Kinoshita T, Shimazaki K-I. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 1999;18:5548–58. https://doi.org/10.1093/emboj/18.20.5548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K-I. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature. 2001;414:656–60. https://doi.org/10.1038/414656a.
Article
CAS
PubMed
Google Scholar
Inoue S-I, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K-I. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA. 2008;105:5626–31. https://doi.org/10.1073/pnas.0709189105.
Article
PubMed
Google Scholar
Assmann SM. Signal transduction in guard cells. Ann Rev Cell Biol. 1993;9:345–75.
Article
CAS
Google Scholar
Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KA, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol CB. 2013;23:53–7. https://doi.org/10.1016/j.cub.2012.11.022.
Article
CAS
PubMed
Google Scholar
Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci. 2018. https://doi.org/10.1016/j.tplants.2018.10.003.
Article
PubMed
Google Scholar
Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, et al. Stomatal VPD response: there is more to the story than ABA. Plant Physiol. 2018;176:851–64. https://doi.org/10.1104/pp.17.00912.
Article
CAS
PubMed
Google Scholar
Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI. CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA. 2006;103:7506–11. https://doi.org/10.1073/pnas.0602225103.
Article
CAS
PubMed
Google Scholar
Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordstrom M, Azoulay-Shemer T, Rappel W-J, et al. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci. 2016;21:16–30. https://doi.org/10.1016/j.tplants.2015.08.014.
Article
CAS
PubMed
Google Scholar
Weiner JJ, Peterson FC, Volkman BF, Cutler SR. Structural and functional insights into core ABA signaling. Curr Opin Plant Biol. 2010;13:495–502. https://doi.org/10.1016/j.pbi.2010.09.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deger AG, Scherzer S, Nuhkat M, Kedzierska J, Kollist H, Brosché M, et al. Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. N Phytol. 2015;208:162–73. https://doi.org/10.1111/nph.13435.
Article
CAS
Google Scholar
Weyers JDB, Travis AJ. Selection and preparation of leaf epidermis for experiments on stomatal physiology. J Exp Bot. 1981;32:837–50. https://doi.org/10.1093/jxb/32.4.837.
Article
Google Scholar
Mott KA, Sibbernsen ED, Shope JC. The role of the mesophyll in stomatal responses to light and CO2. Plant, Cell Environ. 2008;31:1299–306. https://doi.org/10.1111/j.1365-3040.2008.01845.x.
Article
CAS
Google Scholar
Lawson T, Simkin AJ, Kelly G, Granot D. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. N. Phytol. 2014;203:1064–81. https://doi.org/10.1111/nph.12945.
Article
CAS
Google Scholar
Lindsey BE III, Rivero L, Calhoun CS, Grotewold E, Brkljacic J. Standardized method for high-throughput sterilization of arabidopsis seeds. J Vis Exp JoVE. 2017. https://doi.org/10.3791/56587.
Article
PubMed
Google Scholar
Murashige T, Scholar FSG. A revised medium for rapid growth and bioassay with tobacco tissue culture. Phisiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50:151–8. https://doi.org/10.1016/0014-4827(68)90403-5.
Article
CAS
PubMed
Google Scholar
Azoulay-Shemer T, Bagheri A, Wang C, Palomares A, Stephan AB, Kunz H-H, et al. Starch biosynthesis in guard cells but not in mesophyll cells is involved in CO2-induced stomatal closing. Plant Physiol. 2016;171:788–98. https://doi.org/10.1104/pp.15.01662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14:3089–99. https://doi.org/10.1105/tpc.007906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in arabidopsis. Plant Cell Physiol. 2002;43:1473–83. https://doi.org/10.1093/pcp/pcf188.
Article
CAS
PubMed
Google Scholar
Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature. 2003;425:734–7.
Article
CAS
Google Scholar
Maurel C, Verdoucq L, Luu D-T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59:595–624. https://doi.org/10.1146/annurev.arplant.59.032607.092734.
