Skip to main content

Table 1 Synchrotron imaging operation parameters used in agriculture and food science research

From: Synchrotron tomography applications in agriculture and food sciences research: a review

Technique

Material

Purpose/findings

Beamline and beam size (H, mm × V, mm)

Energy (keV)

Resolution (μm)

No of Projection or Increment angle (°)

Exposure per image/total time (s/min)

Field of view mm × mm

Detector/detector pixel

Voxel (mm/μm)

Source to detector(Sr/d) and sample to detector distance (Sl/d), cm

References

Plants and fruits

 SR-XTM

Modern and Fossil plants

Internal structure

TOMCAT, Swiss (50 × 4)

9.9

0.35

1500

0.42/10.5

1 × 1.4

2560 × 2160

400 × 400 × 400 μm

100(Sl/d)

[19]

 SRPC-μCT

Canola plant

Water and nutrient transport

BMIT-Canadian light source (40 × 5)

18, 24

4.3

1800, 5001

1/83

4 × 10

4000 × 2600

0.7 × 0.7 × 0.7 mm

80, 60(Sl/d)

[1]

 SR-μCT

18

8.75

1800

2.3/69

8.5(Sl/d)

 SR-PCI

Wheat

Fusarium disease detection

18

8.75

*–

1 s/–

4000 × 2600

1 × 1 × 1 mm

80(Sl/d)

[90]

 SRP-TM

Live vines of plant

Plant xylem network

ALS, Berkeley CA USA (40 × 4.6)

10–18

4.5

720/0.25°

0.1–1/40

8.3 × 18

4006 × 2672

5 × 5 × 5 μm

1000 (Sr/d)

[23]

 SR-μCT

Rose peduncles

Effect of SR- X-ray and residence time on quality

BESSY II, Germany (200 × 100) μm

30, 40, 50

4.56

1500/0.12°

1.4, 1.2, 3/35

10 × 13

512 × 512

4.56 × 4.56 × 4.56 μm

3500(Sr/d)

[27]

 SR-μCT

Wood

Microstructure changes under force and stress

DORIS III, DESY (20 × 3)

9

2

720/0.25°

1 × 1

1536 × 1024

1 mm3

[88]

 SR-μCT

Wood

TOMCAT, SLS

11

2.15

720/0.25°

0.3/12

3.58 × 1.2

2048 × 2048

1.7 × 1.7 × 1.7 μm

0.7 (Sr/d)

[32]

 SR-μCT

Wood

Microstructural decay due to fungi

TOMCAT, Swiss

15

20

2001

0.13/4.2

1650 × 1650 μm

1560 × 2160

0.65 × 0.65 × 0.6 μm

0.5 (Sl/d)

[31]

 SRP-μCT

Wheat

Host Interactions

BMIT-CLS, SK

20

 

1800

0.8/24

1 × 1

 

13.12 μm3

20 (Sl/d)

[53]

 SR-μCT

Tomato leaves

3D laminography

ID19 of ESRF, France (60 × 15)

18

0.75

1200

0.5/10

1.54 × 1.54

2048 × 2048

750 × 750 × 750 nm

35 (Sl/d)

[86]

CO2 gas exchange in leaf

20.5

0.75

150 × 150

1.4 × 1.4 × 1.4 μm

3, 4.5, 10.5, 21.5 (Sl/d)

[89]

 SR-μCT

coast redwood samplings

Embolism

In the xylem

ALS, Berkeley

15

4.5

720/0.25°

12 min

5 × 5

4006 × 2672

175 × 175 × 500 μm

[23]

 SR-μCT

Ggrapevine

Xylem vessel refilling

24

0.65

1025

60 min

1.7 × 1.7

0.65 μm3

[107]

 SR-μCT

Sunflower

Drought-induced embolism in stems

SYRMEP Trieste (120 × 4)

22

2.0

2048/1°

250 ms/6 min

10 (sl/d)

[20]

