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Abstract 

Background:  The demand for productive economic plant resources is increasing with the continued growth of the 
human population. Ancient Pu’er tea trees [Camellia sinensis var. assamica (J. W. Mast.) Kitam.] are an important ecolog-
ical resource with high economic value and large interests. The study intends to explore and evaluate critical drivers 
affecting the species’ productivity, then builds formulas and indexes to make predicting the productivity of such valu-
able plant resources possible and applicable.

Results:  Our analysis identified the ideal values of the seven most important environmental variables and their 
relative contribution (shown in parentheses) to the distribution of ancient Pu’er tea trees: annual precipitation, ca. 
1245 mm (28.73%); min temperature of coldest month, ca. 4.2 °C (18.25%); precipitation of driest quarter, ca. 47.5 mm 
(14.45%); isothermality, 49.9% to 50.4% (14.11%); precipitation seasonality, ca. 89.2 (6.77%); temperature seasonality, 
ca. 391 (4.46%); and solar radiation, 12,250 to 13,250 kJ m−2 day−1 (3.28%). Productivity was indicated by the total 
value (viz. fresh leaf harvested multiplied by unit price) of each tree. Environmental suitability, tree growth, and man-
agement positively affected productivity; regression weights were 0.325, 0.982, and 0.075, respectively. The degree of 
productivity was classified as follows: > 0.8, “highly productive”; 0.5–0.8, “productive”; 0.3–0.5, “poorly productive”; and 
< 0.3, “unproductive”. Overall, 53% of the samples were categorized as “poorly productive” or “unproductive”; thus, the 
management of these regions require attention.

Conclusions:  This model improves the accuracy of the predictions of ancient Pu’er tea tree productivity and will aid 
future analyses of distribution shifts under climate change, as well as the identification of areas suitable for Pu’er tea 
tree plantations. Our modeling framework provides insights that facilitate the interpretation of abstract concepts and 
could be applied to other economically valuable plant resources.

Keywords:  Economical plant resources, Evaluation index, Maximum information entropy, Productivity prediction, 
Structural equation modeling, Sustainable development
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Background
The demand for economically productive plant resources 
is increasing as the human population continues to grow 
[1]. Although there have always been trade-offs between 
economic growth and nature conservation [2], an 
increase in agricultural productivity (yield) of 60–120% 
in 2030 relative to 2005 is needed to meet projected 
increases in demand [3]. Many studies have characterized 
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the relationships of plant productivity with species rich-
ness [4] and climate [5], the effects of crown attributes 
and stand structure on tree productivity [6], and the 
effects of management policies on plant productivity [7]. 
Most of these studies have used integrative modeling 
approaches to explore the relationships among variables 
[4, 8], but few have evaluated correlations using multi-
sourced factors (e.g., environment, plant attributes, and 
management) at the individual level. In addition, the 
difficulty of interpreting the significance of the outputs 
of these modeling analyses often impedes the ability to 
extract practical insights that could be applied to improve 
productivity.

Tea is consumed by over three billion people across 
160 countries, making it one of the world’s most popu-
lar beverages [9, 10]. Its management as a cash crop plays 
an important role in rural poverty reduction [2, 11] and 
economic growth. Teas are known to provide benefits to 
human health and well-being, such as decreasing the risk 
of cancer [12], cancer recurrence [13], and cardiovascu-
lar and nervous system diseases [14]. Rogers et  al. [15] 
demonstrated that an active ingredient in tea, theanine, 
can have beneficial effects for treating chronic diseases, 
such as raising blood pressure. The taste of tea can also 
improve mood and focus and alleviate depression and 
dementia [16].

China has a long history of tea plantation and culture 
[17]. Most tea gardens are located in southern China. The 
Chinese Academy of Agriculture Science classified China 
into several tea areas based on ecological conditions and 
geography: South China, Southwest, Jiangnan, and Jiang-
bei tea areas. Since the economic reform of 1978, the area 
of tea gardens has increased and reached 0.19 million 
hectares in 2017, with a total tea yield of 2.46 million tons 
[18]. Production of the six Chinese traditional tea brands, 
green tea, yellow tea, white tea, oolong tea, black tea, and 
dark tea, has grown steadily over the past 40 years, and 
the tea-based products in the market have diversified. 
According to Chen et  al. [18], China’s tea exports (0.37 
million tons in volume) account for 15–20% of the world’s 
total, and domestic per capita consumption is 1.42 kg per 
biennium. Yunnan Province, an important region in the 
Southwest tea area, harbors 15.37% of the tea plantation 
area and 16% of the total tea output in 2017, making it 
one of the key areas of strategic development based on 
tea growing and processing.

