Gamalero E, Glick BR. Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK, editor. Bacteria in agrobiology: plant nutrient management. Berlin: Springer; 2011. p. 17–46.
Chapter
Google Scholar
Kloepper JW, Leong J, Teintze M, Schroth MN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 1980;286:885–6.
Article
CAS
Google Scholar
Bassler BL, Miller MB. Quorum sensing. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin: Springer; 2013. p. 495–509.
Chapter
Google Scholar
Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551:313–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernin LS. Quorum-sensing signals as mediators of PGPRs’ beneficial traits. In: Maheshwari DK, editor. Bacteria in agrobiology: plant nutrient management. Berlin: Springer; 2011. p. 209–36.
Chapter
Google Scholar
Hartmann A, Klink S, Rothballer M. Importance of N-acyl-homoserine lactone-based quorum sensing and quorum quenching in pathogen control and plant growth promotion. Pathogens. 2021;10:1561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosquito S, Meng X, Devescovi G, Bertani I, Geller AM, Levy A, et al. LuxR solos in the plant endophyte Kosakonia sp. strain KO348. Appl Environ Microbiol. 2020;86:e00622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol. 2020. https://doi.org/10.1093/femsec/fiaa226.
Article
PubMed
Google Scholar
Wellington S, Greenberg EP. Quorum sensing signal selectivity and the potential for interspecies cross talk. MBio. 2019. https://doi.org/10.1128/mBio.00146-19.
Article
PubMed
PubMed Central
Google Scholar
Ortiz-Castro R, López-Bucio J. Review: phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci. 2019;284:135–42.
Article
CAS
PubMed
Google Scholar
d’Angelo-Picard C, Faure D, Penot I, Dessaux Y. Diversity of N-acyl homoserine lactone-producing and-degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol. 2005;7:1796–808.
Article
PubMed
CAS
Google Scholar
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev. 2016;40:86–116.
Article
PubMed
CAS
Google Scholar
Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA. 2000;97:3526–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001;411:813–7.
Article
CAS
PubMed
Google Scholar
Li Q, Ni H, Meng S, He Y, Yu Z, Li L. Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. J Microbiol Biotechnol. 2011;21:1330–5.
Article
CAS
PubMed
Google Scholar
Mahmoudi E, Naderi D, Venturi V. AiiA lactonase disrupts N-acylhomoserine lactone and attenuates quorum-sensing-related virulence in Pectobacterium carotovorum EMPCC. Ann Microbiol. 2013;63:691–7.
Article
CAS
Google Scholar
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Connolly M, et al. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Mol Plant Microbe Interact. 2007;20:843–56.
Article
CAS
PubMed
Google Scholar
Rosier A, Beauregard PB, Bais HP. Quorum quenching activity of the PGPR Bacillus subtilis UD1022 alters nodulation efficiency of Sinorhizobium meliloti on Medicago truncatula. Front Microbiol. 2020;11: 596299.
Article
PubMed
Google Scholar
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. 2015;16:316–29.
Article
PubMed
Google Scholar
Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, et al. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology. 2003;149:1981–9.
Article
CAS
PubMed
Google Scholar
McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, Engl). 1997;143(12):3703–11.
Article
CAS
Google Scholar
Winson MK, Swift S, Fish L, Throup JP, Jørgensen F, Chhabra SR, et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett. 1998;163:185–92.
Article
CAS
PubMed
Google Scholar
Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, et al. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol. 2001;67:575–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact. 1998;11:1119–29.
Article
CAS
PubMed
Google Scholar
Farrand SK, Qin Y, Oger P. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol. 2002;358:452–84.
Article
CAS
PubMed
Google Scholar
Gao M, Benge A, Wu T-J, Javier R. Use of plasmid pVMG to make transcriptional ß-glucuronidase reporter gene fusions in the Rhizobium genome for monitoring the expression of rhizobial genes in vivo. Biol Proced Online. 2019;21:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Llamas I, Keshavan N, González JE. Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol. 2004;70:3715–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, et al. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol. 2001;67:5761–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeAngelis KM, Lindow SE, Firestone MK. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol. 2008;66:197–207.
Article
CAS
PubMed
Google Scholar
Nievas F, Bogino P, Sorroche F, Giordano W. Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors (Basel). 2012;12:2851–73.
Article
CAS
Google Scholar
Schaefer AL, Lappala CR, Morlen RP, Pelletier DA, Lu T-YS, Lankford PK, et al. LuxR- and luxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol. 2013;79:5745–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol. 2005;55:1187–92.
Article
CAS
PubMed
Google Scholar
Rashid R, Morohoshi T, Someya N, Ikeda T. Degradation of N-acylhomoserine lactone quorum sensing signaling molecules by potato root surface-associated Chryseobacterium strains. Microbes Environ. 2011;26:144–8.
Article
PubMed
Google Scholar
Rodríguez M, Torres M, Blanco L, Béjar V, Sampedro I, Llamas I. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci Rep. 2020;10:4121.
