Westwood JH, Yoder JI, Timko MP, de Pamphilis CW: The evolution of parasitism in plants. Trends Plant Sci. 2010, 15: 227-235. 10.1016/j.tplants.2010.01.004.
Article
CAS
PubMed
Google Scholar
Parker C, Riches CR: Parasitic Weeds of the World: Biology and Control. 1993, CAB International, Wallingford CT
Google Scholar
Bouwmeester HJ, Roux C, L’opez-R’aez JA, B’ecard G: Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 2007, 12: 224-230. 10.1016/j.tplants.2007.03.009.
Article
CAS
PubMed
Google Scholar
Keyes WJ, Palmer AG, Erbil WK, Taylor JV, Apkarian RP, Weeks ER, Lynn DG: Sernagenesis and the parasitic angiosperm Striga asiatica. Plant J. 2007, 51: 707-716. 10.1111/j.1365-313X.2007.03171.x.
Article
CAS
PubMed
Google Scholar
Dörr I: How Striga parasitizes its host: a TEM and SEM study. Ann Bot. 1997, 79: 463-472. 10.1006/anbo.1996.0385.
Article
Google Scholar
Scholes JD, Press MC: Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol. 2008, 11: 180-186. 10.1016/j.pbi.2008.02.004.
Article
PubMed
Google Scholar
Ejeta G: The Striga scourge in Africa: a growing pandemic. Integrating New Technologies for Striga Control:Toward Ending the Witch-Hunt. Edited by: Ejeta G, Gressel J. 2007, World Scientific, Singapore, 3-16.
Chapter
Google Scholar
Runo S, Alakonya A, Machuka J, Sinha N: RNA interference as a resistance mechanism against crop parasites in Africa: a ‘Trojan horse’ approach. Pest Manag Sci. 2011, 67: 129-136. 10.1002/ps.2052.
Article
CAS
PubMed
Google Scholar
Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaas A, Timko MP, Wafula EK, Wickett NJ, Yoder JI: The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Science. 2012, 60: 295-30. 10.1614/WS-D-11-00113.1.
Article
CAS
Google Scholar
Riker AJ: Studies on infectious hairy root of nursery apple trees. J Agric Res. 1930, 41: 507-540.
Google Scholar
Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J: Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature. 1983, 295: 432-434.
Article
Google Scholar
Cleene MD, Leu JD: The host range of infectious hairyroot [Agrobacterium rhizogenes]. Bot Rev. 1981, 47: 147-194. 10.1007/BF02868853.
Article
Google Scholar
Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D: Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interac. 1995, 8: 532-537. 10.1094/MPMI-8-0532.
Article
CAS
Google Scholar
Yibrah HS, Gronroos R, Lindroth A, Franzen H, Clapham D, von Arnold S: Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res. 1996, 5: 75-85. 10.1007/BF01969425.
Article
CAS
Google Scholar
Akutsu M, Ishizaki T, Sato H: Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol Breed. 2004, 13: 69-78.
Article
CAS
Google Scholar
Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T: Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol. 2009, 9: 78-10.1186/1471-2229-9-78.
Article
PubMed Central
PubMed
Google Scholar
Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell. 1984, 37: 959-967. 10.1016/0092-8674(84)90430-6.
Article
CAS
PubMed
Google Scholar
Bonaldi K, Gherbi H, Franche C, Bastien G, Fardoux J, Barker D, Giraud E, Cartieaux F: The Nod Factor-Independent Symbiotic Signaling Pathway: Development of Agrobacterium rhizogenes-Mediated Transformation for the Legume Aeschynomene indica. Mol Plant Microbe Interact. 2010, 23: 1537-1544. 10.1094/MPMI-06-10-0137.
Article
CAS
PubMed
Google Scholar
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R: RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exper Bot. 2004, 55: 983-992. 10.1093/jxb/erh122.
Article
CAS
Google Scholar
Zhou X, Chandrasekharan MB, Hall TC: High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula. New Phytol. 2004, 162: 813-822. 10.1111/j.1469-8137.2004.01065.x.
Article
CAS
Google Scholar
Bulgakov VP: Functions of rol genes in plant secondary metabolism. Biotechnol Adv. 2008, 26: 318-324. 10.1016/j.biotechadv.2008.03.001.
