Hernandez N, Keller W. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell. 1983;35(1):89–99.
Article
CAS
PubMed
Google Scholar
Krainer AR, Maniatis T, Ruskin B, Green MR. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell. 1984;36(4):993–1005.
Article
CAS
PubMed
Google Scholar
Padgett RA, Konarska MM, Grabowski PJ, Hardy SF, Sharp PA. Lariat RNA’s as intermediates and products in the splicing of messenger RNA precursors. Science. 1984;225(4665):898–903.
Article
CAS
PubMed
Google Scholar
Lin RJ, Newman AJ, Cheng SC, Abelson J. Yeast mRNA splicing in vitro. J Biol Chem. 1985;260(27):14780–92.
CAS
PubMed
Google Scholar
Rio DC. Accurate and efficient pre-mRNA splicing in Drosophila cell-free extracts. Proc Natl Acad Sci USA. 1988;85(9):2904–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruskin B, Krainer AR, Maniatis T, Green MR. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell. 1984;38(1):317–31.
Article
CAS
PubMed
Google Scholar
Krainer AR, Maniatis T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell. 1985;42(3):725–36.
Article
CAS
PubMed
Google Scholar
Black DL, Chabot B, Steitz JA. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell. 1985;42(3):737–50.
Article
CAS
PubMed
Google Scholar
Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 1990;4(7):1158–71.
Article
CAS
PubMed
Google Scholar
Screaton GR, Caceres JF, Mayeda A, Bell MV, Plebanski M, Jackson DG, Bell JI, Krainer AR. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 1995;14(17):4336–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konarska MM, Sharp PA. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell. 1986;46(6):845–55.
Article
CAS
PubMed
Google Scholar
Das R, Reed R. Resolution of the mammalian E complex and the ATP-dependent spliceosomal complexes on native agarose mini-gels. RNA. 1999;5(11):1504–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.
Article
CAS
PubMed
Google Scholar
Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papasaikas P, Valcarcel J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci. 2016;41(1):33–45.
Article
CAS
PubMed
Google Scholar
Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K. Cryo-EM structure of the spliceosome immediately after branching. Nature. 2016;537(7619):197–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science. 2015;349(6253):1182–91.
Article
CAS
PubMed
Google Scholar
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Luhrmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature. 2017;542(7641):318–23.
Article
CAS
PubMed
Google Scholar
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast step II catalytically activated spliceosome. Science. 2017;355(6321):149–55.
Article
CAS
PubMed
Google Scholar
Fica SM, Oubridge C, Galej WP, Wilkinson ME, Bai XC, Newman AJ, Nagai K. Structure of a spliceosome remodelled for exon ligation. Nature. 2017;542(7641):377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaschka C, Lin PC, Nagai K. Structure of a pre-catalytic spliceosome. Nature. 2017;546(7660):617.
CAS
PubMed
PubMed Central
Google Scholar
Reed R, Maniatis T. A role for exon sequences and splice-site proximity in splice-site selection. Cell. 1986;46(5):681–90.
Article
CAS
PubMed
Google Scholar
Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell. 1992;68(2):365–75.
Article
CAS
PubMed
Google Scholar
Ge H, Manley JL. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell. 1990;62(1):25–34.
Article
CAS
PubMed
Google Scholar
Tian M, Maniatis T. Positive control of pre-mRNA splicing in vitro. Science. 1992;256(5054):237–40.
Article
CAS
PubMed
Google Scholar
Liu HX, Zhang M, Krainer AR. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998;12(13):1998–2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaal TD, Maniatis T. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol. 1999;19(3):1705–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet. 2008;82(4):834–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3(9):576–83.
Article
CAS
PubMed
Google Scholar
Labadorf A, Link A, Rogers MF, Thomas J, Reddy AS, Ben-Hur A. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. BMC Genom. 2010;11:114.
Article
Google Scholar
Reddy AS. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol. 2007;58:267–94.
Article
CAS
PubMed
Google Scholar
Palusa SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J. 2007;49(6):1091–107.
Article
CAS
PubMed
Google Scholar
Ali GS, Reddy AS. Regulation of alternative splicing of pre-mRNAs by stresses. Curr Top Microbiol Immunol. 2008;326:257–75.
CAS
PubMed
Google Scholar
Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci. 2008;174(4):420–31.
Article
CAS
Google Scholar
Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci. 2009;14(4):229–36.
Article
CAS
PubMed
Google Scholar
Lee K, Kang H. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses. Mol Cells. 2016;39(3):179–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staiger D, Brown JW. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell. 2013;25(10):3640–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duque P. A role for SR proteins in plant stress responses. Plant Signal Behav. 2011;6(1):49–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barta A, Marquez Y, Brown JW. Challenges in plant alternative splicing. Alternative pre-mRNA Splicing: Theory and Protocols; 2012. p. 79–91.
Book
Google Scholar
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25(10):3657–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorković ZJ, Kirk DAW, Lambermon MH, Filipowicz W. Pre-mRNA splicing in higher plants. Trends Plant Sci. 2000;5(4):160–7.
Article
PubMed
Google Scholar
Wang BB, Brendel V. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol. 2004;5(12):R102.
Article
PubMed
PubMed Central
Google Scholar
Ru Y, Wang BB, Brendel V. Spliceosomal proteins in plants. Curr Top Microbiol Immunol. 2008;326:1–15.
