Rivers J, Warthmann N, Pogson B, Borevitz J. Genomic breeding for food, environment and livelihoods. Food Secur. 2015;7:375–82.
Article
Google Scholar
Brown T, Cheng R, Sirault X, Rungrat T, Murray K, Trtilek M, Furbank R, Badger M, Pogson B, Borevitz J. Traitcapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol. 2014;18:73–9.
Article
PubMed
CAS
Google Scholar
Nordborg M, Weigel D. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell. 2016;166:481–91.
Article
CAS
Google Scholar
Vanhaeren H, Gonzalez N, Inzé D. A journey through a leaf: phenomics analysis of leaf growth in Arabidopsis thaliana. Rockville: The Arabidopsis Book; 2015.
Google Scholar
Monsalve D, Trujillo M, Chaves D. Automatic classification of nutritional deficiencies in coffee plants. In: LACNEM. 2015
Camargo A, Papadopoulou D, Spyropoulou Z, Vlachonasios K, Doonan JH, Gay AP. Objective definition of rosette shape variation using a combined computer vision and data mining approach. PLoS One. 2014;9(5):e96889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kadir A, Nugroho LE, Susanto A, Santosa PI. A comparative experiment of several shape methods in recognizing plants. In: IJCSIT. 2011
PlantScreen Phenotyping Systems, Photon Systems Instruments (PSI). www.psi.cz. Accessed 2 Aug 2018.
Antipov G, Berrani S-A, Ruchaud N, Dugelay J-L. Learned vs. hand-crafted features for pedestrian gender recognition. In: ACM multimedia. 2015
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: NIPS. 2012
LeCun Y, Denker J, Henderson D, Howard R, Hubbard W, Jacke L. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 1990
Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrel T. Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML. 2014
Razavian A, Azizpour H, Sullivan J, Carlsson S. Cnn features off-the-shelf: an astounding baseline for recognition. In: CVPR. 2014
Xia F, Zhu J, Wang P, Yuille A. Pose-guided human parsing by an and/or graph using pose-context features. In: AAAI. 2016
Donahue J, Hendricks LA, Guadarrama S, Rohrbach M. Long-term recurrent convolutional networks for visual recognition and description. In: CVPR. 2015
Akbarian MSA, Saleh F, Fernando B, Salzmann M, Petersson L, Andersson L. Deep action- and context-aware sequence learning for activity recognition and anticipation. In: CoRR. 2016
Mahasseni B, Todorovic S. Regularizing long short term memory with 3d human-skeleton sequences for action recognition. In: CVPR. 2016
Singh B, Marks TK, Jones M, Tuzel O, Shao M. A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: CVPR. 2016
Srivastava N, Mansimov E, Salakhutdinov R. Unsupervised learning of video representations using lstms. In: CoRR. 2015
Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci. 2015;6:619.
Article
PubMed
PubMed Central
Google Scholar
Dee H, French A. From image processing to computer vision: plant imaging grows up. Funct Plant Biol. 2015;42:1–2.
Article
Google Scholar
Minervini M, Scharr H, Tsaftaris S. Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process Mag. 2015;32:126–31.
Article
Google Scholar
Granier C, Vile D. Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol. 2014;18:96–102.
Article
PubMed
Google Scholar
Bell J, Dee HM. Watching plants grow–a position paper on computer vision and Arabidopsis thaliana. IET Comput Vis. 2016;11:113–21.
Article
Google Scholar
Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 2013;18:428–39.
Article
PubMed
CAS
Google Scholar
Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21:110–24.
Article
PubMed
CAS
Google Scholar
Tsaftaris SA, Minervini M, Scharr H. Machine learning for plant phenotyping needs image processing. Trends Plant Sci. 2016;21:989–91.
Article
PubMed
CAS
Google Scholar
Furbank RT, Tester M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635–44.
Article
PubMed
CAS
Google Scholar
Yang W, Duan L, Chen G, Xiong L, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol. 2013;16:180–7.
Article
PubMed
CAS
Google Scholar
Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 2017;90:204–16.
Article
PubMed
CAS
Google Scholar
Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP, Carrington JC, Mockler TC, Baxter I. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in setaria. Mol Plant. 2015;8:1520–35.