 SR-μCT

Ggrapevine

Visualizations of Drought-Induced Embolism

ALS, Berkeley (251 × 8) µm

15

4.5

720/0.25°

25 min

4006 × 2672

[21]

 SRP-μCT

Submerged leaves

visualise gas films

on submerged leaves of common cordgrass

TOMCAT

12

0.375

2001

10 min

 

2048 × 2048

0.375 × 0.375 × 0.375 μm

1.4–4.0(sl/d)

[25]

 SR-PCI

Woody herbaceous plant leaves

With iodine contrast agent

APS,IL USA

207 × 15 μm

7–20

1.66

0.4/-

5 × 5

2048 × 2048

5500 (Sr/d)

1–10 (Sl/d)

[108]

10–60

3.56

1.7/-

1392 × 1040

5500 (Sr/d)

1–20 (Sl/d)

Seeds

 SR-inline phase TM

Maize

Internal changes in feature

ID19, ESRF

(60 × 15) μm

17.6

5

1000

50 s/20 min

2048 × 2048

5 × 5 × 5 μm

100 (Sl/d)

[26]

 SR-XTM

Arabidopsis

Intercellular void network

21

0.3

800/0.225°

2 s/26 min

0.6 × 0.6

5 × 5 × 5 μm

14,500(Sr/d)and 1.3, 3.3, 6.3, 10.3(Sl/d)

[2]

 HXRTM

Fossils & modern horse gram

Seed coat thinning with time

I132 of DLS UK (14.5 × 19) μm

15

4000

0.15, 0.2, 0.25 s/16 min

5120 × 5120

1 × 1 × 1 mm

0.5

[30]

 SRP-μCT

Rapeseeds

Distribution of storage oils

ESRF, Grenoble (200 × 200) µm

19

0.75

1200

0.1 s/2 min

0.74 μm3

9 (Sl/d)

[86]

 SR-XTM

Fossil seeds

Internal features of fossil flowers

TOMCAT, Swiss

10, 12

0.37, 0.65, 0.74

570–660

0.85 × 30.7

10 × 20 μm

0.65 × 0.65 × 0.65 μm

[84]

 SRP-μCT

Fossil flowers

Cretaceous fossil inflorescence

BM05 ESRF

20

0.75

4000

1.2 s/80 min

 

FReLoN

8.8 μm

 

2(Sl/d)

[75]

 SRP-nCT

Fossil flowers

Cretaceous fossil inflorescence

ID22-NI ESRF

29.5

0.76

2000

0.8 s

 

FReLoN

20 μm

 

4.7, 4.8, 5.2, 6.2 (Sl/d)

[75]

Soil and roots

 SRP-μCT

Barley root hair in soil

Importance of root hairs on pore structure development at the root-soil interface

I13 DLS UK (1.7 × 1.7)

15 to 21

1.6

1601

0.15 s/

4 min

4 9 × 3.5

2560 × 2560

2 × 2 × 1 mm

6.35(Sl/d)

[41]

 SR-μCT

soil aggregation

Soil aggregation in an Ultisol

BL13W1, SSRF, Shanghai (50 × 5)

28

9

430

2.70 × 3.2

1052 × 1052

9 × 9 × 9 μm

[34]

 SR-μCT

Ultisol under Wetting and drying

Intra-aggregate microstructure

24

3.7

1300/0.10°

1.8/39

1700 × 1700

541 × 541 × 541

[35]

 SR-μCT

Quantification of aggregate

Effect of vegetation on strcture

24

3.25

550

30 s

 

2048 × 2048

3.25 × 3.25 × 3.25

12 (sr/sl)

[95]

 SR-μCT

Two soil types of states USA

Characterization of soil microaggregates

ALS, Berkeley (251 µm × 8 µm)

11

20

1800

1/30

325 nm

0.8 (Sl/d)

[38]

 SR-μCT

Soil

Flow of sand

APS, 6.0 (50 × 5)

33.70

17.1

720/0.25° two pass

1.4/16

11.1 × 3.6

1317 × 1335

650 × 650 × 211 mm

[42, 43]