Pu’er region, Yunnan Province, is well-known for its 
high-quality black and dark tea products and unique 
tea manufacturing process [19], making it an ideal area 
to study the effect of environmental conditions and 
human activities on tea production. In Pu’er, many old 
tea trees found in natural areas are protected. Some trees 
in tea gardens regrow from the original ancient trunks. 

According to Lu et  al. [9], there is no official definition 
of ancient tea trees, but natural trees over 100  years of 
age are often considered ancient. Hence, we define wild 
trees over 100  years or trees regrown from trunks over 
100 years of age as ancient in this study. The main ancient 
tea species include Dali tea [Camellia taliensis (W. W. 
Sm.) Melch.], tea [C. sinensis (L.) Kuntze], Pu’er tea [C. 
sinensis var. assamica (J. W. Mast.) Kitam.], and white tea 
(C. sinensis var. pubilimba T. L. Ming). Besides values of 
ecosystem services, ancient teas also have high economic 
values for their non-timber products. The rich aroma 
and pleasant taste of these warm dark teas add substan-
tial value to their products [20]. Although the prices of 
final products depend on fermentation processes, tech-
nological infrastructure, and the time required for tea 
harvesting [21], our field research has indicated that the 
price of raw teas increases with tree age. Increasing the 
production of tea from ancient trees could enhance the 
economic value of these trees, and an analysis of the fac-
tors associated with increased productivity is the first 
step toward achieving this goal.

Here, this study evaluates the productivity of an eco-
nomically valuable plant resource. To improve the 
current understanding of interactions between plant pro-
ductivity and impact factors [1, 3], we detect the critical 
drivers’ contribution to ancient tea trees’ productivity 
and build formulas and indexes to help interpretation. 
We aim to build models that facilitate the objective inter-
pretation of “productivity” and could be applied to other 
economic plants. The methodology also could be referred 
to as studying other plant traits and vague concepts.

Materials and methods
Study area
Yunnan Province is located in the southern extension of 
the Qinghai–Tibet Plateau and Yunnan–Guizhou Plateau 
(from 21° 8′ 32″ to 29° 15′ 8″ N and from 97° 31′ 39″ to 
106°  11′  47″  E). Mountainous regions comprise 84% of 
the total area of the province, and the plateau and hilly 
regions account for 10% [22]. Natural plant resources are 
abundant in Yunnan Province, and the soils are suitable 
for the growth of various plant resources, as this region 
(average altitude of 2000 m) is characterized by a unique 
plateau monsoon climate formed by the South Bengal 
high-pressure airflow.

The study area (Fig. 1) is located in southwest Yunnan 
Province (from 22°  49′ to 23°  52′  N and from 100°  02′ 
to 101° 07′ E) and covers 777,700 ha. Jinggu Dai and Yi 
Autonomous County (abbreviated as Jinggu) features a 
diverse topographic landscape that includes mountain-
ous areas, plateaus, basins, and valleys. The altitude 
ranges from 600 to 2920  m. The Lancang River flows 
from northeast to southwest, and there are a total of 



Page 3 of 13Zhang et al. Plant Methods           (2022) 18:95 	

94 rivers with a total length of 1863.54 km and annual 
average total runoff of 4.7 billion  m3. Jinggu receives 
abundant rainfall and has distinctive seasons due to 
the influence of the southwest monsoon. Because Ailao 
Mountain blocks cold air from the north in winter and 
monsoon-related precipitation limits increases in tem-
perature in the summer, Jinggu has stable temperatures 
year-round, but temperature noticeably varies with 

elevation. The annual average temperature is 17.7 to 
22.3 °C [23]. The hottest month (June) features an aver-
age temperature of 21.7 to 24.6 °C, whereas the coldest 
month (January) has an average temperature of 11.4 to 
13 °C. The daily and annual temperature differences are 
13.6  °C and 11.6  °C on average, respectively. The aver-
age annual precipitation is over 1200 mm, and approxi-
mately 87% of the precipitation falls during the rainy 
season (May to October). The average relative humidity 

Fig. 1  Map of the study area: Jinggu Dai and Yi Autonomous County (light blue), Pu’er Region (dark blue), Yunnan Province, China (orange). Photos 
are shown of six representative trees
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is 78%, the average number of annual sunshine hours is 
2056.3 h, and southern winds are predominant.

