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METHODOLOGY

A comparison of ImageJ and machine 
learning based image analysis methods 
to measure cassava bacterial blight disease 
severity
Kiona Elliott1,2, Jeffrey C. Berry1, Hobin Kim3 and Rebecca S. Bart1*    

Abstract 

Background:  Methods to accurately quantify disease severity are fundamental to plant pathogen interaction stud-
ies. Commonly used methods include visual scoring of disease symptoms, tracking pathogen growth in planta over 
time, and various assays that detect plant defense responses. Several image-based methods for phenotyping of plant 
disease symptoms have also been developed. Each of these methods has different advantages and limitations which 
should be carefully considered when choosing an approach and interpreting the results.

Results:  In this paper, we developed two image analysis methods and tested their ability to quantify different 
aspects of disease lesions in the cassava-Xanthomonas pathosystem. The first method uses ImageJ, an open-source 
platform widely used in the biological sciences. The second method is a few-shot support vector machine learning 
tool that uses a classifier file trained with five representative infected leaf images for lesion recognition. Cassava leaves 
were syringe infiltrated with wildtype Xanthomonas, a Xanthomonas mutant with decreased virulence, and mock 
treatments. Digital images of infected leaves were captured overtime using a Raspberry Pi camera. The image analysis 
methods were analyzed and compared for the ability to segment the lesion from the background and accurately 
capture and measure differences between the treatment types.

Conclusions:  Both image analysis methods presented in this paper allow for accurate segmentation of disease 
lesions from the non-infected plant. Specifically, at 4-, 6-, and 9-days post inoculation (DPI), both methods provided 
quantitative differences in disease symptoms between different treatment types. Thus, either method could be 
applied to extract information about disease severity. Strengths and weaknesses of each approach are discussed.
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Background
Annually 20–40% of crops are lost due to plant pests 
and disease (FAO  [1]). Causal agents of plant disease 
such as bacteria, viruses, oomycetes, and fungi employ 
various strategies to promote pathogenesis and elicit 

disease susceptibility in host plants. Disease susceptibil-
ity is commonly measured by the amount of in planta 
pathogen growth, reduction in crop yield/biomass, or 
by scaled scoring systems that use visible disease symp-
toms to measure severity (Strange [2], Liu [3], Guant [4], 
Moore [5]). Each of these methods have advantages and 
limitations and no single method can capture the full 
complexity of plant disease. For instance, it is common 
to introduce a small number of bacteria into a plant leaf 
and then quantify pathogen growth overtime (Agrios 
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5th edition [6]). This method highly quantitative and can 
reveal subtle differences in virulence between related 
pathogen strains or mutants (Bart  [7], Cohn and Bart 
[8], Diaz [9]). However, this assay probes only one part 
of the disease cycle and provides limited insight into 
pathogen spread, plant symptoms or defense responses. 
Another common method is to visually score disease 
symptoms on a numerical scale (Jorge and Verdier [10]). 
This method can be used in lab to field level experiments, 
is cost effective, and does not require special techniques 
or tools. However, accurate identification of pathogen 
incited symptoms can be difficult, especially in the case 
of multiple biotic and/or abiotic stresses. Further, disease 
scores may vary among different scorers and often are 
not sensitive enough to capture subtle changes in disease 
severity (Poland and Nelson [11], Strange and Scott [12]).