APS 1.5 (1.5 × 1) and (200 × 40) µm

33.69

6.7

5/60

4.39 × 3.45

1300 × 1330

658 × 658 × 517 mm

 SR-μCT (KI contras)

Sand

Water content on compaction

BL13W1 SSRF

20

0.65

1200

–/150

13 × 13

2048 × 2048

0.65 × 0.65 × 0.65 μm

[36]

 SR-μCT at K-edge

Soil

Locate organic matter

HARWI II, Germany (50 × 10)

30, 70, 78

9.77

4.89 μm

3.8 × 3.5 × 3.30 mm

[109]

 SR-μCT

Two soil types

3D pore network of grassland and tilled soil

DESY, Germany

Tilled: 21.5, grassland: 24

3.2, 5.4

0.5°

1536 × 1024

400 × 400 × 400

[76]

 SR-XTM

Soil-root

Growth of wheat root hairs

TOMCAT

20

1.0

1501

 

 

500 × 500 × 500

[24]

Food

 HRXTM

Soft cereal foods

Impact of protein reinforcement on the deformation

BM05, ESRF, Grenoble

19

11 × 11

2 s

11 × 22

5 × 10

1 × 2

2016 × 2016

11 μm

5.5 μm

1.1 μm

[102]

 SR-XTM

Bread

Bubble growth and foam setting

18

400

0.02/0.13

  

628 × 628 × 256 mm

 

[44]

 SR-XTM

Pome Fruits (apple, pear)

Gas network architecture

ID15

EPSRF (3.2 × 3.2)

25

2.5

900

1/0.5

 

2048 × 2048

1.9 μm3

3800(Sr/d)

[110]

 SR-PCI

Characterization of fruit tissue

ID19, EPSRF

18

700

0.7 × 0.5x 1 mm3

-

0.95 μm3

20.7

[74]

 SR-μCT, SRP-μCT

Gas exchange pathways

18

1.4, 5.1

PCI: 0.7

1200

0.5/10

1.43 × 1.43

2048 × 2048

712 nm

10,000 (Sr/d), 3.5 (Sl/d)

[86]

 SR-μCT

Extruded cereal & biscuit

Internal structure

17.6

6.5, 7.5, 16.2, 25.8

2000–5000

0.2/15

2048 × 2048

7.5 μm (2048 × 2048 × 1024)

[46]

 SR-μCT

Noodle dough

Characterization of bubbles

BMIT CLS

25

8.75

600/0.30

0.04/1.10

4000 × 248 pixels

10–97 voxel

80 (Sl/d)

[101]

 SR-μCT

Ice cream

Temp dependence microstructure

(I13-2) DLS, U.K

15 to 30

0.8

900

0.1/1.5

2560 × 2160 pixel

2 k × 2 k × 2 k

3.5 (Sl/d)

[45]

 SRP-μCT

15 to 30

3601

0.1/6

[105]

 SR-μCT

Wheat flour

Bubble size distribution in dough

BMIT-BM 05B1-1

CLS, SK

40 × 5 mm

18

8.75

350/1.5°

0.2/2

530 × 2530

7–25 voxels

147 (Sl/d)

2620 (Sr/d)

[77]

 SR-μCT

Coffee Beans

Voids/pore volume distribution of green and roasted coffee beans

SYRMEP, Trieste (Italy)

19, 20

4.5

1440/0.1250

18 × 12

4008 × 2672

1 mm3

20 (Sl/d)

[47]

 SR-μCT

Chocolate

Migration pathways through cracks and voids

(DESY) Hamburg

13

1.0

1800

1/20

1.8 × 1.8 mm

3056 × 3056

100 μm

[48]

 SRP-μCT

Fish

Histology

APS, ANL USA

13.8, 16.2

1.43

2048

20/20

0.743 μm3

3 (Sl/d)

[103]

  1. Sl/d sample to detector, Sr/d source to detector distance, μCT micro computed tomography, TM tomography