The unique geographical and climate conditions of 
this region affect the distribution of ancient tea trees. 
Soil types in the study area are diverse and include 
red soil, lateritic red soil, yellow soil, brown soil, pur-
ple soil, alluvial soil, and paddy soil. Alkali-resistant 
tea trees grow better on red soil, lateritic red soil, and 
yellow soil, and these soil types are present across the 
study area in both valleys and hilly regions. This high 
diversity of soils has also contributed to the abun-
dance of forest resources. There are 596,000 ha of for-
estry land, accounting for 79.2% of this region [23]. The 
dominant forest types are seasonal rain forest, middle 
mountain moist evergreen broad-leaved forest, Yun-
nan pine forest, and coniferous and broad-leaved mixed 
forest. Many ancient tea trees are present in these for-
est types, and some are protected or cultivated in tea 
gardens.

Data
Environmental data collected comprised 28 raster-
ized parameters (Table  1). The bioclimate variables 
(bio1–19), wind speed, water vapor pressure, and solar 
radiation were obtained from WorldClim version 2.1 at 
a spatial resolution of 30 arc-seconds (1 km2). The accu-
racy of these data was evaluated by global correlation 
coefficients (between estimated and observed values). 
All temperature parameters had coefficients over 0.99; 
solar radiation and vapor pressure had coefficients over 
0.95; precipitation variables had coefficients of 0.86; and 
wind speed had a coefficient of 0.76 [24]. We calculated 
the average values from the 1970 to the 2000 datasets 
(released in January 2020). We used public soil texture 
data from the Resource and Environment Science and 
Data Center [25], which comprised percentages of sand, 
silt, and clay. We extracted slope and aspect values from 
the Advanced Land Observing Satellite (ALOS) 12.5  m 
Digital Elevation Model (DEM) [26]. To make aspect 

Table 1  Details of the variables, their value ranges, percent contributions to the Maxent model, and permutation importance

* indicates explanations or essential information of parameters

Parameter Full name or description (*) Value range Percent 
contribution

Permutation 
importance

bio1 Annual mean temperature (°C) 10.29–23.05 0.17 0.33

bio2 Mean diurnal range [mean of monthly (max temp—min temp)] (°C) 9.25–12.95 0.47 1.21

bio3 Isothermality (BIO2/BIO7) (× 100) (%) 47.02–53.25 14.11 6.04

bio4 Temperature seasonality (standard deviation × 100) 307.35–448.04 4.45 5.92

bio5 Max temperature of warmest month (°C) 16.4–36.3 0.01 0.01

bio6 Min temperature of coldest month (°C) − 2.2 to 11.3 18.25 21.14

bio7 Temperature annual range (BIO5–BIO6) (°C) 18.6–25 0.36 1.71

bio8 Mean temperature of wettest quarter (°C) 14.55–26.45 0.06 0.00

bio9 Mean temperature of driest quarter (°C) 4.87–19.35 0.37 1.15

bio10 Mean temperature of warmest quarter (°C) 14.55–26.45 0.07 0.01

bio11 Mean temperature of coldest quarter (°C) 4.87–17.73 0.34 0.92

bio12 Annual precipitation (mm) 916–1616 29.73 26.75

bio13 Precipitation of wettest month (mm) 173–342 0.12 0.04

bio14 Precipitation of driest month (mm) 5–22 0.04 0.40

bio15 Precipitation seasonality (coefficient of variation) 74.48–90.55 6.77 4.57

bio16 Precipitation of wettest quarter (mm) 486–911 0.01 0.02

bio17 Precipitation of driest quarter (mm) 28–73 14.45 11.97

bio18 Precipitation of warmest quarter (mm) 486–911 0.33 0.65

bio19 Precipitation of coldest quarter (mm) 31–79 1.67 9.78

wind Wind speed (m s−1) 0.7–2.5 0.90 0.55

vapr Water vapor pressure (kPa) 0.62–1.51 0.21 0.08

srad Solar radiation (kJ m−2 day−1) 10,858–14,288 3.28 3.99

sand *Particle size from 0.05 to 2 mm 22–61 0.13 0.17

silt *Particle size from 0.002 to 0.05 mm 17–49 0.84 0.96

clay *Particle size less than 0.002 mm 14–48 0.06 0.07

slope *Extract from DEM (°) 0–70.49 1.59 0.86

Sin_aspect *Aspect (east to west) = sin((π/180) × aspect (degree)) − 1 to 1 0.53 0.25

Cos_aspect *Aspect (north to south) = cos((π/180) × aspect (degree)) − 1 to 1 0.67 0.46
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values more mathematically reasonable, we used sine 
and cosine functions to constrain the values from − 1 to 
1, which represent east–west and north–south degrees, 
respectively (Table 1).