Article
PubMed
PubMed Central
CAS
Google Scholar
Begum JF, Tamilarasi M, Pushpakanth P, Balachandar D. A simple method for direct isolation of N-acyl-L-homoserine lactone mediated biofilm-forming rhizobacteria from roots. J Microbiol Methods. 2019;156:34–9.
Article
CAS
PubMed
Google Scholar
Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, et al. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A. 1997;94:6036–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lullien V, Barker DG, de Lajudie P, Huguet T. Plant gene expression in effective and ineffective root nodules of alfalfa (Medicago sativa). Plant Mol Biol. 1987;9:469–78.
Article
CAS
PubMed
Google Scholar
Yasbin RE, Young FE. Transduction in Bacillus subtilis by bacteriophage SPP1. J Virol. 1974;14:1343–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Chai Y, Zhong Z, Li S, Winans SC. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol. 2003;69:6949–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurich N, González JE. Role of Quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol. 2009;191:4372–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joelsson AC, Zhu J. LacZ-based detection of acyl-homoserine lactone quorum-sensing signals. Curr Protoco Microbiol. 2006. https://doi.org/10.1002/9780471729259.mc01c02s3.
Article
Google Scholar
Oldroyd GE, Engstrom EM, Long SR. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell. 2001;13:1835–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters NK, Crist-Estes DK. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 1989;91:690–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marketon MM, Gronquist MR, Eberhard A, González JE. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol. 2002;184:5686–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudas B, Jenes B, Kiss GB, Maliga P. Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa. Theor Appl Genet. 2012;125:1517–23.
Article
CAS
PubMed
Google Scholar
Veliz-Vallejos DF, Kawasaki A, Mathesius U. The presence of plant-associated bacteria alters responses to N-acyl homoserine lactone quorum sensing signals that modulate nodulation in Medicago truncatula. Plants (Basel). 2020. https://doi.org/10.3390/plants9060777.
Article
Google Scholar
von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta. 2008;229:73–85.
Article
CAS
Google Scholar
Veliz-Vallejos DF, van Noorden GE, Yuan M, Mathesius U. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci. 2014;5:551.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Zhao Q, Jia Z, Song C, Huang Y, Ma H, et al. N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana. BMC Plant Biol. 2020;20:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, et al. N-acyl-homoserinel primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell. 2014;26:2708–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology (Reading, Engl). 2002;148:1119–27.
Article
CAS
Google Scholar
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the Rhizobium-legume symbiosis. Genes (Basel). 2018. https://doi.org/10.3390/genes9050263.
Article
Google Scholar
Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal. 2016. https://doi.org/10.1126/scisignal.aaa8271.
Article
PubMed
Google Scholar
Keshavan ND, Chowdhary PK, Haines DC, González JE. l-canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol. 2005;187:8427–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, et al. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol. 2005;52:13–20.
Article
CAS
PubMed
Google Scholar
Deryabin D, Galadzhieva A, Kosyan D, Duskaev G. Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: modes of action. Int J Mol Sci. 2019;20:E5588.
Article
PubMed
CAS
Google Scholar
Joshi JR, Khazanov N, Khadka N, Charkowski AO, Burdman S, Carmi N, et al. Direct binding of salicylic acid to Pectobacterium N-acyl-homoserine lactone synthase. ACS Chem Biol. 2020;15:1883–91.
Article
CAS
PubMed
Google Scholar
Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T, Chong YM, et al. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel). 2013;13:6217–28.
Article
CAS
Google Scholar
Saral A, Kanekar S, Koul KK, Bhagyawant SS. Plant growth promoting bacteria induce anti-quorum-sensing substances in chickpea legume seedling bioassay. Physiol Mol Biol Plants. 2021;27:1577–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ta CAK, Arnason JT. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules. 2015;21:E29.
Article
PubMed
CAS
Google Scholar
Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact. 2000;13:637–48.
Article
CAS
PubMed
Google Scholar
Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zhou Y, et al. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep. 2009;28:1847–55.
Article
CAS
PubMed
Google Scholar
Zhang L-H. Quorum quenching and proactive host defense. Trends Plant Sci. 2003;8:238–44.
Article
CAS
PubMed
Google Scholar
Cataldi TRI, Bianco G, Frommberger M, Schmitt-Kopplin P. Direct analysis of selected N-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1341–4.
Article
CAS
PubMed
Google Scholar
Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol. 2006;188:773–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y-W, Sung C, Lee S, Kim K-J, Yang Y-H, Kim B-G, et al. MALDI-MS-based quantitative analysis for ketone containing homoserine lactones in Pseudomonas aeruginosa. Anal Chem Am Chem Soc. 2015;87:858–63.
Article
CAS
Google Scholar
Zhang H-B, Wang L-H, Zhang L-H. Detection and analysis of quorum-quenching enzymes against acyl homoserine lactone quorum-sensing signals. Curr Protoc Microbiol. 2007. https://doi.org/10.1002/9780471729259.mc01c03s05.
Article
PubMed
Google Scholar