Chisenga SM, Workneh TS, Bultosa G, Alimi BA. Progress in research and applications of cassava flour and starch: a review. J Food Sci Technol. 2019;56(6):2799–813.
Article
CAS
Google Scholar
Zhang L, Zhang J, Wei Y, Hu W, Liu G, Zeng H, Shi H. Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava. Plant Biotechnol J. 2021;19(4):689–701.
Article
CAS
Google Scholar
Legg J, Kumar LTM, Tripathi L, Ferguson M, Kanju E, Ntawuruhunga P, Cuellar W. Cassava virus diseases: biology, epidemiology, and management. Adv Virus Res. 2015. https://doi.org/10.1016/bs.aivir.2014.10.001.
Article
Google Scholar
Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T. Cassava: the drought, war and famine crop in a changing world. Sustainability. 2010;2(11):3572–3607.
Article
Google Scholar
Wydra K, Verdier V. Occurrence of cassava diseases in relation to environmental, agronomic and plant characteristics. Agric Ecosyst Environ. 2002;93(1–3):211–26.
Article
Google Scholar
Van Der Maaten L. Accelerating t-sne using tree-based algorithms. J Mach Learn Res. 2014;15(1):3221–45.
Google Scholar
Behera A, Wharton Z, Hewage PR, Bera A. Context-aware attentional pooling (cap) for fine-grained visual classification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35; 2021. p. 929–37.
Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning, PMLR; 2019. p. 6105–14.
Ai Y, Sun C, Tie J, Cai X. Research on recognition model of crop diseases and insect pests based on deep learning in harsh environments. IEEE Access. 2020;8:171686–93.
Article
Google Scholar
Plested J, Shen X, Gedeon T. Rethinking binary hyperparameters for deep transfer learning. In: International conference on neural information processing. Springer; 2021. p. 463–75.
Fu J, Zheng H, Mei T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 4438–46.
Ye M, Shen J, Lin G, Xiang T, Shao L, Hoi SC. Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell. 2021;44(6):2872–93.
Article
Google Scholar
Li W, Zhu X, Gong S. Harmonious attention network for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2285–94.
Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016;3(1):1–40.
Article
Google Scholar
Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdiscip Rev Data Min Knowl Discov. 2018;8(4):1249.
Article
Google Scholar
Lin Y-K, Wang C-F, Chang C-Y, Sun H-L. An efficient framework for counting pedestrians crossing a line using low-cost devices: the benefits of distilling the knowledge in a neural network. Multimed Tools Appl. 2021;80(3):4037–51.
Article
Google Scholar
Chang D, Ding Y, Xie J, Bhunia AK, Li X, Ma Z, Wu M, Guo J, Song Y-Z. The devil is in the channels: mutual-channel loss for fine-grained image classification. IEEE Trans Image Process. 2020;29:4683–95.
Article
Google Scholar
Tetila EC, Machado BB, Menezes GK, Oliveira AdS, Alvarez M, Amorim WP, Belete NADS, Da Silva GG, Pistori H. Automatic recognition of soybean leaf diseases using uav images and deep convolutional neural networks. IEEE Geosci Remote Sens Lett. 2019;17(5):903–7.
Article
Google Scholar
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv. 2017. http://arxiv.org/abs/1704.04861.
Ramcharan A, McCloskey P, Baranowski K, Mbilinyi N, Mrisho L, Ndalahwa M, Legg J, Hughes DP. A mobile-based deep learning model for cassava disease diagnosis. Front Plant Sci. 2019;10:272.
Article
Google Scholar
Singh UP, Chouhan SS, Jain S, Jain S. Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. IEEE Access. 2019;7:43721–9.
Article
Google Scholar
Li X, Chen S, Hu X, Yang J. Understanding the disharmony between dropout and batch normalization by variance shift. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2019. p. 2682–90.
Liang S, Huang Z, Liang M, Yang H. Instance enhancement batch normalization: an adaptive regulator of batch noise. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34; 2020. p. 4819–27.
Gao S-H, Han Q, Li D, Cheng M-M, Peng P. Representative batch normalization with feature calibration. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2021. p. 8669–79.
Yao Z, Cao Y, Zheng S, Huang G, Lin S. Cross-iteration batch normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2021. p. 12331–40.
Benz P, Zhang C, Karjauv A, Kweon IS. Revisiting batch normalization for improving corruption robustness. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision; 2021. p. 494–503.
Awais M, Iqbal MTB, Bae S-H. Revisiting internal covariate shift for batch normalization. IEEE Trans Neural Netw Learn Syst. 2020;32(11):5082–92.
Article
Google Scholar
Yuan Y, Xu Z, Lu G. Spedccnn: spatial pyramid-oriented encoder-decoder cascade convolution neural network for crop disease leaf segmentation. IEEE Access. 2021;9:14849–66.
Article
Google Scholar
Zhang S, Zhang S, Zhang C, Wang X, Shi Y. Cucumber leaf disease identification with global pooling dilated convolutional neural network. Comput Electron Agric. 2019;162:422–30.
Article
Google Scholar
Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53(8):5455–516.
Article
Google Scholar
Han D, Kim J, Kim J. Deep pyramidal residual networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 5927–35.
Reyes AK, Caicedo JC, Camargo JE. Fine-tuning deep convolutional networks for plant recognition. CLEF. 2015;1391:467–75.
Google Scholar
Lee SH, Chan CS, Mayo SJ, Remagnino P. How deep learning extracts and learns leaf features for plant classification. Pattern Recogn. 2017;71:1–13.