We measured, monitored, and collected field data 
from individual ancient tea trees to build a field dataset 
of ancient tea trees for the past decade. All coordinates 
of known trees were recorded in Jinggu, which met 
the “unbiased data” assumption of using Maxent. We 
obtained comprehensive data from 1282 individuals for 
the structural equation modeling. Specifically, we meas-
ured tree age (years), diameter at breast height (DBH, 
cm), ground diameter (cm), tree height (m), crown width 
(m), and height under branch (m). The crown width was 
the average of the north–south and east–west widths. 
We also subjectively scored growth vigor (strong = 3, 
medium = 2, weak = 1), harvest intensity (strong = 1, 
medium = 0.5, week = 0), and protection (strong = 1, 
medium = 0.5, weak = 0.1, none = 0). Specifically, trees 
showing strong morphological growth trends (e.g., crown 
width and tree height) were considered to show “strong” 
growth vigor. Harvest intensity was considered “strong” 
when all new leaves and branches were periodically har-
vested; by contrast, harvest intensity was considered 
“weak” when most leaves were had not been removed. 
Comprehensive protection was considered “strong” if 
an enclosure was present around the trees, monitoring 
efforts were in place, and weeds were regularly cleared. 
These indicators were assessed and recorded in the field. 
In addition, we summarized each tea tree’s total value 
based on fieldwork and market research in 2019. The 
annual production (kg) of green leaf was recorded for 
each tree by our research group and the local govern-
ment. Although the final products have different prices 
due to different processing technology and places it sells, 
the raw tea from the primary harvesting has nearly the 
same prices in Yunnan, and the price is related to tree 
ages [23]. Hence, we used the raw tea’s unit price (RMB/
kg) in the study area to calculate the total value by multi-
plying output (kg).

Analyses
Here, we evaluated the productivity of tea production 
from Pu’er ancient tea trees using a structural equation 
modeling approach. We defined “productivity” as the 
value generated by an individual tree and used the 1-year 
output value (viz. fresh leaf harvested multiplied by the 
unit price) as a direct indicator of productivity. We then 
developed four models to analyze correlations. The envi-
ronmental suitability model comprised 28 rasterized 
parameters. The tree growth model comprised all tree 
attributes and growth vigor. The management model 
comprised harvest intensity and protection as variables. 

The productivity model comprised total value as an 
indicator.

We used ArcGIS Desktop 10.8 to standardize all envi-
ronmental raster data into the same band, cell size, pixel 
type, pixel depth, coordinate system, and spatial datum. 
We then used Maxent 3.4.4 to calculate contributions 
from each environmental parameter [27]. Maxent’s 
maximum information entropy-based machine learn-
ing method has been used to filter significant parameters 
and reduce the number of dimensions [28, 29]. Specifi-
cally, we input the geographic coordinates (latitude and 
longitude) of all known ancient tea trees in Jinggu and 
28 rasterized parameters into the software and used the 
jackknife procedure to measure variable importance. We 
set the random test percentage as 75, replicates as 10 
with cross-validation running type, and the output for-
mat as logistic [30]. After running the model, we used the 
average of 10 iterations to weight the importance of each 
parameter. We also used the coordinates of 1282 trees 
to extract values from the 28 rasterized environmental 
parameters to prepare the dataset for the productivity 
model using the “Extract Multi values to Points” tool in 
ArcGIS.

We used JMP 15.2.0 [31] to characterize the distribu-
tion of points and detect bivariate relationships between 
each field parameter and total value. We selected the 
seven most important environmental variables based on 
their relative contributions to build the initial integra-
tive model. The seven tree-related and two management-
related variables were also comprised. Since the number 
of parameters is associated with model fitness and redun-
dancy, we tried to filter the most significant variables for 
the final model by their contributions and rerun the ini-
tial model.

We used IBM SPSS AMOS 24.0 to build the integra-
tive model, a graphic-based software to visualize cor-
relations and regression weights among variables [32]. 
The structural equation modeling method applied in 
the software has been widely used in recent ecologi-
cal modeling studies [4, 8]. We built the environment 
suitability, tree growth, and management models and 
evaluated their relationships with the productivity 
model. The initial regressions were calculated based 
on the following assumptions: environmental suitabil-
ity affects tree growth, management, and productiv-
ity; tree growth affects productivity; and management 
affects tree growth and productivity (Fig.  4). In addi-
tion, we found that fluctuations in total value were cor-
related with adjustments to the harvest intensity and 
protection implemented by managers from our field-
work. Hence, we assumed that the residual errors of 
harvest intensity and protection were correlated with 
the residual error of the total value. The final model was 
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standardized by maximum likelihood discrepancy, and 
unbiased covariances were used as the input matrix. 
Using the coefficients, we derived mathematical equa-
tions to categorize the productivity of our samples into 
four classes based on the calculated values.

