Skip to main content

Table 4 Summary of selected references applying hyperspectral imaging to seed fungus damage detection

From: Hyperspectral imaging for seed quality and safety inspection: a review

Seed

Spectral rangea

Varieties

Sample numbers

Features

Signal mode

Data analysis strategies

Main application type

Classification result (highest accuracy)

References

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley

900–1700 (1000–1600)

1 variety, 2 fungi

6300

Spectra and image

PCA

Reflectance

PWb prediction map and OWc (single kernels)

LDA, QDA, MDA

Fungus (Ochratoxin A and Penicillium) damage detection

> 82%

Senthilkumar et al. [43]

Canola

960–1700 (1000–1600)

1 variety, 2 fungi,

3300

Spectra and image

PCA

Reflectance

OW (single kernels)

LDA, QDA, MDA

Fungus (Aspergillus glaucus and Penicillium spp.) damage detection

> 90%

Senthilkumar et al. [44]

Corn

900–1700

3 varieties, 5 treatments

585

Spectra

No

Reflectance

OW (single kernels), PW prediction map

PLS-DA

Fungus (Aflatoxin B1) damage detection

96.90%

Kandpal et al. [49]

Corn

400–900 for fluorescence

1 variety, 3 treatments

492

Spectra

No

Reflectance

PW spectra

spectral index

Fungus (Aflatoxin A. flavus) damage detection

93%

Yao et al. [54]

Corn

400–701 for fluorescence, 461–877 for reflectance

1 variety, 3 treatments

300

Spectra

PCA

Reflectance

OW (single kernels), PW PCA

LS-SVM, KNN

Fungus (Aflatoxin A. flavus) damage detection

> 91% (KNN)

Zhu et al. [53]

Hick peas, green peas, lentils, pinto beans and kidney beans

960–1700 (1000–1600)

5 different pulses, 2 fungi

Over 10,000 kernels

Spectra and image

PCA

Reflectance

OW (single kernels), PW PCA

LDA, QDA

Fungus (Penicillium commune Thom, C. and A. flavus Link, J.) damage detection

96%-100%

Karuppiah et al. [48]

Maize

850–2800 (1000–2500)

4 varieties

120

Spectra

PCA

Reflectance

OW (single kernels), PW prediction map

SVM, SVR

Fungus (Aflatoxin B1) damage detection

R2 = 0.77

Chu et al. [63]

Maize

1000–2500

1 variety, 5 treatments

150

Spectra

PCA, FDA

Reflectance

OW (single kernels), PW PCA

FDA

Fungus (Aflatoxin B1) damage detection

88%

Wang et al. [58]

Maize

1000–2500

1 variety, 5 treatments

120

Spectra

PCA

Reflectance

OW (single kernels)

FDA

Fungus (Aflatoxin B1) damage detection

98%

Wang et al. [41]

Maize

960–1662 (1000–2498)

1 variety, 3 treatments

36

Spectra

No

Reflectance

OW (single kernels), PW prediction map

PLS-DA

Fungus (Fusarium) damage detection

77% (PLS-DA)

Williams et al. [60]

Maize

1000–2498

1 variety, nine treatments

160

Spectra

PCA, variable importance plots

Reflectance

OW (single kernels), PW PCA and prediction map

PLSR

Fungus damage detection

R2 = 0.87

Williams et al. [59]

maize

400–700

1 variety, 2 fungi, 3 treatments

180

Spectra

No

Reflectance

OW (single kernels)

discriminant analysis

Fungus (Toxigenic and atoxigenic A. flavus) damage detection

94.40%

Yao et al. [56]

Maize

400–1000

12 varieties, 4 fungi

Unknown

Spectra

PCA

Reflectance

OW (bulk samples), PW PCA

ANOVA, Fisher’s LSD test

Fungus (Aspergillus strains) damage detection

Fisher’s LSD test

Del Fiore et al. [51]

Oat50

1000–2500

1 variety, 4 treatments

180

Spectra

PLSR

Reflectance

OW (single kernels), PW prediction map

PLSR, PLS-LDA

Fungus (Fusarium) damage detection

R2 = 0.8

Tekle et al. [61]

Peanut

970–2570 (1000–2000)

1 variety, 2 treatments

149

Spectra

PCA

Reflectance

OW (single kernels), PW prediction map

PCA

Moldy kernel detection

98.73%

Jiang et al. [50]

Peanut

967–2499

1 variety, 2 treatments

More than 10,000 pixels

Spectra

ANOVA, NWFE

Reflectance

OW (single kernels), PW prediction map

SVM

Fungus (Aflatoxin) damage detection

> 94%

Qiao et al. [45]

Rice

400–1000

1 variety, 6 treatments

210

Spectra

No

Reflectance

OW (bulk samples)

SOM, PLSR

Fungus (Aspergillus) damage detection

R2 = 0.97

Siripatrawan and Makino [62]

Watermelon

948–2016

1 variety, 2 treatments

96

Spectra

Intermediate PLS (iPLS)

Reflectance

OW (single kernels) PW prediction map

PLS-DA, LS-SVM

Fungus (Cucumber green mottle mosaic virus) damage detection

83.3% (LS-SVM)

Lee et al. [47]

Watermelon

400–1000

1 variety, 2 treatments

336

Spectra

Intermediate PLS (iPLS)

Reflectance

OW (single kernels), PW prediction map

PLS-DA, LS-SVM

Fungus (Acidovorax citrulli) damage detection

> 90%

Lee et al. [46]

Wheat

528–1785

4 varieties, 2 fungi

803

Spectra

PCA

Reflectance

OW (single kernels), PW spectra

LDA

Fungus (Fusarium) damage detection

> 91%

Barbedo et al. [55]

Wheat

528–1785

33 varieties, 3 treatments

10,862

Spectra

No

Reflectance

OW (single kernels), PW spectra

spectral index

Fungus (Fusarium head blight) damage detection

81%

Barbedo et al. [52]

Wheat

400–1000 (450–950)

1 variety, 3 treatments

800

Spectra and image

PCA, STEPDISC

Reflectance

OW (single kernels)

LDA

Fungus (Fusarium) damage detection

92%

Shahin and Symons [42]

Wheat

900–1700 (1000–1600)

1 variety, 3 fungi

1200

Spectra and image

STEPDISC, GLCM, GLRM, PCA

Reflectance

OW (single kernels)

LDA, QDA, MDA

Fungus (Penicillium spp., Aspergillus glaucus group, and Aspergillus niger) damage detection

> 95%

Singh et al. [64]

Wheat

1000–1700 (1013–1650)

3 varieties

Spectra

PCA

Reflectance

OW (bulk, single kernels), PW PCA

PLS-DA, iPLS-DA

Fungus (Fusarium) damage detection

99%

Serranti et al. [57]

  1. aThe spectral range without brackets relates to the range acquisition of instrument, while the spectral range in brackets represents the spectral range for practical analysis
  2. bPW means pixel-wise analysis, which is the analysis on the pixels
  3. cOW means objective-wise analysis, which means the analysis on ROIs (ROI can be bulk, single kernel or self-defined)