Chen Z, Scheffler B, Dennis E, Triplett B, Zhang T, Guo W, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145:1303–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J. 2018;16:137–50.
Article
CAS
PubMed
Google Scholar
Goldberg R, Beals T, Sanders S. Anther development: Basic principles and practical applications. Plant Cell. 1993;5:1217–29.
CAS
PubMed
PubMed Central
Google Scholar
Suzuki K, Takeda H, Tsukaguchi T, Egawa Y. Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sex Plant Reprod. 2001;13:293–9.
Article
Google Scholar
Monterroso V, Wien H. Flower and pod abscission due to heat stress in beans. J Am Soc Hortic Sci. 2019;115:631–4.
Article
Google Scholar
Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14:30–6.
Article
CAS
PubMed
Google Scholar
Zhang M, Liu J, Ma Q, Qin Y, Wang H, Chen P, et al. Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genomics. 2020;21:825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagadish S, Raveendran M, Oane R, Wheeler T, Heuer S, Bennett J, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot. 2010;61:143–56.
Article
CAS
PubMed
Google Scholar
Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics. 2011;38:379–90.
Article
CAS
PubMed
Google Scholar
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot. 2009;60:3891–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
CAS
PubMed
Google Scholar
Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51:224–9.
Article
CAS
PubMed
Google Scholar
Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, et al. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J. 2018;16:699–713.
Article
PubMed
PubMed Central
Google Scholar
Long L, Guo D, Gao W, Yang W, Hou L, Ma X, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods. 2018;14:1–9.
Article
CAS
Google Scholar
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51:739–48.
Article
CAS
PubMed
Google Scholar
Bheemanahalli R, Sunoj VSJ, Saripalli G, Prasad PVV, Balyan HS, Gupta PK, et al. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Sci. 2019;59:684–96.
Article
CAS
Google Scholar
Hinojosa L, Matanguihan J, Murphy K. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J Agron Crop Sci. 2019;205:33–45.
Article
Google Scholar
Sharma D, Pandey G, Mamrutha H, Singh R. Genotype–phenotype relationships for high-temperature tolerance : an integrated method for minimizing phenotyping constraints in wheat. Crop Sci. 2019;59(10):1–10.
Google Scholar
Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31:294–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong Q, Zhao SH. The mechanism and application of zinc finger nucleases. Yi Chuan. 2011;33:123–30.
Article
CAS
PubMed
Google Scholar
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F. Resource one-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
De SN. RNA-guided gene editing. Nat Methods. 2013;10:189.
Article
CAS
Google Scholar
Cho SW, Kim S, Kim JM, Kim J. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.
Article
CAS
PubMed
Google Scholar
Li J, Handler AM. CRISPR/Cas9-mediated gene editing in an exogenous transgene and an endogenous sex determination gene in the Caribbean fruit fly. Anastrepha suspensa Gene. 2019;691:160–6.
Article
CAS
PubMed
Google Scholar
Liu Q, Yuan Y, Zhu F, Hong Y, Ge R. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol Open. 2018;7:bio035170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burgio G. Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology. Genome Biol. 2018;28:19–27.
Google Scholar
Goodwin S, McPherson J, McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.
Article
CAS
PubMed
Google Scholar
Metzker M. Sequencing technologies the next generation. Nat Rev Genet. 2010;11:31–46.
Article
CAS
PubMed
Google Scholar
Pinello L, Canver M, Hoban M, Orkin S, Kohn D, Bauer D, et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol. 2016;34:695–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue L, Tsai C. AGEseq: analysis of genome editing by sequencing. Mol Plant. 2015;8:1428–30.
Article
CAS
PubMed
Google Scholar
Güell M, Yang L, Church GM. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics. 2014;30:2968–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindsay H, Burger A, Biyong B, Felker A, Hess C, Zaugg J, et al. CrispRVariants charts the mutation spectrum of genome engineering experiments. Nat Biotechnol. 2016;34:701–2.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y. Hi-TOM : a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci. 2017;62(1):1–7.
Article
CAS
Google Scholar
Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, et al. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J. 2019;17:858–68.
Article
CAS
PubMed
Google Scholar
Liu H, Jian L, Xu J, Zhang Q, Zhang M, Jin M, et al. High-Throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell. 2019;32:1397–413.
Article
CAS
Google Scholar
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, et al. Generation of a multiplexmutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J. 2020;18:721–31.
Article
CAS
PubMed
Google Scholar
Jacobs TB, Zhang N, Patel D, Martin GB. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol. 2017;174:2023–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng X, Yu H, Zhang Y, Zhuang F, Song X, et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant. 2017;10:1238–41.
Article
CAS
PubMed
Google Scholar
Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, et al. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol. 2014;164:1293–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotem A, Ram O, Shoresh N, Sperling RA, Schnall-Levin M, Zhang H, et al. High-throughput single-cell labeling (Hi-SCL) for RNA-Seq using drop-based microfluidics. PLoS ONE. 2015;10:1–14.
Article
CAS
Google Scholar
Tambe A, Pachter L. Barcode identification for single cell genomics. BMC Bioinformatics. 2019;20:32.
Article
PubMed
PubMed Central
Google Scholar
Park J, Lim K, Kim JS, Bae S. Cas-analyzer: An online tool for assessing genome editing results using NGS data. Bioinformatics. 2017;33:286–8.
Article
CAS
PubMed
Google Scholar
Gao W, Long L, Tian X, Xu F, Liu J, Singh P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. 2017;8:1–12.
Article
Google Scholar
Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509:487–91.
Article
CAS
PubMed
Google Scholar
Liu H, Jian L, Xu J, Zhang Q, Zhang M, Jin M, et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell. 2020;32:1397–413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sander J, Joung J. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Zhao Y. Specific and heritable gene editing in Arabidopsis. Proc Natl Acad Sci USA. 2014;111:4357–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. 2014;56:343–9.
Article
CAS
PubMed
Google Scholar
Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA. 2015;112:3570–5.
Article
CAS
PubMed
PubMed Central
Google Scholar