ginkgo biloba L. Cytologia. 2020;85(1):27–32.
Article
CAS
Google Scholar
Jones A, Chattopadhyay A, Shukla M, Zoń J, Saxena PK. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in american elm (Ulmus americana). BMC Plant Biol. 2012;12(1):75–5.
Article
CAS
Google Scholar
Ren R, Gao J, Yin DM, Li K, Lu CQ, Ahmad S, et al. Highly efficient leaf base protoplast isolation and transient expression systems for orchids and other important monocot crops. Front Plant Sci. 2021;12:626015.
Article
Google Scholar
Ren R, Gao J, Lu C, Wei Y, Jin J, Wong SM, et al. Highly efficient Protoplast isolation and transient expression system for functional characterization of flowering related genes in Cymbidium Orchids. Int J Mol Sci. 2020;21(7):2264.
Article
CAS
Google Scholar
Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol. 2017;17(1):29.
Article
Google Scholar
Mittelberger C, Stellmach H, Hause B, Kerschbamer C, Schlink K, Letschka T, et al. A novel effector protein of apple proliferation phytoplasma disrupts cell integrity of Nicotiana spp. protoplasts. Int J Mol Sci. 2019;20(18):4613.
Article
CAS
Google Scholar
Wang HL, Wang W, Zhan JC, Huang WD, Xu HY. An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Sci Hortic. 2015;191:82–9.
Article
CAS
Google Scholar
Nanjareddy K, Arthikala MK, Blanco L, Arellano ES, Lara M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Aobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene exgrpression analysis. BMC Biotechnol. 2016;16(1):53.
Article
Google Scholar
Gou YJ, Li YL, Bi PP, Wang DJ, Ma YY, Hu Y, et al. Optimization of the protoplast transient expression system for gene functional studies in strawberry (Fragaria vesca). Plant Cell Tissue and Organ Cult. 2020;141(1):41–53.
Article
CAS
Google Scholar
Martinho C, Confraria A, Elias CA, Crozet P, Rubio-Somoza I, Weigel D, et al. Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Mol Plant. 2015;8(2):261–75.
Article
CAS
Google Scholar
Yang JW, Fu JX, Li J, Cheng XL, Li F, Dong JF, et al. A novel co-immunoprecipitation protocol based on protoplast transient gene expression for studying protein-protein interactions in rice. Plant Mol Biol Rep. 2014;32(1):153–61.
Article
CAS
Google Scholar
Bai Y, Han N, Wu J, Yang Y, Wang J, Zhu M. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tissue Organ Cult. 2014;119(1):211–9.
Article
CAS
Google Scholar
Zhao FL, Li YJ, Hu Y, Gao YR, Zang XW, Ding Q, et al. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell Tissue Organ Cult. 2016;125(1):43–57.
Article
CAS
Google Scholar
Li SF, Ye TW, Xu X, Yuan DY, Xiao SX. Callus induction, suspension culture and protoplast isolation in Camellia oleifera. Sci Hortic. 2021;286(1):110193.
Article
CAS
Google Scholar
Zhang M, Wang AB, Qin M, Qin XJ, Yang SW, Su SC, et al. Direct and indirect somatic embryogenesis induction in Camellia oleifera Abel. Front Plant Sci. 2021;12:644389.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Salih AM, Al-Qurainy F, Khan S, Tarroum M, Nadeem M, Shaikhaldein HO, et al. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 2021;21(1):192.
Article
CAS
Google Scholar
Widholm JM. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972;47(4):189–94.
Article
CAS
Google Scholar
Hu Y, Gao C, Deng QE, Qiu J, Wei HL, Yang L, et al. Anatomical characteristics of petalized anther abortion in male sterile Camellia oleifera plants. J Am Soc Hortic Sci. 2021;146(6):411–23.
Article
CAS
Google Scholar
Wakita Y, Sasamoto H, Yokota S, Yoshizawa N. Plantlet regeneration from the mesophyll protoplast of Betula platyphylla var. japonica. Plant Cell Rep. 1996;16(1–2):50–3.
Article
CAS
Google Scholar
Raikar SV, Braun RH, Bryant C, Conner AJ, Christey MC. Efficient isolation, culture and regeneration of Lotus corniculatus protoplasts. Plant Biotechnol Rep. 2008;2(3):171–7.
Article
Google Scholar
Li NN, Ding LY, Zhang ZY, Guo WZ. Isolation of Mesophyll Protoplast and Establishment of Gene transient expression system in cotton. Acta Agron Sin. 2014;40(2):231–9.
Article
CAS
Google Scholar
Ahuja PS, Hadiuzzaman S, Davey MR, Cocking EC. Prolific plant regeneration from protoplast-derived tissues of Lotus corniculatus L. (birdsfoot trefoil). Plant Cell Rep. 1983;2(2):101–4.