Article
PubMed
CAS
Google Scholar
Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. Htpheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 2011;12:148.
Article
Google Scholar
Knecht AC, Campbell MT, Caprez A, Swanson DR, Walia H. Image harvest: an open-source platform for high-throughput plant image processing and analysis. J Exp Bot. 2016;67:3587–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Backhaus A, Kuwabara A, Bauch M, Monk N, Sanguinetti G, Fleming A. Leafprocessor: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytol. 2010;187:251–61.
Article
PubMed
Google Scholar
Yin X, Liu X, Chen J, Kramer D. Multi-leaf tracking from fluorescence plant videos. In: ICIP. 2014
Wu SG, Bao FS, Xu EY, Wang Y-X, Chang Y-F, Xiang Q-L. A leaf recognition algorithm for plant classification using probabilistic neural network. In: Signal processing and information technology. 2007
Aakif A, Khan MF. Automatic classification of plants based on their leaves. Biosyst Eng. 2015;139:66–75.
Article
Google Scholar
Wang Z, Li H, Zhu Y, Xu T. Review of plant identification based on image processing. Comput Methods Eng. 2016;24:637–54.
Article
Google Scholar
Amean ZM, Low T, McCarthy C, Hancock N. Automatic plant branch segmentation and classification using vesselness measure. In: ACRA. 2013
Pahikkala T, Kari K, Mattila H, Lepistö A, Teuhola J, Nevalainen O, Tyystjärvi E. Classification of plant species from images of overlapping leaves. Comput Electron Agric. 2015;118:186–92.
Article
Google Scholar
Dey D, Mummert L, Sukthankar R. Classification of plant structures from uncalibrated image sequences. In: WACV. 2012
Mouine S, Yahiaoui I, Verroust-Blondet A. A shape-based approach for leaf classification using multiscale triangular representation. In: ICMR (2013)
Goëau H, Bonnet P, Joly A, Boujemaa N, Barthelemy D, Molino J-F, Birnbaum P, Mouysset E, Picard M. The clef 2011 plant images classification task. In: CLEF. 2011
Fiel S, Sablatnig R. Leaf classification using local features. In: Workshop of the Austrian association for pattern recognition. 2010
Rashad MZ, Desouky BS, Khawasik M. Plants images classification based on textural features using combined classifier. In: IJCSIT. 2011
Schikora M, Schikora A, Kogel K, Koch W, Cremers D. Probabilistic classification of disease symptoms caused by salmonella on arabidopsis plants. GI Jahrestag (2). 2010;10:874–9.
Google Scholar
Schikora M, Neupane B, Madhogaria S, Koch W, Cremers D, Hirt H, Kogel K, Schikora A. An image classification approach to analyze the suppression of plant immunity by the human pathogen salmonella typhimurium. BMC Bioinform. 2012;13:171.
Article
Google Scholar
Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 2014;26(12):4636–55. https://doi.org/10.1105/tpc.114.129601.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lottes P, Höferlin M, Sander S, Stachniss C. Effective vision-based classification for separating sugar beets and weeds for precision farming. J Field Robotics. 2016;34:1160–78.
Article
Google Scholar
Haug S, Michaels A, Biber P, Ostermann J. Plant classification system for crop/weed discrimination without segmentation. In: WACV. 2014
Plantix. https://plantix.net. Accessed 2 Aug 2018.
Lee SH, Chan CS, Wilkin P, Remagnino P. Deep-plant: plant identification with convolutional neural networks. In: ICIP. 2015
Lee SH, Chang YL, Chan CS, Remagnino P. Plant identification system based on a convolutional neural network for the lifeclef 2016 plant classification task. In: LifeClef. 2016
Pound MP, Burgess AJ, Wilson MH, Atkinson JA, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos Y, Wells DM, Murchie EH, Pridmore TP, French AP. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. In: Biorxiv. 2016
Reyes A, Caicedo J, Camargo J. Fine-tuning deep convolutional networks for plant recognition. In: Working notes of CLEF 2015 conference. 2015
Lee SH, Chan CS, Mayo SJ, Remagnino P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 2017;71:1–13.
Article
Google Scholar
Ubbens JR, Stavness I. Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci. 2017;8:1190.