Results
Environmental suitability model
The average omission rate over the replicate runs was 
close to the predicted omission rate per the defini-
tion of the cumulative threshold. The area under the 
receiver operating characteristic curve (AUC) value 
was 0.938, and the standard deviation was 0.007. The 
AUC was significantly high for all data partitions, sug-
gesting excellent reliability and fitness of the model 
[33]. Table 1 shows value ranges, estimates of the rela-
tive contributions of the environmental parameters 
to the Maxent model (all p-values less than 0.01) and 
parameters’ permutation importance. The seven most-
contributed variables were used to build the productiv-
ity model and plotted with the logistic output (Fig. 2). 
These variables are (contribution in parentheses): 
annual precipitation (29.73%), min temperature of the 
coldest month (18.25%), precipitation of the driest 
quarter (14.45%), Isothermality (14.11%), precipitation 
seasonality (6.77%), temperature seasonality (4.45%), 
and solar radiation (3.28%). Their curves suggested 
extreme points that maximize the logistic output, 
which indicates the effect on environmental suitabil-
ity. The value 0.5 is a threshold to extract suitable value 
ranges of parameters, representing suitable environ-
mental conditions of ancient Pu’er tea trees.

Tree growth and management models
The bivariate relationships between the total value and 
tree growth and management-related variables are shown 
in Fig. 3. We did not observe any clear patterns in these 
bivariate models but some slightly positive correlations. 
The results suggest that each bivariate model lack explan-
atory power with a small R squared. Therefore, integra-
tive pathways are required to explain the relationship 
between the total value and related variables.

Productivity model
The initial productivity model is shown in Fig. 4. We opti-
mized the model based on variable analysis and their per-
cent contributions to improve model fit. We kept annual 
precipitation and min temperature of coldest month for 
the environmental suitability model because they had the 
highest percent contributions. We left ground diameter 
and crown width for the tree growth model because they 
had substantial weights in the initial model. We standard-
ized the units of the parameters by setting residual errors 
and the magnitudes of some variables to one to make 
the estimates comparable. The performance of the final 
model (Fig. 5) was acceptable with the following param-
eters: chi-square (χ2), 34.088; degrees of freedom, eight; 
goodness of fit index (GFI), 0.993; adjusted GFI, 0.974; 
comparative fit index (CFI), 0.989; and Akaike Informa-
tion Criterion (AIC), 74.091.

The results suggest that environmental suitability, 
tree growth, and management positively contribute to 
the productivity of ancient tea trees. Because the units 
were standardized, we used the coefficients (standard-
ized regression weights) to indicate the importance of 
the parameters: path values indicate variables’ influence 

Fig. 2  Correlations between each of the top seven variables and the logistic output. These variables are: Bio 12: annual precipitation; Bio 6: 
min temperature of the coldest month; Bio 17: precipitation of the driest quarter; Bio 3: Isothermality; Bio 15: precipitation seasonality; Bio 4: 
temperature seasonality; and Srad: solar radiation. Values on the Y-axis indicate the logistic output
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on their arrow-pointed models. For example, envi-
ronmental suitability had a positive but weak effect 
(coefficient of 0.068) on tree growth, and the effect of 
environmental suitability was weaker than the effect of 
management (coefficient of 0.325) on tree growth.

The values of the coefficients suggested that the effect 
of tree growth on productivity was more than three times 
the magnitude of the effect of environmental suitabil-
ity on productivity. The effect of management was very 
weak. Likewise, the contribution of ground diameter 

Fig. 3  Bivariate relationships of total value (RMB) with six tree growth indicators and box diagrams of quantified evaluating indicators
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to tree growth was greater than that of crown width, 
and the effect of harvest intensity on management was 
greater than the magnitude of the effect of protection 
on management. The coefficient between total value and 
productivity was only 0.241, suggesting that there might 
be other observable parameters (such as residual errors 
in the model not shown in the Fig. 5) that are better indi-
cators of productivity.