In recent years, there has been an increase in the use 
of image-based methods to analyze and measure plant 
health (Gehan [13], Laflamme [14], Lobet [15]). Images 
can be captured through many different platforms 
including cell phones, imaging chambers, high-through-
put phenotyping facilities, drones, and satellites (Li [16], 
Zhang and Zhang [17]) and many analysis platforms have 
also been developed, for example, ImageJ (Ferreira and 
Rasband [18]). Image-based phenotyping tools have been 
successfully developed to study a broad range of plant 
diseases including citrus canker (Bock [19]), grapevine 
powdery mildew (Bierman [20]), and cereal rust disease 
(Gallego-Sanchez [21]). At least in some cases, image-
based phenotyping can overcome some of the limitations 
associated with the more traditional methods described 
above (Mutka and Bart [22]). For example, a study inves-
tigating Zymoseptoria trictici infected wheat leaves found 
that an ImageJ analysis method provided more reliable 
and reproducible measures of wheat blotch disease com-
pared to a traditional visual scoring system (Stewart [23], 
Stewart [24]). However, manual image analysis based on 
user selection of disease lesions can also be time consum-
ing. Some image analysis methods have incorporated 
machine learning techniques for improved trait identifi-
cation, classification, and faster analysis of plant disease 
symptoms (Singh [25], Tsaftaris [26]). While machine 
learning has enhanced the ability to process imaging 
data, accurate trait classification or quantification often 
relies on large datasets that can be expensive to acquire. 
Therefore, more cost effective, few-shot image analysis 
tools that allow for efficient segmentation and quantifica-
tion of disease symptoms are needed.

In this study, we apply image-based phenotyping to 
cassava (Manihot esculenta Crantz), a starchy storage 
root crop (Morgan [27]). Cassava is a hardy crop pre-
dominantly grown by smallholder farmers in South 
America, East Asia, and Sub-Saharan Africa (Bart and 

Taylor [28], Hillock [29], El-Sharkawy [30]). Cassava pro-
duction is threatened by the disease cassava bacterial 
blight (CBB). CBB can result in complete crop loss and 
is present in all cassava growing regions (Howler [31], 
Fanuo [32], Zárate-Chaves [33]). The causal agent of CBB 
is Xanthomonas axonopodis pv. manihotis also referred 
to as Xanthomonas phaseoli pv. manihotis (Xam or 
Xpm) (Constantin [34]). Xam infects cassava by entering 
through open stomata or wounds in the leaf, colonizes 
the surface of mesophyll cells, and spreads systemically 
in the plant. The first visible indicators of CBB disease 
are dark “water-soaked” lesions that appear on the leaf. 
Water-soaked lesions or spots are a common, early dis-
ease symptom of various bacterial diseases. (Aung [35]). 
Other CBB disease symptoms include leaf wilt, defolia-
tion, stem browning, and eventual plant death. Like other 
plant pathogens, Xam has a repertoire of effectors that 
can alter the structure or function of a host cell, create 
a more ideal environment for pathogen colonization, and 
overcome plant defense mechanisms (Boch [36], Hogen-
hout [37]). In the Xanthomonas and Ralstonia bacterial 
genera, this repertoire includes specialized transcription 
activator-like (TAL) effectors (Bodnar [38], Van Schie 
and Takken [39], Koseoglou [40]). TAL effectors are 
secreted into the plant cell and induce expression of plant 
susceptibility (S) genes that enhance disease. In many 
pathosystems, TAL effectors target SWEET (Sugars Will 
Eventually be Exported Transporters) genes and prevent-
ing this interaction reduces disease symptoms (Li [41], 
Phillips [42], Cox [43]).The Xam strain used in this study, 
Xam668, carries the effector, TAL20, which induces 
ectopic expression of MeSWEET10a (Cohn and Bart [8]). 
Xam668 mutants with loss of TAL20 (Xam668ΔTAL20) 
exhibit visibly reduced water-soaked lesions com-
pared to wild-type Xam. Here, we develop and compare 
ImageJ and machine learning based image analysis tools 
that allow for segmentation and quantification of CBB 
induced water-soaked lesions.