Article
CAS
PubMed
Google Scholar
Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand M, Lashermes P, Etienne H: Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep. 2006, 25: 959-967. 10.1007/s00299-006-0159-9.
Article
CAS
PubMed
Google Scholar
Taylor CG, Fuchs B, Collier R, Lutke WK: Generation of composite plants using Agrobacterium rhizogenes. Methods in Mol Biol. 2006, 343: 155-167.
Google Scholar
Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG: Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact. 2001, 14: 695-700. 10.1094/MPMI.2001.14.6.695.
Article
CAS
PubMed
Google Scholar
Kereszt A, Li D, Indrasumunar A, Nguyen C, Nontachaiyapoom S, Kinkema M, Gresshoff PM: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat protocols. 2007, 2: 948-952. 10.1038/nprot.2007.141.
Article
CAS
PubMed
Google Scholar
Torregrosa L, Bouquet A: Agrobacterium tumefaciens and Agrobacterium rhizogenes co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tissue Organ Cult. 1997, 49: 53-62. 10.1023/A:1005854212592.
Article
CAS
Google Scholar
Gurney AL, Slate J, Press MC, Scholes JD: A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol. 2006, 169: 199-208. 10.1111/j.1469-8137.2005.01560.x.
Article
CAS
PubMed
Google Scholar
Ishida Y, Hiei Y, Komari T: Agrobacterium-mediated transformation of maize. Nat Protocols. 2007, 2: 1614-1621. 10.1038/nprot.2007.241.
Article
CAS
PubMed
Google Scholar
Bercetche J, Chriqui D, Adam S, David C: Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes strains (1855, 2659 and 8198) on carrot, pea and tobacco. Plant Sci. 1987, 52: 195-210. 10.1016/0168-9452(87)90053-7.
Article
Google Scholar
Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR: Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep. 2004, 22: 828-831. 10.1007/s00299-004-0765-3.
Article
CAS
PubMed
Google Scholar
Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D: Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 2002, 129: 13-22. 10.1104/pp.000653.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T: High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol. 1996, 14: 745-750. 10.1038/nbt0696-745.
Article
CAS
PubMed
Google Scholar
Ahmadabadi M, Ruf S, Bock RA: Leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res. 2008, 16: 437-448.
Article
Google Scholar
Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH: Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 1991, 95: 426-434. 10.1104/pp.95.2.426.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikhi H, Kashikar N, Meeker K, Al-Abed D, Berry K, Vierling R, Goldman SL: Shoot meristem: an ideal explant for Zea mays L. transformation. Genome. 2003, 46: 323-329. 10.1139/g02-120.
Article
CAS
PubMed
Google Scholar
Xu H, Zhou X, Lu J, Wang J, Wang X: Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Science in China Series C: Life Sciences. 2006, 49: 305-310. 10.1007/s11427-006-0305-1.
Article
CAS
PubMed
Google Scholar
Bandyopadhyay M, Jha S, Tepfer D: Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep. 2007, 26: 599-609. 10.1007/s00299-006-0260-0.
Article
CAS
PubMed
Google Scholar
Grant JE, Dommisse EM, Conner AJ: Gene transfer to plants using Agrobacterium. 1991, CAB International, Wallingford
Google Scholar
Tomilov AA, Tomilova NB, Yoder JI: Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta. 2006, 225: 1059-1071.
Article
PubMed
Google Scholar
Terada R, Shimamoto K: Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet. 1990, 220: 389-392. 10.1007/BF00391743.
Article
CAS
Google Scholar
Wally O, Jayaraj J, Punja ZK: Comparative expression of β-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep. 2007, 27: 279-287.
Article
PubMed
Google Scholar
Reddy MS, Randy D, Collins G: Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep. 2003, 21: 676-683.
CAS
PubMed
Google Scholar
Mann DG, LaFayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Stewart-Jr CN: Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J. 2011, 10: 226-236.
Article
PubMed
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Hewitt EJ: Sand and water culture methods used in the study of plant nutrition. 1966, Commonwealth Agricultural Bureau, London
Google Scholar
Cissoko M, Boisnard A, Rodenburg J: Press MC, Scholes JD: New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds. Striga hermonthica and S. asiatica. New Phytol. 2011, 192: 952-963.
Article
CAS
PubMed
Google Scholar