We quantified productivity based on the structural 
equation model (Fig.  6). The equation was formulated 
using a linear function by normalizing the coefficients 
0.32 (from the environmental suitability model), 0.982 
(from the tree growth model), and 0.075 (from the 
management model) to 0.24, 0.71, and 0.05 (sum is 1), 
respectively. Likewise, the coefficients of the submod-
els were determined by the coefficients of the observed 
variables and standardized by dividing by the maximum 
values. Specifically, the coefficients 0.54 and 0.46 were 

determined by the regression weights of 0.826 and 0.693 
in the tree growth model, respectively. The denominators 
71.5 and 11.5 were the maximum values of the ground 
diameter and crown width, respectively. The purpose of 
the division was to standardize their units and make their 
magnitudes comparable. The coefficients 0.57 and 0.43 
were determined by the regression weights of 0.866 and 
0.651, respectively. We used quadratic functions to for-
mulate the environmental suitability model (y1) because 
they are the most straightforward pathways for repre-
senting the relationships with extrema. The extreme 
values of parameters (representing the most suitable con-
ditions) and percent contribution (shown in parentheses) 
to the distribution of ancient Pu’er tea trees are annual 
precipitation, ca. 1245 mm (28.73%); min temperature of 
coldest month, ca. 4.2  °C (18.25%); precipitation of dri-
est quarter, ca. 47.5 mm (14.45%); isothermality, 49.9% to 
50.4% (14.11%); precipitation seasonality, ca. 89.2 (6.77%); 

Fig. 4  Initial structural equation model with variables and residual errors (ei). The variables of the tree growth and management models are our 
measurements from field investigations. The variables of the environmental model are the seven most contributed ones (Table 1). The variable 
number (seven) is the same as the variable number of the tree growth model to reduce internal variation. As for the productivity, we used the 
total value (RMB) of raw tea harvested as an indicator. Correlations connected to residual errors were omitted to aid model visualization. Arrows 
indicating rectangles from ellipses represent observed variables indicating latent variables. Arrows between ellipses represent correlations
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temperature seasonality, ca. 391 (4.46%); and solar radia-
tion, 12,250 to 13,250  kJ  m−2  day−1 (3.28%). The quad-
ratic functions were fit based on these values and Fig. 2. 
Likewise, their domain definitions were extracted from 
the function images in Fig.  2; when the logistic output 
was 0, the environment was not suitable for ancient tea 
trees, and the factor’s contribution was 0.

After formulating the model for productivity, we 
applied the formulas to our samples and set criteria to 
classify productivity based on the calculations of the 
equations (Fig.  6), and example photographs of the cri-
teria taken in the field were selected for visual assistance. 
The criteria were as follows: > 0.8, “highly productive”; 
0.5–0.8, “productive”; 0.3–0.5, “poorly productive”; and 

Fig. 5  Final structural equation model with key variables and coefficients. Latent variables are drawn in ellipses, and observed variables are drawn 
in rectangles. Standardized regression weights are shown as solid arrows, and observed variables indicating latent variables are shown as dotted 
arrows. The coefficient (− 0.619) from environmental suitability to management was not of interest and thus omitted. The red box indicates 
the relationships among key models. The line thickness indicates the magnitude of the coefficient values. Coefficients next to arrows indicate 
standardized regression weights

Fig. 6  Equations for quantifying productivity (y). Submodel (y1, y2, and y3) weights were determined by coefficients (Fig. 5). The environmental 
suitability model (y1) was formed by quadratic functions based on Fig. 2, and linear models were used for the productivity (y), tree growth (y2), and 
management (y3) models
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< 0.3, “unproductive” (Fig. 7). The calculations suggested 
that 7 samples were highly productive, 594 samples were 
productive, 667 samples were poorly productive, and 14 
samples were unproductive. Overall, 53% of the samples 
were categorized as “poorly productive” or “unproduc-
tive”; thus, these regions’ management requires attention 
for conservation and productivity improvement.

Discussion
A comprehensive dataset was obtained in our study. For 
the environmental suitability model, we comprised nine 
factors in addition to the commonly used “bio1–bio19” 
[24] to better reflect environmental factors. The wind 
speed, solar radiation, and water vapor pressure data 
were averaged annually instead of quarterly or monthly 
because ancienttrees have long growth cycles [34]. How-
ever, we did not consider whether the extremes (e.g., 
wind in spring and solar radiation in autumn) limit the 
distribution of tea trees [35]. Future phytogeographical 
studies are needed to test this possibility. Although the 
sprouts and leaves are usually harvested in the spring 
and autumn, the branches and trunks are slow-growing 
[36]. Data from the WorldClim database are averaged 
and interpolated to rasterize the data on maps, which 
may not be accurate enough for modeling data from indi-
vidual trees. Our approach could be refined by establish-
ing monitoring points near these ancient tea trees and 
collecting data regularly, especially in light of the recent 
impacts of climate change on trees [2].

