Wilson JR. Chapitre 1: organization of forage plant tissues. Forage Cell Wall Struct Dig. 1993. https://doi.org/10.2134/1993.foragecellwall.c1.
Article
Google Scholar
Jung HG, Casler MD. Maize stem tissues: impact of development on cell wall degradability. Crop Sci. 2006;46:1801–9.
Article
CAS
Google Scholar
Jung HG, Casler MD. Maize stem tissues: cell wall concentration and composition during development. Crop Sci. 2006;46:1793–800.
Article
CAS
Google Scholar
Perrier L, Rouan L, Jaffuel S, Clément-Vidal A, Roques S, Soutiras A, et al. Plasticity of sorghum stem biomass accumulation in response to water deficit: a multiscale analysis from internode tissue to plant level. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.01516/full.
Article
PubMed
PubMed Central
Google Scholar
Corcel M. Imagerie multispectrale en macrofluorescence en vue de la prédiction de l’origine tissulaire de particules de tiges de maïs [Internet] [These de doctorat]. Nantes, Ecole nationale vétérinaire; 2017 [cited 2021 May 26]. https://www.theses.fr/2017ONIR095F
El Hage F. Impact du déficit hydrique sur les relations entre la dégradabilité, la biochimie pariétale et la répartition des tissus lignifiés chez l’entrenoeud de maïs et déterminisme génétique de ces caractères. [INRA Versailles]: l’Université Paris-Saclay; 2018.
Esau K. Plant anatomy. Soil Sci. 1953;75:407.
Article
Google Scholar
Akin DE. Histological and physical factors affecting digestibility of forages. Agron J. 1989;81:17–25.
Article
Google Scholar
Lopez S, Murison SD, Travis AJ, Chesson A. Degradability of parenchyma and sclerenchyma cell walls isolated at different developmental stages from a newly extended maize internode. Acta Bot Neerlandica. 1993;42:165–74.
Article
Google Scholar
Barros-Rios J, Santiago R, Malvar RA, Jung HJG. Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes. Anim Feed Sci Technol. 2012;172:226–36.
Article
CAS
Google Scholar
Costa THF, Vega-Sánchez ME, Milagres AMF, Scheller HV, Ferraz A. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance. Biotechnol Biofuels. 2016;9:99.
Article
PubMed
PubMed Central
Google Scholar
Méchin V, Argillier O, Rocher F, Hébert Y, Mila I, Pollet B, et al. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. J Agric Food Chem. 2005;53:5872–81.
Article
PubMed
Google Scholar
Corcel M, Devaux MF, Guillon F, Barron C. Identification of tissular origin of particles based on autofluorescence multispectral image analysis at the macroscopic scale [Internet]. EDP Sciences; 2017 [cited 2021 Feb 25]. https://hal.archives-ouvertes.fr/hal-01602677
Baldacci-Cresp F, Spriet C, Twyffels L, Blervacq A-S, Neutelings G, Baucher M, et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 2020;102:1074–89.
Article
CAS
PubMed
Google Scholar
Arnaud B, Durand S, Fanuel M, Guillon F, Méchin V, Rogniaux H. Imaging study by mass spectrometry of the spatial variation of cellulose and hemicellulose structures in corn stalks. J Agric Food Chem. 2020;68:4042–50.
Article
CAS
PubMed
Google Scholar
Du J, Zhang Y, Guo X, Ma L, Shao M, Pan X, et al. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Funct Plant Biol. 2016;44:10–22.
Article
PubMed
Google Scholar
Zhang Y, Ma L, Pan X, Wang J, Guo X, Du J. Micron-scale phenotyping techniques of maize vascular bundles based on x-ray microcomputed tomography. JoVE J Vis Exp. 2018. https://doi.org/10.3791/58501.
Article
PubMed
Google Scholar
Wang JP, Matthews ML, Naik PP, Williams CM, Ducoste JJ, Sederoff RR, et al. Flux modeling for monolignol biosynthesis. Curr Opin Biotechnol. 2019;56:187–92.
Article
CAS
PubMed
Google Scholar
Wang X, Shi Z, Zhang R, Sun X, Wang J, Wang S, et al. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol. 2020;20:515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Ma L, Wang J, Wang X, Guo X, Du J. Phenotyping analysis of maize stem using micro-computed tomography at the elongation and tasseling stages. Plant Methods. 2020;16:2.
Article
PubMed
PubMed Central
Google Scholar
Heckwolf S, Heckwolf M, Kaeppler SM, de Leon N, Spalding EP. Image analysis of anatomical traits in stalk transections of maize and other grasses. Plant Methods. 2015;11:26.
Article
PubMed
PubMed Central
Google Scholar
Meshitsuka G, Nakano J. Studies on the mechanism of lignin colour reaction (XI). Maule colour reaction. Mokuzai Gakkaishi J Jpn Wood Res Soc. 1977;23:232–6.
CAS
Google Scholar
Vallet C, Chabbert B, Czaninski Y, Monties B. Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann Bot. 1996;78:625–32.
Article
CAS
Google Scholar
Rocha S, Monjardino P, Mendonça D, da Câmara Machado A, Fernandes R, Sampaio P, et al. Lignification of developing maize (Zea mays L.) endosperm transfer cells and starchy endosperm cells. Front Plant Sci [Internet]. 2014 [cited 2021 Jun 17];5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960489/
Zhang Y, Legay S, Barrière Y, Méchin V, Legland D. Color quantification of stained maize stem section describes lignin spatial distribution within the whole stem. J Agric Food Chem. 2013;61:3186–92.
