Mulla DJ. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng. 2013;114(4):358–71.
Article
Google Scholar
Rao M, Silber-Coats Z, Powers S, Fox L III, Ghulam A. Mapping drought-impacted vegetation stress in california using remote sensing. GIsci Remote Sens. 2017;54(2):185–201.
Article
Google Scholar
Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric. 2012;13(6):693–712.
Article
CAS
Google Scholar
Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, Shafian S, Rajan N, Rouze G, Morgan CLS, Neely HL, Rana A, Bagavathiannan MV, Henrickson J, Bowden E, Valasek J, Olsenholler J, Bishop MP, Sheridan R, Putman EB, Popescu S, Burks T, Cope D, Ibrahim A, McCutchen BF, Baltensperger DD, Avant RV Jr, Vidrine M, Yang C. Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PloS ONE. 2016;11(7):0159781.
Google Scholar
Gago J, Douthe C, Coopman RE, Gallego PP, Ribas-Carbo M, Flexas J, Escalona J, Medrano H. UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag. 2015;153:9–19.
Article
Google Scholar
Haghighattalab A, Pérez LG, Mondal S, Singh D, Schinstock D, Rutkoski J, Ortiz-Monasterio I, Singh RP, Goodin D, Poland J. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods. 2016;12(1):35.
Article
PubMed
PubMed Central
Google Scholar
Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, Hornero A, Albà AH, Das B, Craufurd P, Prasanna BM, Cairns J. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. 2015;11(35):1.
Google Scholar
Bannari A, Morin D, Bonn F, Huete AR. A review of vegetation indices. Remote Sens Rev. 1995;13(1–2):95–120.
Article
Google Scholar
Bajgain R, Xiao X, Wagle P, Basara J, Zhou Y. Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites. ISPRS J Photogramm Remote Sens. 2015;108:151–60.
Article
Google Scholar
Gröll K, Graeff S, Claupein W. Use of vegetation indices to detect plant diseases. In: GIL Jahrestagung. 2007. p. 95–8. https://subs.emis.de/LNI/Proceedings/Proceedings101/article1354.html.
Chavana-Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, Enquist BJ, Caravasi C, Eric G, Doughty CE, Saleska SR, Martin RE, Gerard FF. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytol. 2016;214(3):1049–63.
Article
PubMed
Google Scholar
Gracia-Romero A, Kefauver SC, Vergara-Diaz O, Zaman-Allah MA, Prasanna BM, Cairns JE, Araus JL. Comparative performance of ground versus aerially assessed rgb and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front Plant Sci. 2017;8:2004.
Article
PubMed
PubMed Central
Google Scholar
Islam MR, Garcia SCY, Henry D. Use of normalised difference vegetation index, nitrogen concentration, and total nitrogen content of whole maize plant and plant fractions to estimate yield and nutritive value of hybrid forage maize. Crop Pasture Sci. 2011;62(5):374–82.
Article
CAS
Google Scholar
Panda SS, Ames DP, Panigrahi S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010;2(3):673–96.
Article
Google Scholar
Rouse Jr J, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. In: Third earth resources technology satellite-1 symposium, vol. 1; 1974. p. 309–17
Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ. 1996;58(3):289–98.
Article
Google Scholar
Delegido J, Verrelst J, Meza CM, Rivera JP, Alonso L, Moreno J. A red-edge spectral index for remote sensing estimation of green lai over agroecosystems. Eur J Agron. 2013;46:42–52.
Article
Google Scholar
Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 1988;25(3):295–309.
Article
Google Scholar
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens Environ. 2002;83(1–2):195–213.
Article
Google Scholar
Madec S, Baret F, De Solan B, Thomas S, Dutartre D, Jezequel S, Hemmerlé M, Colombeau G, Comar A. High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front Plant Sci. 2017;8:2002.
Article
PubMed
PubMed Central
Google Scholar
Rabatel G, Gorretta N, Labbé S. Getting NDVI spectral bands from a single standard RGB digital camera: a methodological approach. In: Conference of the Spanish association for artificial intelligence. Berlin: Springer; 2011. p. 333–342
Dworak V, Selbeck J, Dammer K-H, Hoffmann M, Zarezadeh AA, Bobda C. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems. Sensors. 2013;13(2):1523–38.
Article
PubMed
PubMed Central
Google Scholar
Muda MA, Foulonneau A, Bigue L, Sudibyo H, Sudiana D. Small format optical sensors for measuring vegetation indices in remote sensing applications: a comparative approach. In: TENCON region 10 conference. IEEE; 2012. p. 1–6.
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.
Article
PubMed
Google Scholar
Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods. 2018;14(1):6.
Article
PubMed
PubMed Central
Google Scholar
Lu H, Cao Z, Xiao Y, Zhuang B, Shen C. TasselNet: counting maize tassels in the wild via local counts regression network. Plant Methods. 2017;13(1):79.
Article
PubMed
PubMed Central
Google Scholar
Xu R, Li C, Paterson A, Jiang Y, Sun S, Robertson J. Cotton bloom detection using aerial images and convolutional neural network. Front Plant Sci. 2017;8:2235.
Article
PubMed
Google Scholar
Ubbens JR, Stavness I. Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci. 2017;8:1190.
Article
PubMed
PubMed Central
Google Scholar
Pound MP, Burgess AJ, Wilson MH, Atkinson JA, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience. 2017;6(10):1–10.
Article
PubMed
PubMed Central
Google Scholar
Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q. Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods. 2017;13(1):104.
Article
PubMed
PubMed Central
Google Scholar
Šulc M, Matas J. Fine-grained recognition of plants from images. Plant Methods. 2017;13(1):115.
Article
PubMed
PubMed Central
Google Scholar
Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci. 2016;7:1419.
Article
PubMed
PubMed Central
Google Scholar
Limmer M, Lensch HPA. Infrared colorization using deep convolutional neural networks. In: International conference on machine learning and applications (ICMLA); 2016. p. 61–68.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advance in neural information processing systems; 2012. p. 1097–1105.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Conference on computer vision and pattern recognition (CVPR). IEEE; 2016. p. 770–778.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Conference on computer vision and pattern recognition (CVPR). IEEE; 2015. p. 1–9.
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. 2014. arXiv:abs/1408.5093.
Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S. Recurrent neural network based language model. Interspeech. 2010;2:1045–8.
Google Scholar