Article
PubMed
PubMed Central
Google Scholar
DeChant C, Wiesner-Hanks T, Chen S, Stewart E, Yosinski J, Gore M, Nelson R, Lipson H. Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology. 2017;107:1426–32.
Article
PubMed
Google Scholar
Mohanty SP, Hughes D, Salathe M. Using deep learning for image-based plant disease detection. Front Plant Sci. 2016;7:1419.
Article
PubMed
PubMed Central
Google Scholar
Vezzani R, Baltieri D, Cucchiara R. Hmm based action recognition with projection histogram features. In: ICPR. 2010
Lv F, Nevatia R. Recognition and segmentation of 3-d human action using hmm and multi-class adaboos. In: ECCV. 2006
Wu D, Shao L. Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In: ICCV. 2014
Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S. Dynamic image networks for action recognition. In: CVPR. 2016
Fernando B, Anderson P, Hutter M, Gould S. Discriminative hierarchical rank pooling for activity recognition. In: CVPR. 2016
Fernando B, Gavves E, Oramas J, Ghodrati A, Tuytelaars T. Rank pooling for action recognition. In: TPAMI. 2016
Vail DL, Veloso MM, Lafferty JD. Conditional random fields for activity recognition. In: AAMAS. 2007
Wang Y, Mori G. Max-margin hidden conditional random fields for human action recognition. In: CVPR. 2009
Song Y, Morency LP, Davis R. Action recognition by hierarchical sequence summarization. In: CVPR. 2013
Du Y, Wang W, Wang L. Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR. 2015
Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Sequential deep learning for human action recognition. In: Human behavior understanding. 2011
Grushin A, Monner DD, Reggia JA, Mishra A. Robust human action recognition via long short-term memory. In: IJCNN. 2013
Lefebvre G, Berlemont S, Mamalet F, Garcia C. Blstm-rnn based 3d gesture classification. In: ICANN. 2013
Karpathy A, Fei-Fei L. Deep visual-semantic alignments for generating image descriptions. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):664–76.
Article
PubMed
Google Scholar
Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. Cnn-rnn: a unified framework for multi-label image classification. In: CVPR. 2016
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: NIPS. 2012
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. ECCV. 2014
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: ICLR. 2015
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: CVPR. 2016
LSVRC 2012. http://www.image-net.org/challenges/LSVRC/. Accessed 2 Aug 2018.
Goodfellow I, Bengio Y, Courville A. Deep learning: sequence modelling. Cambridge: MIT Press; 2016.
Google Scholar
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994;5(2):157–66.
Article
PubMed
CAS
Google Scholar
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.
Article
PubMed
CAS
Google Scholar
Minervini M, Fischbach A, Scharr H, Tsaftaris SA. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognit Lett. 2015;81:80–9.
Article
Google Scholar
Theano Development Team: Theano: a python framework for fast computation of mathematical expressions. 2016. arXiv e-prints arXiv:abs/1605.02688
Chollet F. Keras. San Francisco: GitHub; 2016.
Google Scholar
Rother C, Kolmogorov V, Blake A. “Grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans Gr. 2004;23(3):309–14.
Article
Google Scholar
Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. PAMI. 2001;23(11):1222–39.
Article
Google Scholar
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.
Article
Google Scholar
Granlund GH. Fourier preprocessing for hand print character recognition. IEEE Trans Comput. 1972;21(2):195–201.
Article
Google Scholar
Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979;67(5):786–804.
Article
Google Scholar
Taghavi Namin S, Petersson L. Classification of materials in natural scenes using multi-spectral images. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). 2012, pp. 1393–1398
Douillard B, Fox D, Ramos F, Durrant-Whyte H. Classification and semantic mapping of urban environments. IJRR. 2011;30(1):5–32.
Google Scholar
Lafferty JD, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML. 2001
Ladicky L, Russell C, Kohli P, Torr PHS. Inference methods for crfs with co-occurrence statistics. IJCV. 2013;103(2):213–25.
Article
Google Scholar
Najafi M, Taghavi Namin S, Salzmann M, Petersson L. Sample and filter: nonparametric scene parsing via efficient filtering. In: CVPR. 2016