Article
CAS
Google Scholar
Choury Z, Meschini R, Dell’Orso A, Fardusi MJ, Mugnozza GS, Kuzminsky E. Optimized conditions for the isolation of mesophyll protoplasts along the growing season from Arbutus unedo and their use in single cell gel electrophoresis. Plant Cell Tissue Organ Cult. 2017;132:535–43.
Article
Google Scholar
Rahmani MS, Pijut PM, Shabanian N. Protoplast isolation and genetically true-to-type plant regeneration from leaf- and callus-derived protoplasts of Albizia julibrissin. Plant Cell Tissue Organ Cult. 2016;127(2):1–14.
Article
Google Scholar
Chang MM, Loescher WH. Effects of preconditioning and isolation conditions on potato (Solanum tuberosum L. cv. Russet Burbank) protoplast yield for shoot regeneration and electroporation. Plant Sci. 1991;73(1):103–9.
Article
Google Scholar
Liao JM, Wang BC, Wang YC, Tan JQ. Optimization conditions of Arabidopsis mesophyll protoplast isolation. Acta Bot Boreali-Occident Sin. 2010;30(6):1271–6.
CAS
Google Scholar
Wang QL, Yu GY, Chen ZY, Han JL, Hu YF, Wang K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L.). Crop J. 2021;9(1):133–42.
Article
Google Scholar
Hong SY, Seo PJ, Cho SH, Park CM. Preparation of leaf mesophyll protoplasts for transient gene expression in brachypodium distachyon. J Plant Biol. 2012;55(5):390–7.
Article
CAS
Google Scholar
Xu XF, Zhu HY, Ren YF, Feng C, Ye ZH, Cai HM, et al. Efficient isolation and purification of tissue-specific protoplasts from tea plants (Camellia sinensis (L.) O. Kuntze). Plant Methods. 2021;17(1):84.
Article
CAS
Google Scholar
Ling A, Phua G, Tee C, Hussein S. Optimization of protoplast isolation protocols from callus of Eurycoma longifolia. J Med Plants Res. 2010;4(17):1778–85.
Google Scholar
Ma WJ, Yi F, Xiao Y, Yang GJ, Chen FJ, Wang JH. Isolation of leaf mesophyll protoplasts optimized by orthogonal design for transient gene expression in Catalpa bungei. Sci Hortic. 2020;274:109684.
Article
CAS
Google Scholar
Meng R, Wang C, Wang L, Liu Y, Zhan Q, Zheng J, et al. An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9. PeerJ. 2020;8(1):e10077.
Article
Google Scholar
Sun B, Zhang F, Xiao N, Jiang M, Yuan Q, Xue SL, et al. An efficient mesophyll protoplast isolation, purification and PEG-mediated transient gene expression for subcellular localization in chinese kale. Sci Hortic. 2018;241:187–93.
Article
CAS
Google Scholar
Lin HY, Chen JC, Fang SC. A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Front Plant Sci. 2018;9:843.
Article
Google Scholar
Hisamoto Y, Kobayashi M. Protoplast isolation from bamboo leaves. Plant Biotechnol. 2010;27(4):353–8.
Article
Google Scholar
Shu XJ, Wen TJ, Xing JY, Lu L, Hu JF. Isolation of protoplast and establishment of transient expression system in grapevine (Vitis vinifera L.). Acta Bot Boreali-Occident Sin. 2015;35(6):1262–8.
CAS
Google Scholar
Yao LP, Liao X, Gan ZZ, Peng X, Wang P, Li SJ, et al. Protoplast isolation and development of a transient expression system for sweet cherry (Prunus avium L.). Sci Hortic. 2016;209:14–21.
Article
CAS
Google Scholar
Zhou QY, Jiang ZH, Li YM, Zhang T, Zhao Z. Mesophyll protoplast isolation technique and flow cytometry analysis of ancient Platycladus orientalis (Cupressaceae). Turk J Agric For. 2019;43(3):275–87.
Article
CAS
Google Scholar
Li J, Liao X, Zhou S, Liu S, Jiang L, Wang G. Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty’. In Vitro Cell Dev Biol: Plant. 2018;54(1):87–93.
Article
CAS
Google Scholar
Adedeji OS, Naing AH, Kim KC. Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tissue and Organ Cult. 2020;141(3):571–81.
Article
Google Scholar
Huang HY, Wang ZY, Cheng JT, Zhao WC, Li X, Wang HY, et al. An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic. 2013;150:206–12.
Article
CAS
Google Scholar
Durieu P, Ochatt SJ. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot. 2000;51:1237–42.
CAS
Google Scholar
Rezazadeh R, Williams RR, Harrison DK. Factors affecting mango (Mangifera indica L.) protoplast isolation and culture. Sci Hortic. 2011;130(1):214–21.
Article
Google Scholar
Cao J, Yao D, Lin F, Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant. 2014;36(5):1281.
Article
Google Scholar
Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, et al. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Sci China Life Sci. 2019;62(8):1070–7.
Article
CAS
Google Scholar