Article
CAS
PubMed
Google Scholar
Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N. Aquaporins and plant water balance. Plant, Cell Environ. 2008;31:658–66. https://doi.org/10.1111/j.1365-3040.2008.01792.x.
Article
CAS
Google Scholar
Heinen RB, Bienert GP, Cohen D, Chevalier AS, Uehlein N, Hachez C, et al. Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Mol Biol. 2014;86:335–50. https://doi.org/10.1007/s11103-014-0232-7.
Article
CAS
PubMed
Google Scholar
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 2014;164:1600–18. https://doi.org/10.1104/pp.113.233791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol 2002;3:RESEARCH0001.
Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 2015;27:tpc.15.00421–1954. https://doi.org/10.1105/tpc.15.00421.
Wang C, Hu H, Qin X, Zeise B, Xu D, Rappel W-J, et al. Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as carbonic ANHYDRASE4 interactor. Plant Cell. 2016;28:568–82. https://doi.org/10.1105/tpc.15.00637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gómez-Gómez L, Boller T. FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in arabidopsis. Mol Cell. 2000;5:1003–11. https://doi.org/10.1016/S1097-2765(00)80265-8.
Article
PubMed
Google Scholar
Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell. 2006;126:969–80. https://doi.org/10.1016/j.cell.2006.06.054.
Article
CAS
Google Scholar
McKown KH, Bergmann DC. Grass stomata. Curr Biol CB. 2018;28:R814–6. https://doi.org/10.1016/j.cub.2018.05.074.
Article
CAS
PubMed
Google Scholar
Raissig MT, Abrash E, Bettadapur A, Vogel JP, Bergmann DC. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proc Natl Acad Sci USA. 2016;113:8326–31. https://doi.org/10.1073/pnas.1606728113.
Article
CAS
PubMed
Google Scholar
Raissig MT, Matos JL, Gil MXA, Kornfeld A, Bettadapur A, Abrash E, et al. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science. 2017;355:1215–8. https://doi.org/10.1126/science.aal3254.
Article
CAS
PubMed
Google Scholar
Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol. 2010;61:561–91. https://doi.org/10.1146/annurev-arplant-042809-112226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batool S, Uslu VV, Rajab H, Ahmad N, Waadt R, Geiger D, et al. Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. Plant Cell. 2018;30:2973–87. https://doi.org/10.1105/tpc.18.00612.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Wang N, Miao Y, Hauser F, McCammon JA, Rappel W-J, et al. Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc Natl Acad Sci USA. 2018;115:201807624–11137. https://doi.org/10.1073/pnas.1807624115.
Article
CAS
Google Scholar
Hauser F, Ceciliato PHO, Lin Y-C, Guo D, Gregerson JD, Abbasi N, et al. A seed resource for screening functionally redundant genes and isolation of new mutants impaired in CO2 and ABA responses. J Exp Bot. 2018. https://doi.org/10.1093/jxb/ery363.
Article
PubMed Central
Google Scholar
Park J, Kim T-H, Takahashi Y, Schwab R, Dressano K, Stephan AB, et al. Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling. Plant J Cell Mol Biol. 2019. https://doi.org/10.1111/tpj.14232.
Article
Google Scholar
Müller HM, Schäfer N, Bauer H, Geiger D, Lautner S, Fromm J, et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. N Phytol. 2017;216:150–62. https://doi.org/10.1111/nph.14672.
Article
CAS
Google Scholar
Felle HH, Hanstein S, Steinmeyer R, Hedrich R. Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness. Plant J Cell Mol Biol. 2000;24:297–304. https://doi.org/10.1046/j.1365-313x.2000.00878.x.
Article
CAS
Google Scholar
Wilkinson S, Davies WJ. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J Exp Bot. 2008;59:619–31. https://doi.org/10.1093/jxb/erm338.
Article
CAS
PubMed
Google Scholar
Schäfer N, Maierhofer T, Herrmann J, et al. A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate. Curr Biol. 2018. https://doi.org/10.1016/j.cub.2018.03.027.
Article
PubMed
Google Scholar