Paul MJ, Stitt M. Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant Cell Env. 1993;16(9):1047–57.
Article
CAS
Google Scholar
Martin T, Oswald O, Graham IA. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 2002;128(2):472–81.
Article
CAS
Google Scholar
Humpherson-Jones FM, Maude RB. Studies on the epidemiology of Alternaria brassicicola in Brassica oleracea seed production crops. Ann Appl Biol. 1982;100:61–71.
Article
Google Scholar
Neergaard P. Economic significance of seed-borne diseases. In: Seed pathology. London: Palgrave; 1977. p. 3–39.
Richard-Molard C, Wuilleme S, Scheel C, Gresshoff PM, Morot-Gaudry JF, Limami AM. Nitrogen-induced changes in morphological development and bacterial susceptibility of belgian endive (Cichorium intybus L.) are genotype-dependent. Planta. 1999;209:389–98.
Article
CAS
Google Scholar
Mur LAJ, Simpson C, Kumari A, Gupta AK, Gupta KJ. Moving nitrogen to the centre of plant defence against pathogens. Ann Bot. 2016;119:703–9.
Google Scholar
Sellam A, Dongo A, Guillemette T, Hudhomme P, Simoneau P. Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola. Mol Plant Pathol. 2007;8:195–208.
Article
CAS
Google Scholar
Glawischnig E, Hansen BG, Olsen CE, Halkier BA. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA. 2004;101(21):8245–50.
Article
CAS
Google Scholar
Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 2002;7(6):263–70.
Article
CAS
Google Scholar
Kliebenstein DJ. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004;27(6):675–84.
Article
CAS
Google Scholar
Noritake T, Kawakita K, Doke N. Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol. 1996;37(1):113–6.
Article
CAS
Google Scholar
Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA. 1998;95(17):10328–33.
Article
CAS
Google Scholar
Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci. 2013;4:215.
Article
Google Scholar
Huber DM, Watson RD. Nitrogen form and plant disease. Annu Rev Phytopathol. 1974;12(1):139–65.
Article
CAS
Google Scholar
Tavernier V, Cadiou S, Pageau K, Laugé R, Reisdorf-Cren M, Langin T, Masclaux-Daubresse C. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. J Exp Bot. 2007;58(12):3351–60.
Article
CAS
Google Scholar
Solomon PS, Tan KC, Oliver RP. The nutrient supply of pathogenic fungi; a fertile field of study. Mol Plant Pathol. 2003;4:203–10.
Article
Google Scholar
Jensen B, Munk L. Nitrogen-induced changes in colony density and spore production of Erysiphe graminis f. sp. hordei on seedlings of six spring barley cultivars. Plant Pathol. 1997;46(2):191–202.
Article
Google Scholar
Hoffland E, Jeger MJ, van Beusichem ML. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil. 2000;218(1):239–47.
Article
CAS
Google Scholar
Borrero C, Trillas MI, Delgado A, Avilés M. Effect of ammonium/nitrate ratio in nutrient solution on control of Fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol. 2012;61(1):132–9.
Article
CAS
Google Scholar
Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJ, Bauwe H, Fernie AR, Kaiser WM. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot. 2013;64(2):553–68.
Article
CAS
Google Scholar
Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev. 2008;28(1):33–46.
Article
CAS
Google Scholar
Barrit T, Porcher A, Cukier C, Satour P, Guillemette T, Limami AM, Teulat B, Campion C, Planchet E. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus Alternaria brassicicola. Physiol Plant. 2022;6:e13621.
Google Scholar
Jacobs T. Postulation of virulence groups and resistance factors in the quinoa/downy mildew pathosystem using material from Ecuador. Plant Pathol. 1999;48(3):425–30.
Article
Google Scholar
Ziadi S, Barbedette S, Godard JF, Monot C, Le Corre D, Silue D. Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var. botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol. 2001;50(5):579–86.
Article
CAS
Google Scholar
Ouborg NJ, Biere A, Mudde CL. Inbreeding effects on resistance and transmission-related traits in the Silene-Microbotryum pathosystem. Ecology. 2000;81(2):520–31.
Google Scholar
Meyer SE, Nelson DL, Clement S. Evidence for resistance polymorphism in the Bromus tectorum-Ustilago bullata pathosystem: implications for biocontrol. Can J Plant Pathol. 2001;23(1):19–27.
Article
CAS
Google Scholar
Finch-Boekweg H, Allen P, Meyer S. Exposure to low water potentials and seed dormancy favour the fungus in the Pyrenophora semeniperda-Bromus tectorum pathosystem. Plant Protect Sci. 2013;49:S15-21.
Article
Google Scholar
Bang J, Kim H, Kim H, Beuchat LR, Ryu JH. Inactivation of Escherichia coli O157: H7 on radish seeds by sequential treatments with chlorine dioxide, drying, and dry heat without loss of seed viability. Appl Environ Microbiol. 2011;77(18):6680–6.
Article
CAS
Google Scholar
Vahabi K, Reichelt M, Scholz SS, Furch AC, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora indica hyphal network and activate abscisic acid responses. Front Plant Sci. 2018;9:626.
Article
Google Scholar
Schlaich NL. Arabidopsis thaliana-the model plant to study host-pathogen interactions. Curr Drug Targets. 2011;12(7):955–66.
Article
CAS
Google Scholar
Lawrence CB, Mitchell TK, Craven KD, Cho YR, Cramer RA, Kim KH. At death’s door: Alternaria pathogenicity mechanisms. Plant Pathol J. 2008;24(2):101–11.