Results
Xam induction of water‑soaked lesions in cassava
In cassava, water-soaked lesions appear as dark angular 
spots at the site of infection and spread as the bacteria 
proliferate (Fig. 1A). To capture the progression of water-
soaking in cassava, leaves were syringe-infiltrated with 
Xam668, Xam668ΔTAL20, or mock treatments. At 0-, 
4-, 6-, and 9-days post inoculation (DPI) infected leaves 
were detached from the plant and imaged. Images were 
taken with a Raspberry Pi camera in an enclosed box to 
increase uniformity of imaging. An X-Rite ColorChecker 
Passport was included in every image for post-acquisi-
tion gray balance color correction (Berry [44]). At 4DPI, 
water-soaked spots began to appear in both Xam668 
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(Xam WT) and Xam668ΔTAL20 (XamΔTAL20) infil-
tration sites (Fig.  1B). Water-soaked lesions spread and 
increased in visibility at 6 and 9 DPI. However, as pre-
viously reported [8] water-soaking appeared reduced in 
Xam668ΔTAL20 infection sites as compared to wildtype 
Xam668 sites. Additionally, Xam668ΔTAL20 infection 
sites appeared lighter in color compared to the darker 
lesions that develop at wildtype Xam668 sites. Water-
soaked lesions were not observed for any time point in 
mock infiltrated spots.

ImageJ based quantification of water‑soaked symptoms
ImageJ is regularly used for image analysis in biological 
studies (Ferreira and Rasband [18]). Here, we applied 
ImageJ based analysis to extract, quantify, and exam-
ine water-soaked lesion traits. Water-soaked lesions 
induced by Xam668 and Xam668ΔTAL20 were seg-
mented using a manual overlay segmentation strategy 
(Fig. 2A). For segmentation, color corrected images were 
uploaded and duplicated in ImageJ and the Xam668 and 
Xam668ΔTAL20 lesions were outlined using the pencil 
tool. Outlined images were converted from RGB to the 
LAB color space and the “A Channel” was obtained for 
better separation of the outlined lesions from the leaf 
background. The A channel images were thresholded 
and converted to a binary mask. The binary masks and 
analyze particle tool in ImageJ were used to define the 
Xam668 and Xam668ΔTAL20 infected sites and an over-
lay was created for each image. The overlays were applied 
to the RGB image and measurements for 27 traits were 
calculated. Mock sites were measured using the rectan-
gle selection tool in the RGB image to capture informa-
tion about “non-water-soaked” leaf background. ImageJ 

processing took approximately 6 min and 30 s per image. 
A movie example of the ImageJ based analysis method 
was generated as a tutorial (Additional file 1).

