Zhang HN, Wei YZ, Shen JY, Lai B, Huang XM, Ding F, et al. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Rep. 2014;33:1723–35.
Article
CAS
Google Scholar
Lai B, Hu B, Qin Y, Zhao J, Wang H, Hu G. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics. 2015;16:225.
Article
Google Scholar
Zhang J, Wu Z, Hu F, Liu L, Huang X, Zhao J, et al. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Hortic Res. 2018;5:39.
Article
CAS
Google Scholar
Hu B, Lai B, Wang D, Li J, Chen L, Qin Y, et al. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis. Plant Cell Physiol. 2019;60:448–61.
Article
CAS
Google Scholar
Zhao M, Li J. Molecular events involved in fruitlet abscission in litchi. Plants. 2020;9:151.
Article
CAS
Google Scholar
Raharjo SHT, Litz RE. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tiss Organ Cult. 2007;89:113–9.
Article
Google Scholar
Ma XY, Yi GJ, Huang XL, Zeng J. Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn.) cv Huaizhi. Acta Physiol Plant. 2009;31:401–5.
Article
Google Scholar
Wang G, Li H, Wang S, Sun J, Zhang X, Wang J. In vitro regeneration of Feizixiao litchi (Litchi chinensis Sonn.). Afr J Biotechnol. 2016;15:1026–34.
Article
CAS
Google Scholar
Garcia C, Furtado de Almeida AA, Costa M, Britoo D, Valle R, Royaert S, et al. Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell Tiss Organ Cult. 2019;137:193–212.
Article
CAS
Google Scholar
Vain P. Thirty years of plant transformation technology development. Plant Biotechnol J. 2007;5:221–9.
Article
CAS
Google Scholar
Yao JL, Cohen D, Atkinson R, Richardson K, Morris B. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 1995;14:407–12.
Article
CAS
Google Scholar
Perez-Clemente RM, Perez-Sanjuan A, Garcia-Ferriz L, Beltran JP, Canas LA. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breed. 2004;14:419–27.
Article
CAS
Google Scholar
Dutt M, Madhavaraj J, Grosser JW. Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus rootstock. Sci Hortic. 2010;123:454–8.
Article
CAS
Google Scholar
Puchooa D. Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. J Appl Hort. 2004;6:11–5.
CAS
Google Scholar
Padilla G, Pérez JA, Perea-Arango I, Moon PA, Gómez-Lim MA, Borges AA, et al. Agrobacterium tumefaciens-mediated transformation of “Brewster” ('Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell Dev Biol Plant. 2013;49:510–9.
Article
CAS
Google Scholar
Song G, Prieto H, Orbovic V. Agrobacterium-mediated transformation of tree fruit crops: methods, progress, and challenges. Front Plant Sci. 2019;10:226.
Article
Google Scholar
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, et al. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnol J. 2019;17:1804–13.
CAS
Google Scholar
Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L, et al. Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes. Biotechnol Biotec Eq. 2016;30:869–78.
Article
CAS
Google Scholar
Gomes C, Dupas A, Pagano A, Grima-Pettenati J, Paiva JAP. Hairy root transformation: a useful tool to explore gene function and expression in Salix spp. recalcitrant to transformation. Front Plant Sci. 2019;10:1427.
Article
Google Scholar
Veena V, Taylor CG. Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol -Plant. 2007;43:383–403.
Article
CAS
Google Scholar
Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, et al. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol. 2009;149:1028–41.
Article
CAS
Google Scholar
Xu S, Lai E, Zhao L, Cai Y, Ogutu C, Cherono S, et al. Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach. Sci Rep. 2020;10:2836.
Article
CAS
Google Scholar
Fan Y, Xu F, Zhou H, Liu X, Yang X, Weng K, et al. A fast, simple, high efficient and one-step generation of composite cucumber plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. Plant Cell Tiss Organ Cult. 2020;141:207–16.
Article
CAS
Google Scholar
Fan Y, Zhang X, Zhong L, Wang X, Jin L, Lyu S. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biol. 2020;20:208.
Article
CAS
Google Scholar
Yu Y, Xuan Y, Bian X, Zhang L, Pan Z, Kou M, et al. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots. Hortic Res. 2020;7:131.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Molec Gen Genet. 1978;163:181–7.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar
Tiberti LA, Yariwake JH, Ndjoko K, Hostettmann K. On-line LC/UV/MS analysis of flavonols in the three apple varieties most widely cultivated in Brazil. J Brazil Chem Soc. 2007;18:100–5.
Article
CAS
Google Scholar
Cerpa-Calderon FK, Kennedy JA. Berry integrity and extraction of skin and seed proanthocyanidins during red wine fermentation. J Agric Food Chem. 2008;56:9006–14.
Article
CAS
Google Scholar
Rai MK, Shekhawat NS. Genomic resources in fruit plants: an assessment of current status. Crit Rev Biotechnol. 2015;35:438–47.
Article
Google Scholar
Hu B, Li J, Wang D, Wang H, Qin Y, Hu G, et al. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regul. 2018;84:437–50.
Article
CAS
Google Scholar
Hu B, Zhao J, Lai B, Qin Y, Wang H, Hu G. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep. 2016;35:831–43.
Article
CAS
Google Scholar
Ma A, Wang D, Lu H, Wang H, Qin Y, Hu G, et al. LcCOP1 and LcHY5 control the suppression and induction of anthocyanin accumulation in bagging and debagging litchi fruit pericarp. Sci Hortic. 2021;287:110281.
Article
CAS
Google Scholar
Dalei K, Sahu BB, Kumari M, Tripathi RM, Pudake RN. Advances in genetic transformation of Litchi. In: Kumar M, Kumar V, Prasad R, Varma A, editors. The Lychee biotechnology. Singapore: Springer; 2017. p. 421–36.
Chapter
Google Scholar
Gambino G, Gribaudo I. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res. 2012;21:1163–81.
Article
CAS
Google Scholar
Rai MK, Shekhawat NS. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Organ Cult. 2014;116:1–15.
Article
CAS
Google Scholar
Ziemienowicz A. Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol. 2014;3:95–102.
Article
Google Scholar
Zhao J, Li Z, Henny RJ, Gray DJ, Xie J, Chen J. Efficient somatic embryogenesis and Agrobacterium-mediated transformation of Epipremnum aureum ‘Jade.’ Plant Cell Tiss Org. 2013;114:237–47.
Article
CAS
Google Scholar
Kereszt A, Li D, Indrasumunar A, Nguyen C, Nontachaiyapoom S, Kinkema M, et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc. 2007;2:948–52.
Article
CAS
Google Scholar
Qin Y, Hu G, Zhao J. Studies on Agrobacterium rhizogenesis-mediated transformation of LcMYB1 gene into tobacco leaves. Yuan Yi Xue Bao. 2020;47:635–42.
Google Scholar
Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10:e0136064.
Article
Google Scholar