CAS
PubMed
Google Scholar
Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci. 2012;3:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JW, Feix G, Frendewey D. Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J. 1986;5(11):2749–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmuth K, Barta A. In vitro processing of a plant pre-mRNA in a HeLa cell nuclear extract. Nucleic Acids Res. 1986;14(19):7513–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke MA. The expression of a nopaline synthase-human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol. 1986;6:347–57.
Article
CAS
PubMed
Google Scholar
Haseloff J, Siemering KR, Prasher DC, Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA. 1997;94(6):2122–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weibauer K, Herrero J-J, Filipowicz W. Nuclear pre-mRNA processing in plants: distinct modes of 3′ splice site selection in plants and animals. Mol Cell Biol. 1988;8:2042–51.
Article
Google Scholar
Baynton CE, Potthoff SJ, McCullough AJ, Schuler MA. U-rich tracts enhance 3′ splice site recognition in plant nuclei. Plant J. 1996;10(4):703–11.
Article
CAS
PubMed
Google Scholar
McCullough AJ, Schuler MA. Intronic and exonic sequences modulate 5′ splice site selection in plant nuclei. Nucleic Acids Res. 1997;25(5):1071–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuler MA. Splice site requirements and switches in plants. Curr Top Microbiol Immunol. 2008;326:39–59.
CAS
PubMed
Google Scholar
Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 2004;39(6):877–85.
Article
CAS
PubMed
Google Scholar
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW. Alternative splicing in plants–coming of age. Trends Plant Sci. 2012;17(10):616–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007;35(1):125–31.
Article
CAS
PubMed
Google Scholar
Sugiura M. Plant in Vitro Transcription Systems. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:383–98.
Article
CAS
PubMed
Google Scholar
Lou H. A journey. RNA. 2015;21(4):681–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Folta KM, Kaufman LS. Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat Protoc. 2006;1(6):3094–100.
Article
CAS
PubMed
Google Scholar
Kataoka N, Dreyfuss G. Preparation of efficient splicing extracts from whole cells, nuclei, and cytoplasmic fractions. Methods Mol Biol. 2008;488:357–65.
Article
CAS
PubMed
Google Scholar
Xing D, Wang Y, Hamilton M, Ben-Hur A, Reddy AS. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell. 2015;27(12):3294–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palusa SG, Reddy AS. Analysis of RNA-protein interactions using electrophoretic mobility shift assay (gel shift assay). Bio protocol. 2013;22(3):1–10.
Google Scholar
Movassat M, Mueller WF, Hertel KJ. In vitro assay of pre-mRNA splicing in mammalian nuclear extract. Methods Mol Biol. 2014;1126:151–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupuy B, Sonenshein AL. Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol. 1998;27(1):107–20.
Article
CAS
PubMed
Google Scholar
Hicks MJ, Lam BJ, Hertel KJ. Analyzing mechanisms of alternative pre-mRNA splicing using in vitro splicing assays. Methods. 2005;37(4):306–13.
Article
CAS
PubMed
Google Scholar
Watson JC, Thompson WF. Purification and restriction endonuclease analysis of plant nuclear-DNA. Method Enzymol. 1986;118:57–75.
Article
CAS
Google Scholar
Lin RJ, Lustig AJ, Abelson J. Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev. 1987;1(1):7–18.
Article
CAS
PubMed
Google Scholar
Shukla RR, Dominski Z, Zwierzynski T, Kole R. Inactivation of splicing factors in HeLa cells subjected to heat shock. J Biol Chem. 1990;265(33):20377–83.
CAS
PubMed
Google Scholar
Aebi M, Hornig H, Weissmann C. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU. Cell. 1987;50(2):237–46.
Article
CAS
PubMed
Google Scholar
Mayeda A, Krainer AR. Mammalian in vitro splicing assays. Methods Mol Biol. 1999;118:315–21.
CAS
PubMed
Google Scholar
Padgett RA, Hardy SF, Sharp PA. Splicing of adenovirus RNA in a cell-free transcription system. Proc Natl Acad Sci USA. 1983;80(17):5230–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichert V, Moore MJ. Better conditions for mammalian in vitro splicing provided by acetate and glutamate as potassium counterions. Nucleic Acids Res. 2000;28(2):416–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivero L, Scholl R, Holomuzki N, Crist D, Grotewold E, Brkljacic J. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. Methods Mol Biol. 2014;1062:3–25.
Article
PubMed
Google Scholar
Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA. Splicing of messenger RNA precursors. Annu Rev Biochem. 1986;55:1119–50.
Article
CAS
PubMed
Google Scholar
Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell. 1986;47(4):555–65.
Article
CAS
PubMed
Google Scholar
Kole R, Weissman SM. Accurate in vitro splicing of human beta-globin RNA. Nucleic Acids Res. 1982;10(18):5429–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldenberg CJ, Hauser SD. Accurate and efficient in vitro splicing of purified precursor RNAs specified by early region 2 of the adenovirus 2 genome. Nucleic Acids Res. 1983;11(5):1337–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayeda A, Krainer AR. Preparation of HeLa cell nuclear and cytosolic S100 extracts for in vitro splicing. Methods Mol Biol. 1999;118:309–14.
CAS
PubMed
Google Scholar