Ten traits were selected and further analyzed using an 
ANOVA analysis to determine the variance explained 
(VE) by three terms of interest: (1) inoculation type, (2) 
DPI and (3) the interaction between inoculation type and 
DPI (Fig. 2B). Inoculation type and DPI were selected as 
defining factors because we expected that water-soak-
ing severity is dependent on these terms. Area had the 
highest amount of VE, with over 60% VE. We selected 
gray-scale mean as another trait of interest because of 
the color difference we observed between Xam668 and 
Xam668ΔTAL20 water-soaked lesions. Gray-scale mean, 
accounted for over 50% VE. Water-soaked area (Fig. 2C) 
and gray-scale mean (Fig.  2D) were further analyzed as 
measures of CBB disease severity. The Xam668 sites 
had significantly more water-soaked area compared to 
Xam668ΔTAL20 at each timepoint. We found there was 
noise in the gray-scale mean data due to lack of stand-
ardization across individual images despite gray balance 
color correction. To account for this, a linear model was 
applied to determine the grand mean of all gray values 
in each image and the Xam668 and Xam668ΔTAL20 
gray values were centered to mock. In each time-
point, Xam668 treatment resulted in lesions that had 
a significantly larger gray-scale mean compared to 
Xam668ΔTAL20 treatment. A greater difference in gray-
scale mean was observed between Xam668 and mock 
treated spots compared to Xam668ΔTAL20 and mock 
spots. These results indicate that ImageJ based segmenta-
tion allowed for separation of treatment types and for the 
quantitative analysis of water-soaked lesions over time.
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Fig. 1  Xanthomonas causes complex water-soaking symptoms in cassava. A Image of cassava leaf in the field exhibiting water-soaking symptoms 
characteristic of cassava bacterial blight. Yellow arrows indicate different water-soaked lesions. B Water-soaked symptoms of cassava infiltrated with 
Xam668 (Xam WT) and a Xam668 deletion mutant lacking the TAL20 effector (XamΔTAL20) at 0, 4, 6, and 9DPI. Mock inoculations of 10 mM MgCl2 at 
each timepoint were included as controls. Scale bar = 0.5 cm
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Fig. 2  Manual ImageJ analysis of CBB water-soaking symptoms. A Images of cassava leaves infiltrated with Xam WT, XamΔTAL20, and mock 
treatments were segmented and analyzed using an ImageJ overlay segmentation method. Overlay segmentation analysis depicted by step using 
a CBB infected cassava leaf image. Images were taken at 0, 4, 6 and 9 DPI. Leaf lobes were labeled by treatment type: X = Xam WT, T = XamΔTAL20, 
and M = Mock. White lines point to selected regions of a representative water-soaked lesion at each step of the ImageJ overlay segmentation 
process. B The variance explained by inoculation type (Xam WT or XamΔTAL20) DPI (4-, 6- and 9-), or the interaction between inoculation type 
and DPI for ten ImageJ generated measurements. Variances were determined by ANOVA analysis. C Total water-soaked area (pixels, y-axis) for sites 
infiltrated with each treatment (x-axis). Calculated p-values (Kolmogorov–Smirnov test) shown above the line in each plot. D Negative gray-scale 
mean (y-axis) of water-soaked lesions for Xam WT and XamΔTAL20 relative to mock inoculated spots (x-axis) within the same leaf. Calculated 
p-values (Kolmogorov–Smirnov test) shown above the line in each plot. In ImageJ, the gray-scale mean was measured by averaging the mean of 
each gray-scale value in the RGB channels
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Machine learning based quantification of water‑soaked 
symptoms
While ImageJ provided sufficient segmentation of water-
soaked lesions, developing an overlay mask for every 
individual image is time intensive. Therefore, we sought 
to develop a machine learning tool that would provide 
faster segmentation and quantification of diseased leaves. 
A custom workflow for machine learning disease lesion 
analysis was developed using the source file from Phe-
notyperCV, a C +  + 11 library designed for image-based 
phenotyping (Berry [44]). The machine learning work-
flow was run using the Mac terminal. Command syntax 
specific for each step of the machine learning tool was 
developed (Additional file 2). Five representative images 
of CBB infected leaves from different DPI were selected 
and combined into one graphic as a training image for 
the machine learning tool (Fig. 3A). A binary mask was 
generated from the combined leaf graphic using ImageJ. 
The mask was used to generate a support vector machine 
(SVM) learning classifier (YAML) file. The classifier 
file was used to process the images and eliminated the 
need to manually outline each lesion or make individual 
masks (Fig.  3B). During processing, images were color 
corrected and manually thresholded using a scale bar 
built into the program to reduce background noise and 
enhance segmentation of lesion pixels. Next, infiltrated 
spots were manually labelled and color-coded by treat-
ment type. Output images were generated and included 
color corrected, pseudo-color map, and feature predic-
tion images for every image analyzed (Fig. 3C). Machine 
learning processing took approximately 2  min and 30  s 
per image. Processing speed increased when all images 
were analyzed using an iteration (for loop) command in 
terminal allowing the machine learning tool to be exe-
cuted on several images in succession. A movie exam-
ple of the machine learning based analysis method was 
generated as a tutorial (Additional file  3). Additionally, 
two space separated text (TXT) files were produced with 
shape and color related measurements of each lesion. A 
list of the reported measurements is included (Additional 
file 4). Shape data generated by the machine learning tool 
includes area, hull area, height, width, etc. The color data 
generated by machine learning is a lightness histogram of 
0–255 for each lesion which was used to calculate lesion 
gray-scale mean.