Among topographic indexes, we used slope and aspect 
but excluded altitude because we suspected that the 
effect of altitude on the total value of ancient tea trees 
would be indirect [37]; we expected that environmental 
factors such as temperature and precipitation would have 

direct effects on the total value of ancient tea trees. We 
used sine and cosine functions to constrain the aspects 
to the east–west and north–south dimensions (formu-
las shown in Table  1). Transformed aspect values show 
better performance in mathematical calculations and 
theoretically have greater explanatory power. For soils, 
we used texture because the data were percentages and 
were easy to calculate. Although this indicator can reflect 
the soil conditions for tea trees, we did not quantify other 
important factors, such as types, thickness, and nutri-
ents. These indicators could be used in future studies to 
better evaluate soil conditions.

The environmental suitability model is a point-based 
(i.e., individual-based) model. More area-based research 
is needed to analyze specialized niches, as vegetation 
structure and landscape components are important in 
area studies [38]. In future niche analyses, we suggest 
classifying ancient tea trees into areas consisting of dif-
ferent tea gardens or land types. As Maxent is a coordi-
nate-based method and has been widely used in previous 
distribution studies because of its simplicity [39], there 
were studies used random forest or deep learning mod-
els to evaluate the contributions of environmental fac-
tors [40, 41]. The accuracy and efficiency of the machine 
learning-based merits comparison in terms of variables’ 
contribution [42].

The evaluating indicators used in our dataset comprise 
growth vigor, harvest intensity, and protection. These 
variables were evaluated in the fieldwork and scored 
based on our experience. This approach [43] can achieve 
its intended purpose, but the accuracy and theoretical 
significance of the characteristics obtained remain ques-
tionable. Poor performance of these indicators might be 
why the management model had a minimal coefficient on 

Fig. 7  The classification index with representative trees shown. The classification criteria were calculation-based, and experts’ opinions were 
referred to for assistance
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productivity. Evaluation of factors such as wildness [44], 
human activities, and the vegetation community [45] 
may also provide useful management insights. Although 
the total value is a straightforward measure for evaluat-
ing productivity, other significant indicators could be 
used in future studies, such as biomass above ground, 
net primary production, and the dry weight of harvested 
leaves [46].

The initial structural equation model is comprehen-
sive but shows low fitness and performance because of 
the high number of variables. The initial model was built 
using the maximum likelihood technique, and the output 
parameters were as follows: chi-square (χ2), 5987.978; 
degrees of freedom, 114; all fitness indexes less than 0.7; 
and AIC, 6065.978. These fitness parameters suggested 
that the model was unacceptable [32]. Thus, we retained 
the top two most important variables for the environ-
mental suitability model. For the tree growth model, we 
omitted the other five parameters for the following rea-
sons aside from their lower regression weights [23]: (1) 
tree age: numbers are reported by locals and are often 
rough estimates (more robust ways to measure it are 
required in the future, such as isotope tracing methods 
[47] and dendrochronology methods [48]); (2) DBH: 
most trunks bifurcate below breast height; (3) tree height: 
some managers artificially limit heights to promote the 
growth of well-developed canopies [23]; (4) growth vigor: 
it is quantified in only three classes and thus cannot 
clearly separate individuals; and (5) height under branch: 
it determines intervals for intercropping and thus does 
not strongly reflect tree growth conditions [49].

In quantifying productivity, we noticed that the curves 
(Fig.  2) between environmental suitability variables and 
logistic output have extreme points. This is reasonable 
given that every plant species has preferences for specific 
climate factors such as temperature and precipitation 
[50]. We used quadratic functions with different domain 
definitions to fit the relationships, given that we sought 
to minimize the model’s redundancy. For this same rea-
son, we used linear functions to formulate the produc-
tivity, tree growth, and management models. Simplified 
functions are efficient for evaluating data from many 
individuals. Regarding the criteria-based indexes, we cat-
egorized ancient tea trees into four levels based on out-
puts from the formulas (Fig. 6), our field evaluations, and 
local reports [23].