Article
Google Scholar
Thai H-T, Tran-Van N-Y, Le K-H. Artificial cognition for early leaf disease detection using vision transformers. In: 2021 international conference on advanced technologies for communications (ATC), IEEE; 2021. p. 33–8.
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision; 2021. p. 10012–22.
De Luna RG, Dadios EP, Bandala AA. Automated image capturing system for deep learning-based tomato plant leaf disease detection and recognition. In: TENCON 2018—2018 IEEE region 10 conference, IEEE; 2018. p. 1414–9.
Zhang Y, Song C, Zhang D. Deep learning-based object detection improvement for tomato disease. IEEE Access. 2020;8:56607–14.
Article
Google Scholar
Xiaoxiao S, Shaomin M, Yongyu X, Zhihao C, Tingting S. Image recognition of tea leaf diseases based on convolutional neural network. In: 2018 international conference on security, pattern analysis, and cybernetics (SPAC), IEEE; 2018. p. 304–9.
Zhou C, Zhou S, Xing J, Song J. Tomato leaf disease identification by restructured deep residual dense network. IEEE Access. 2021;9:28822–31.
Article
Google Scholar
Oyewola DO, Dada EG, Misra S, Damaševičius R. Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing. PeerJ Comput Sci. 2021;7:352.
Article
Google Scholar
Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 1997;10(9):1659–71.
Article
Google Scholar
Schwartz M. Harvard University Online Education, lecture 8: fourier transforms. https://scholar.harvard.edu/files/schwartz/files/lecture8-fouriertransforms.pdf. Accessed 5 Apr 2022.
Wang H, Wu X, Huang Z, Xing EP. High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2020. p. 8684–94.
Boulent J, Foucher S, Théau J, St-Charles P-L. Convolutional neural networks for the automatic identification of plant diseases. Front Plant Sci. 2019;10:941.
Article
Google Scholar
He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: European conference on computer vision. Springer; 2016. p. 630–45.
Hu J, Shen L, Sun G. Squeeze-and-excitation networks 2018; p. 7132–41
Qin Z, Zhang P, Wu F, Li X. Fcanet: frequency channel attention networks. arXiv. 2020. http://arxiv.org/abs/2012.11879.
Pan X, Luo P, Shi J, Tang X. Two at once: enhancing learning and generalization capacities via ibn-net 2018; p. 464–79.
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR; 2015. p. 448–56.
With Code team P. paperswithcode. 1 November 2022. https://paperswithcode.com/dataset/fgvc-aircraft-1.
Lee J, Won T, Lee TK, Lee H, Gu G, Hong K. Compounding the performance improvements of assembled techniques in a convolutional neural network. arXiv. 2020. http://arxiv.org/abs/2001.06268.
Sambasivan N, Kapania S, Highfill H, Akrong D, Paritosh P, Aroyo LM. Everyone wants to do the model work, not the data work: data cascades in high-stakes ai. In: Proceedings of the 2021 CHI conference on human factors in computing systems; 2021. p. 1–15.
Azeroual O. Data wrangling in database systems: purging of dirty data. Data. 2020;5(2):50.
Article
Google Scholar
Zhou P, Feng J, Ma C, Xiong C, Hoi SCH, et al. Towards theoretically understanding why sgd generalizes better than adam in deep learning. Adv Neural Inf Process Syst. 2020;33:21285–96.
Google Scholar
Ding X, Zhang X, Ma N, Han J, Ding G, Sun J. Repvgg: making vgg-style convnets great again. arXiv. 2021. http://arxiv.org/abs/2101.03697.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–105.
Google Scholar
Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Comput Electron Agric. 2018;145:311–8.
Article
Google Scholar
Maji S, Kannala J, Rahtu E, Blaschko M, Vedaldi A. Fine-grained visual classification of aircraft. Technical report. 2013. http://arxiv.org/abs/1306.5151.
Sambasivam G, Opiyo GD. A predictive machine learning application in agriculture: cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt Inform J. 2021;22(1):27–34.
Article
Google Scholar
Ayu H, Surtono A, Apriyanto D. Deep learning for detection cassava leaf disease. J Phys Conf Ser. 2021;1751:012072.
Article
Google Scholar
Sangbamrung I, Praneetpholkrang P, Kanjanawattana S. A novel automatic method for cassava disease classification using deep learning. J Adv Inform Technol. 2020;11(4):241-248. https://doi.org/10.12720/jait.11.4.241-248.
Article
Google Scholar
Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes DP. Deep learning for image-based cassava disease detection. Front Plant Sci. 2017;8:1852.
Article
Google Scholar
Abayomi-Alli OO, Damaševičius R, Misra S, Maskeliūnas R. Cassava disease recognition from low-quality images using enhanced data augmentation model and deep learning. Expert Syst. 2021;38(7):12746.
Article
Google Scholar
Lu J, Hu J, Zhao G, Mei F, Zhang C. An in-field automatic wheat disease diagnosis system. Comput Electron Agric. 2017;142:369–79.
Article
Google Scholar
Ravi V, Acharya V, Pham TD. Attention deep learning-based large-scale learning classifier for cassava leaf disease classification. Expert Syst. 2022;39(2):12862.
Article
Google Scholar
Emuoyibofarhe O, Emuoyibofarhe JO, Adebayo S, Ayandiji A, Demeji O, James O. Detection and classification of cassava diseases using machine learning. Int J Comput Sci Softw Eng. 2019;8(7):166–76.
Google Scholar
Molchanov P, Tyree S, Karras T, Aila T, Kautz J. Pruning convolutional neural networks for resource efficient inference. arXiv e-prints. 2016;1611–06440. http://arxiv.org/abs/1611.06440.