Twelve machine learning derived traits were selected 
and the ANOVA analysis was used to measure VE by 
each trait (Fig. 4A). Area measured by the machine learn-
ing tool had over 75% VE by the defining factors. As was 
determined during ImageJ analysis, area also accounts for 
the highest amount of VE in the machine learning analy-
sis. The gray-scale mean had over 60% VE by the defining 
factors. Consistent with the ImageJ analysis, the machine 

learning approach revealed that Xam668 caused a larger 
water-soaked area (Fig. 4B) and relative gray-scale mean 
(Fig. 4C) compared to Xam668ΔTAL20 infiltrated spots. 
These data suggest that the machine learning tool ade-
quately distinguished between treatment types and pro-
vided quantitative measures of water-soaked lesions 
using the classifier file created from one training mask.

Comparison of the ImageJ and Machine learning based 
lesion analysis methods
The ImageJ and machine learning based methods both 
successfully distinguished Xam668 and Xam668ΔTAL20 
and yet the results were not equivalent. To further com-
pare and contrast these methods, representative Xam668 
and Xam668ΔTAL20 lesions from 4-, 6-, and 9-DPI were 
selected and visually inspected (Fig.  5A). We observed 
that machine learning was able to distinguish between 
water-soaked and “non-water-soaked” pixels within 
the lesion spot whereas in ImageJ, a boundary was put 
around the whole spot and could include a mix of both 
pixel types. This suggests that the machine learning 
tool is more selective in classification of water-soaked 
versus non-water-soaked pixels and would explain the 
trend of overall smaller area measurements generated 
by machine learning compared to ImageJ. In ImageJ, the 
lesion boundary is user-selected. However, to completely 
separate water-soaked from non-water-soaked pixels in 
lesions where there is a mix, smaller independent bound-
aries would be required. Having multiple boundaries for 
one lesion is not ideal as it would impact measures such 
as gray-scale mean and increase image processing time. 
The two image analysis methods were statistically com-
pared by pairing the mock, Xam668 and Xam668ΔTAL20 
area data and performing F-statistic variance tests on 
each respective treatment type (Fig.  5B). At each time-
point, there was no significant difference in the variance 
observed between ImageJ and machine learning data 
suggesting the two methods have equal variation within 
each treatment type.

Discussion
To quantify CBB, we developed and compared ImageJ 
and machine learning image analysis methods for accu-
rate segmentation and quantification of water-soaked 
lesion symptoms. We found that an ImageJ overlay 
segmentation method allowed for adequate separa-
tion between cassava infected with mock, Xam668 and 
Xam668ΔTAL20 treatments based area and gray-scale 
mean values of disease lesions. However, the ImageJ 
analysis was time-consuming because an individual mask 
had to be made for every image analyzed. Other ImageJ 
analysis methods tested with this data set such as non-
segmentation and color-threshold based segmentation 
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of water-soaked lesions failed to accurately capture the 
water-soaking phenotype.

Machine learning has previously been applied to 
detect and measure several cassava diseases including 

bacterial blight, brown streak and mosaic disease 
(Sangbamrung [45], Ramcharan [46]). However, these 
tools rely on hundreds to thousands of images for clas-
sifier training. Any machine learning tool is heavily 
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ImageJ mask for classifier training