Bivariate relationships in the tree growth model (Fig. 3) 
were lacking in explanatory power for various possible 
reasons. First, the correlations between tree parameters 
and productivity are indirect. Because we used the total 
value to indicate productivity, the direct parameters 
and harvested tea parts (such as sprouts and leaves) are 
related. Although parameters such as crown width can 

reflect tree growth conditions and theoretically repre-
sent the production of trees, their linear relationships 
with total values might be weak. Another reason might 
be that we included many ancient tea trees varying in age 
in the study area. The tea of some trees over 500 years old 
may have remarkable prices but low output. Their size-
related growth parameters are usually high compared 
with younger plants. However, young trees having lower 
growth parameters may have high output and low prices. 
In this case, their total values are close, but growth dif-
fers greatly. The large data size and skewed data distribu-
tion may also result in non-significant model fit for some 
parameters. We did not apply any transformations in 
terms of specific bivariate relationships because the origi-
nal data are more logistic in explaining correlations in 
the final model, and we wanted to ensure that the entire 
dataset satisfied a multivariate normal distribution.

The significance of our model is that productivity can 
be determined based on measures from environments, 
trees, and management evaluations without harvesting 
the leaves of ancient tea trees. Managers can gain insight 
and make decisions by classifying trees into categories 
before harvesting. For example, the term “poorly produc-
tive” is more easily interpreted than the term “low net 
primary production” or “small biomass.” “Highly produc-
tive” and “productive” trees can be harvested twice a year. 
“Poorly productive” trees can be harvested once a year. 
“Unproductive” trees should not be harvested to promote 
their healthy growth. However, we only used data from 
one county to build the formula and index. An analysis 
includes other regions with ancient tea trees distributed 
will greatly improve the robustness of the evaluation 
index. Our productivity model of ancient tea trees could 
also potentially be applied to other economically impor-
tant tree plants, such as lacquer, fruit, and coffee trees.

The structural equation modeling approach for study-
ing productivity is effective for exploring the significance 
of unobserved variables [51]. Quantitative modeling can 
facilitate the interpretation of abstract concepts. The 
indexes can aid interpretation of the practical signifi-
cance of model outputs, which can then be used to mod-
ify management approaches accordingly. This approach 
can also be used to clarify other abstract concepts. For 
example, the heights and growth forms of trees have been 
quantified and then evaluated in indexed classes such as 
the Australian National Vegetation Information System 
[43].

Ancient tea trees are different from other ancient tree 
resources because of their high economic value and sus-
tainable management models. Unlike other economi-
cally important tree species with unsustainable timber 
products, for example, precious wood [52], tea products 
are produced periodically. Hence, their conservation 
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and sustainable production require special attention. A 
quantitative modeling approach for evaluating produc-
tivity represents a first step in the study of ancient tea 
trees. Several outstanding research questions remain. 
For example, in addition to their economic and ecologi-
cal significance, what are some of the political, societal, 
and cultural implications of ancient tea trees? How gen-
eralizable is the productivity model beyond ancient Pu’er 
tea trees? Are there differences between wild and culti-
vated ancient tea trees in terms of their productivity? Can 
Pu’er tea species be cultivated in other regions? Might 
it be possible to develop technology that allows normal 
tea products to possess the same tastes and scents of tea 
derived from ancient Pu’er tea trees? Can the production 
of ancient teas be increased sustainably? Such questions 
will require additional research.

In subsequent research, we plan to model the niches 
and distributions of ancient Pu’er tea species under 
future scenarios of climate change and globalization. We 
also plan to explore potentially suitable areas for Pu’er tea 
tree plantations in regions with tea cultures and planta-
tion interests. Practical management actions need to be 
implemented in different regions and should be based on 
current management methodologies.

Conclusion
In this study, we used a structural equation modeling 
approach to quantify the productivity of tea produc-
tion from ancient Pu’er tea trees and employed various 
indexes to permit qualitative evaluation. Overall, the 
model exhibited acceptable performance and permitted 
the identification of significant variables to include in 
the submodels. The final model suggested that environ-
mental suitability, tree growth, and management posi-
tively affected productivity; regression weights were 0.32, 
0.982, and 0.075, respectively. The index suggested 53% 
of the samples require management attention. In addi-
tion, our environmental suitability submodel revealed the 
optimal environmental conditions for ancient Pu’er tea 
trees. Modeling productivity is the first step to achieving 
the sustainable management and growing of Pu’er tea in 
potential interested regions. Future studies are needed 
to analyze specialized niches and distribution patterns 
under future climate change and the plausibility of estab-
lishing plantations in other areas.

The quantitative model and qualitative index provide a 
more robust approach for quantifying productivity com-
pared with traditional correlation-based approaches. 
They also contribute to the local managers’ interpretation 
and prediction of the trees’ production before harvest-
ing. In addition, the methodology might be applicable 
beyond ancient Pu’er tea trees (e.g., other economically 
valuable trees and plant resources requiring conservation 

attention) and could provide insights that facilitate the 
interpretation of abstract concepts, but its generality 
requires further examination.
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