Article
CAS
PubMed
Google Scholar
El Hage F, Legland D, Borrega N, Jacquemot M-P, Griveau Y, Coursol S, et al. Tissue lignification, cell wall p-coumaroylation and degradability of maize stems depend on water status. J Agric Food Chem. 2018;66:4800–8.
Article
PubMed
Google Scholar
El Hage F, Virlouvet L, Lopez-Marnet P-L, Griveau Y, Jacquemot M-P, Coursol S, et al. Responses of maize internode to water deficit are different at the biochemical and histological levels. Front Plant Sci [Internet]. 2021 [cited 2021 Apr 16];12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952650/
Legland D, El-Hage F, Méchin V, Reymond M. Histological quantification of maize stem sections from FASGA-stained images. Plant Methods. 2017;13:84.
Article
PubMed
PubMed Central
Google Scholar
Tolivia D, Tolivia J. Fasga: a new polychromatic method for simultaneous and differential staining of plant tissues. J Microsc. 1987;148:113–7.
Article
Google Scholar
Méchin V. Etude de facteurs biochimiques et génétiques explicatifs de la variabilité pour la valeur alimentaire du maïs fourrage. [INRA - Lusignan]: Institut National Agronomique Paris-Grignon; 2000.
Barrière Y, Guillaumie S, Denoue D, Pichon M, Goffner D, Martinant J-P. Investigating the unusually high cell wall digestibility of the old INRA early flint F4 maize inbred line. Maydica. 2018;62:21.
Google Scholar
Metcalfe CR, Cutler DF, Gregory M. Anatomy of the monocotyledons. Oxford: Clarendon; 1960.
Google Scholar
Zhang Y, Legland D, Hage FE, Devaux M-F, Guillon F, Reymond M, et al. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS ONE. 2019;14: e0219923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brancourt-Hulmel M, Arnoult S, Cézard L, Hage FE, Gineau E, Girones J, et al. A comparative study of maize and Miscanthus regarding cell-wall composition and stem anatomy for conversion into bioethanol and polymer composites. BioEnergy Res [Internet]. 2022 [cited 2022 Jul 1]. https://hal.archives-ouvertes.fr/hal-03517627
Oduntan YA, Stubbs CJ, Robertson DJ. High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance. 2021 [cited 2021 Aug 10]. https://www.researchsquare.com/article/rs-650790/v1
Akin DE, Robinson EL, Barton FE, Himmelsbach DS. Changes with maturity in anatomy, histochemistry, chemistry, and tissue digestibility of bermudagrass plant parts. J Agric Food Chem. 1977;25:179–86.
Article
CAS
Google Scholar
Cone JW, Engels FM. Influence of growth temperature on anatomy and in vitro digestibility of maize tissues. J Agric Sci. 1990;114:207–12.
Article
Google Scholar
Engels FM, Schuurmans JLL. Relationship between structural development of cell walls and degradation of tissues in maize stems. J Sci Food Agric. 1992;59:45–51.
Article
CAS
Google Scholar
Wilson JR, Mertens DR, Hatfield RD. Isolates of cell types from sorghum stems: Digestion, cell wall and anatomical characteristics. J Sci Food Agric. 1993;63:407–17.
Article
Google Scholar
Boon EJMC, Struik PC, Tamminga S, Engels FM, Cone JW. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. III. Intra-stem variability in anatomy, chemical composition and in vitro rumen fermentation. NJAS Wagening J Life Sci. 2008;56:101–22.
Article
Google Scholar
Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc. 1994;116:9448–56.
Article
CAS
Google Scholar
Ralph J, Quideau S, Grabber JH, Hatfield RD. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin. 1994;1:3485–98.
Article
Google Scholar
Grabber JH, Hatfield RD, Ralph J. Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric. 1998;77:193–200.
Article
CAS
Google Scholar
Grabber JH, Ralph J, Hatfield RD. Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem. 1998;46:2609–14.
Article
CAS
Google Scholar
Jung H-JG. Maize stem tissues: ferulate deposition in developing internode cell walls. Phytochemistry. 2003;63:543–9.
Article
CAS
PubMed
Google Scholar
Barros-Rios J, Malvar RA, Jung H-JG, Bunzel M, Santiago R. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability. Phytochemistry. 2012;83:43–50.
Article
CAS
PubMed
Google Scholar
Chesson A, Provan GJ, Russell W, Scobbie L, Chabbert B, Monties B. Characterisation of lignin from parenchyma and sclerenchyma cell walls of the maize internode. J Sci Food Agric. 1997;73:10–6.
Article
CAS
Google Scholar
Mazaheri M, Heckwolf M, Vaillancourt B, Gage JL, Burdo B, Heckwolf S, et al. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biol. 2019;19:45.
Article
PubMed
PubMed Central
Google Scholar
Gärtner H, Lucchinetti S, Schweingruber FH. New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome. Dendrochronologia. 2014;32:47–51.
Article
Google Scholar
Barilla ME. Color transformer [Internet]. The University of Birmingham, UK: Digital Systems & Vision Processing Group; 2007 [cited 2021 Jun 29]. https://imagej.nih.gov/ij/plugins/color-transforms.html
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Wickham H, Chang W, Henry L, Lin Pedersen T, Takahashi K, Wilke C, et al. Create elegant data visualisations using the grammar of graphics [Internet]. 2020 [cited 2021 May 26]. https://ggplot2.tidyverse.org, https://github.com/tidyverse/ggplot2
R Core Team. R: a language and environment for statistical computing. R Found Stat Comput Vienna Austria. 2013;