Select representative images 
B

Select chips for gray correction Threshold for spots Select regions of interest 

Color corrected image Prediction image Color map of classified pixels   

Machine learning image processing

Machine learning outputs
C

Fig. 3  Overview of the Support Vector Machine learning segmentation and analysis method. A Images of cassava leaves infiltrated with Xam 
WT, XamΔTAL20, and mock treatments were segmented and analyzed using a support vector machine learning tool. Images depict steps used 
to generate a classifier training mask for the machine learning tool. A mask was made by combining representative CBB infected images into one 
graphic and generating a binary mask in ImageJ. White lines showcase a representative water-soaked lesion within the combined leaf graphic and 
indicate changes at each step. The mask was used to generate a classifier (YAML) file with PhenotyperCV. B Images depict steps of machine learning 
processing using a CBB infected cassava leaf image. Images were uploaded into the machine learning tool and processed by gray balance color 
correction, thresholding, and the inoculated regions of interest were selected and labeled using a color code: Red = Xam WT, Green = XamΔTAL20 
and Blue = Mock. White lines showcase a representative water-soaked lesion within the image and indicate changes at each step. C Images exhibit 
outputs from the machine learning image processing and include the color corrected image (left), a pseudo-colored map of the pixels classified 
as water-soaked (middle), and a feature prediction image (right). White lines showcase a representative water-soaked lesion within the image and 
indicate differences in each output image. Text separated files with shapes and color data for each inoculation spot were also generated
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reliant on its classifier file for adequate segmentation 
and measure of an object of interest. If a classifier file 
does not adequately capture the range of traits for an 
object of interest, classification of that object will fail. 
To determine if a classifier file would work accurately 
for our data set, we tested its predictive capability by 
spot checking analysis accuracy in a subset of images 
and visually inspecting classification of pixels defined 
as water-soaked. We initially developed classifier files 
based on a single representative CBB infected leaf 
image and found it could not reliably predict features 
of interest for all images. However, by combining rep-
resentative images of cassava infected with three rep-
licates each of mock, Xam668, and Xam668ΔTAL20 
treatments across different timepoints into one training 

graphic, we developed a classifier that better predicted 
water-soaked lesions. The accuracy of the combined 
leaf graphic was tested by again spot-checking a sub-
set of color map images and inspecting classification of 
pixels defined as “water-soaked”. Similarly, our classi-
fier file was developed using one genotype of cassava, 
TME419. In future studies, if this approach were to be 
applied to datasets derived from multiple genotypes or 
a breeding program, the classifier file would need to 
be updated with representative images to capture any 
additional variability in leaf traits.

Another important consideration for classifier file 
development is the machine learning algorithm used. 
The machine learning workflow presented here func-
tions with either support vector machine (SVM) or Naïve 
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Fig. 4  Support Vector Machine learning analysis of CBB water-soaked symptoms. A The variance explained by inoculation type (Xam WT or 
XamΔTAL20), DPI (4-, 6- and 9-), or the interaction between inoculation type and DPI for twelve machine learning generated measurements. 
Variances were determined by an ANOVA. B Total water-soaked area (pixels, y-axis) for sites infiltrated with each treatment (x-axis). Calculated 
p-values (Kolmogorov–Smirnov test) shown above the line in each plot. C Negative gray-scale mean (y-axis) of water-soaked lesions for Xam WT 
and XamΔTAL20 relative to mock inoculated spots (x-axis) within the same leaf. Calculated p-values (Kolmogorov–Smirnov test) shown above the 
line in each plot. In the machine learning analysis, the gray-scale mean was generated using the average mean of the “L” channel from the LAB color 
space
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Bayes learning algorithms. During testing of classifier 
files, we found that SVM training files predicted water-
soaked lesion features in our system more accurately 
than Naïve Bayes. Similarly, a previous study tested three 
machine learning methods and reported that SVM had 
high performance in predicting and classifying cassava 
diseases (Ramcharan [47]).

Despite the limitations, we found that the few-shot 
machine learning based image analysis tool presented 
here offered a fast and accurate approach to segment 
water-soaked lesions. Processing for the machine learn-
ing tool took less than half the time of ImageJ based 
analysis for each image. The machine learning tool 
worked as well as the ImageJ overlay segmentation 
method for separating lesions by treatment type and 
extracting quantifiable data. Due to the time needed 
to validate a classifier file, we suggest that a machine 
learning approach for image-based lesion analysis is 
appropriate when there is a large number of images to 

be processed. If the data set is small, ImageJ could be 
a faster approach as the accuracy of the method does 
not rely on a classifier file. Moreover, manual thresh-
olding is still required for segmentation of the lesions 
in each image and may be slightly variable within the 
data set. Thresholding performed within either the 
machine learning or ImageJ methods requires user 
decision to determine the threshold cut-off. In the case 
of the machine learning tool, it is important to inspect 
the color maps generated for each image analyzed to 
ensure proper classification of water-soaked lesions. In 
some cases, we found it necessary to re-process images 
in the machine learning tool and adjust the threshold 
for more precise capture of a lesion.