Article
CAS
Google Scholar
Köhl J, Van Tongere CAM, Groenenboom-de Haas BH, Van Hoof RA, Driessen R, Van Der Heijden L. Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathol. 2010;59:358–67.
Article
Google Scholar
Rotem J. The genus Alternaria: biology, epidemiology and pathogenicity. St Paul: APS; 1994. p. 1–326.
Google Scholar
Rimmer SR, Buchwaldt H. Diseases. In: Kimber DS, McGregor DI, editors. Brassica oil seeds-production and utilization. Wallingford: CAB International; 1995. p. 111–40.
Google Scholar
Kubota M, Abiko K, Yanagisawa Y, Nishi K. Frequency of Alternaria brassicicola in commercial cabbage seeds in Japan. J Gen Plant Pathol. 2006;72(4):197–204.
Article
Google Scholar
Maude RB, Humpherson-Jones FM. Studies on the seed-borne phases of dark leaf spot Alternaria brassicicola and grey leaf spot Alternaria brassicae of brassicas. Ann Appl Biol. 1980;95(3):311–9.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
Article
CAS
Google Scholar
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A. ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019;16:1226–32.
Article
CAS
Google Scholar
Mukherjee AK, Lev S, Gepstein S, Horwitz BA. A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC Plant Biol. 2009;9:31.
Article
Google Scholar
Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 2002;159(6):567–84.
Article
CAS
Google Scholar
Sarasketa A, González-Moro MB, González-Murua C, Marino D. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. J Exp Bot. 2014;65(20):6023–33.
Article
CAS
Google Scholar
Gerendás J, Zhu Z, Bendixen R, Ratcliffe RG, Sattelmacher B. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanz Bodenkunde. 1997;160(2):239–51.
Article
Google Scholar
Gao K, Zhou T, Hua Y, Guan C, Zhang Z. Transcription factor WRKY23 is involved in ammonium-induced repression of Arabidopsis primary root growth under ammonium toxicity. Plant Physiol Biochem. 2020;150:90–8.
Article
CAS
Google Scholar
Walch-Liu P, Forde BG. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J. 2008;54(5):820–8.
Article
CAS
Google Scholar
North KA, Ehlting B, Koprivova A, Rennenberg H, Kopriva S. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiol Biochem. 2009;47(10):912–8.
Article
CAS
Google Scholar
Sun Y, Wang M, Mur LA, Shen Q, Guo S. Unravelling the roles of nitrogen nutrition in plant disease defences. Int J Mol Sci. 2020;21(2):572.
Article
CAS
Google Scholar
Solel Z, Bruck RI. Effect of nitrogen fertilization and growth suppression on pitch canker development on loblolly pine seedlings. J Phytopathol. 1989;125(4):327–35.
Article
Google Scholar
Entry JA, Cromack K Jr, Hansen E, Waring R. Response of western coniferous seedlings to infection by Armillaria ostoyae under limited light and nitrogen. Phytopathology. 1991;81(1):89–94.
Article
Google Scholar
Fleischmann F, Raidl S, Osswald WF. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ Pollut. 2010;158(4):1051–60.
Article
CAS
Google Scholar
Brown A, Heckman RW. Light alters the impacts of nitrogen and foliar pathogens on the performance of early successional tree seedlings. PeerJ. 2021;9:e11587.
Article
Google Scholar
Ballini E, Nguyen TT, Morel J. Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice. 2013;6:32.
Article
Google Scholar
Snoeijers SS, Pérez-García A, Joosten MH, De Wit PJ. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol. 2000;106:493–506.
Article
CAS
Google Scholar
Panter S, Jones D. Age-related resistance to plant pathogens. Adv Bot Res. 2002;19:251.
Article
Google Scholar
Mazzola M, Leach JE, Nelson R, White FF. Analysis of the interaction between Xanthomonas oryzae pv. oryzae and the rice cultivars IR24 and IRBB21. Phytopathology. 1994;84(4):392–7.
Article
CAS
Google Scholar
Kus JV, Zaton K, Sarkar R, Cameron RK. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 2002;14(2):479–90.
Article
CAS
Google Scholar
Rusterucci C, Zhao Z, Haines K, Mellersh D, Neumann M, Cameron RK. Age-related resistance to Pseudomonas syringae pv. tomato is associated with the transition to flowering in Arabidopsis and is effective against Peronospora parasitica. Physiol Mol Plant Pathol. 2005;66(6):222–31.
Article
CAS
Google Scholar
Li B, Xu X. Infection and development of apple scab (Venturia inaequalis) on old leaves. J Phytopathol. 2002;150(11–12):687–91.
Article
Google Scholar
Kumar A, Yogendra KN, Karre S, Kushalappa AC, Dion Y, Choo TM. WAX INDUCER1 (HvWIN1) transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist Fusarium head blight in barley spikelets. J Exp Bot. 2016;67(14):4127–39.
Article
CAS
Google Scholar
Pantin F, Simonneau T, Muller B. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012;196(2):349–66.
Article
Google Scholar
Shumborski SJ, Samuels AL, Bird DA. Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development. Planta. 2016;244(4):843–51.
Article
CAS
Google Scholar
Belmas E, Briand M, Kwasiborski A, Colou J, N’Guyen G, Iacomi B, Grappin P, Campion C, Simoneau P, Barret M, Guillemette T. Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43. Genome Announc. 2018;6(6):e01559-e1617.
Article
Google Scholar
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature. 2020;585:357–62.
Article
CAS
Google Scholar
van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. Scikit-image: image processing in Python. Peer J. 2014;2:e453.
Article
Google Scholar
Hunter JD. Matplotlib: a 2D graphics. Comp Sci Eng. 2007;9(3):90–5.
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
CAS
Google Scholar