While improvement is still needed in image-based phe-
notyping, there are several potential uses for the machine 
learning and ImageJ analyses presented in this study. 
Image based phenotyping has become increasingly pop-
ular for examining the link between disease symptoms 
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and genetics in plant science (Casto [48]). The tools 
presented here provide a new resource for experiments 
investigating CBB disease susceptibility. Additionally, 
the general framework of the machine learning workflow 
can be applied to other plant species and disease symp-
toms using classifier files representative of the disease of 
interest.

Conclusions
To quantify CBB, we developed and compared ImageJ 
and machine learning image analysis methods for accu-
rate segmentation and quantification of water-soaked 
lesion symptoms. Both the ImageJ and machine learn-
ing image analysis methods are described in detail, 
along with video tutorials and we hope these resources 
will help other researchers use these tools and/or design 
similar tools that can be applied to other pathosystems. 
We found that both methods accurately distinguished 
between and quantified different water-soaked lesion 
types in the cassava-Xanthomonas pathosystem. The 
ImageJ method is best used from smaller datasets as it 
relies on the user developing a mask for every image. The 
machine learning based tool is best used for larger data-
sets as it is more time efficient to develop a single classi-
fier file to process many images. Many machine learning 
tools rely on thousands of training images for accurate 
function. However, the machine learning tool presented 
here is few-shot learning based and functions as well as 
ImageJ for disease segmentation and measurement.

Methods
Plant materials and growing conditions
Cassava plants from the cultivar TME419 were kept in 
greenhouse conditions set to 28  °C; 50% humidity; 16 h 
light/8  h dark and 1000  W light fixtures that supple-
mented natural light levels below 400  W/m2. Cuttings 
were taken from the woody stem of mature plants and 
propagated to 4-inch pots of Berger45 soil. 4–5-week-old 
propagated plants that were well established were used 
for infection experiments. During infection experiments, 
plants were kept in a post-inoculation room set to 50% 
humidity, ambient room temperature, 12  h light/12  h 
dark and 32 W light fixtures.

Bacterial inoculations
Xanthomonas strains were struck from glycerol stocks 
onto NYG agar plates containing appropriate antibiotics. 
The strains used for this study were Xam668 (rifampicin 
50  µg/ml) and Xam668ΔTAL20 (suicide vector knock-
out (Cohn and Bart [8]) tetracycline 5 µg/ml, rifampicin 
50  µg/ml). Xanthomonas strains were grown in a 30  °C 
incubator for 2–3  days. Inoculum for each strain was 
made by transferring bacteria from plates into 10  mM 

MgCl2 using inoculation loops and brought up to a con-
centration of OD600 = 0.01. Leaves from 4–5-week-old 
cassava plants were inoculated using a 1.0 mL needleless 
syringe. For each replicate assay, two cassava plants were 
used for inoculations and four leaves were inoculated 
on each plant. One bacterial strain was inoculated per 
leaf lobe with three injection sites. Mock inoculations of 
10 mM MgCl2 alone were included resulting in nine infil-
trated sites per leaf. Four replicate rounds of inoculations 
were done in total.

Imaging
Cassava leaves were detached and imaged at 0-, 4-, 6-, 
and 9-days post inoculation (DPI). One leaf from each 
cassava plant was collected and imaged for a total of 
two leaves per timepoint. In all, thirty-two leaves were 
imaged and analyzed across four replicate rounds of 
inoculations. Leaves were imaged from above using a 
Raspberry Pi Sony IMX219 camera in an enclosed box 
with an overhead light. To account for setting inconsist-
encies between images, images were color-corrected by 
gray balancing using a X-Rite ColorChecker Passport 
color card. Images were uploaded to the machine learn-
ing workflow and six gray color chips (black-white) were 
manually selected using a selection tool built into the 
program. Saturation of each chip was estimated and the 
brightness of each image was adjusted accordingly. The 
gray corrected images were then used for water-soaking 
analysis. Analytical standardization of the gray values 
post-image-processing by ImageJ and machine learn-
ing was performed separately by estimating the grand 
mean of all gray values within each image and centering 
those values to the grand mean across all images. This is 
achieved by creating a linear model with a single fixed 
effect term accounting for each image and extracting 
model residuals.

ImageJ image analysis
Gray corrected images were uploaded to ImageJ ver-
sion FIJI (Schindelin [49]) and duplicated. Water-soaked 
lesions were manually outlined on the duplicate image 
using the pencil tool (color: #ff00b6 and size 2). The out-
lined images were converted from RGB to LAB and split 
to obtain the A color channel. The A channel images were 
thresholded, converted to a mask and the mask for each 
spot was added to the ROI manager using the analyze 
particle tool. The ROI masks were applied to the origi-
nal RGB gray corrected images. Mock infiltrated spots 
(no water-soaking, plant background data) were added 
to the ROI manager using an arbitrarily sized rectangle 
selection tool consistently set to a W = 26 and H = 30. 
Area, gray-scale mean, and eight other measurement 
data were obtained for each infiltrated spot using the FIJI 
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measure tool. The measurements were saved as a comma 
separated value (CSV) file. The variance explained by 
ten image J derived traits were calculated and plotted in 
the software program R using a custom partial correla-
tions script. Area and gray-scale mean data for all lesions 
were compared across different treatment types and 
timepoints using a Kolmogorov–Smirnov (KS) statistical 
test in R. All plots were generated in R with a dpi = 300, 
width = 8.66, and height = 6.86.

Machine learning image analysis
Five images of Xanthomonas inoculated cassava leaves 
from different timepoints were selected as representa-
tives to make a classifier file for the machine learning 
image analysis tool. The images were combined into 
one graphic, uploaded to ImageJ, and water-soaked 
spots were outlined and filled in using the pencil tool 
(color: #ff00b6). The outlined combined leaf image 
was converted to a binary mask and referred to as the 
“labeled image”. The machine learning image analysis 
tool is part of PhenotyperCV, a C +  + 11 header-only 
library designed for image-based plant phenotyping. 
The machine learning workflow and software download 
instructions are available on GitHub.

(https://​github.​com/​jberr​y47/​ddpsc_​pheno​typer​cv/​
wiki/​Machi​ne-​Learn​ing-​Workf​low).

All steps of the machine learning workflow were run 
on the Mac terminal command line. The labeled leaf 
mask image and original combined leaf graphic were 
used to create a support vector machine learning classi-
fier or YAML file. Individual images of inoculated cas-
sava leaves were processed in the machine learning tool 
by uploading the images and gray correcting. The images 
were thresholded using a scale bar built into the program 
to set a cut-off for pixels that can be classified as water-
soaked. The inoculated sites were manually selected with 
a color-coded region of interest (ROI) selector (mouse 
right click-red, left click-green, and middle click-blue). 
The ROI selector tool size ranges from 0 to 20. The ROI 
size was consistently set to 11 for this study. The ROI 
selector does not restrict the size of the object identified 
as a water-soaked lesion. If a part of the object defined as 
a lesion is included in the ROI selection, then the entire 
object will be labelled and color-coded. For this study, 
we designated red as Xam668, green as Xam668ΔTAL20, 
and blue as mock inoculation spots. If color-code separa-
tion is not required for other studies using the machine 
learning tool, one click/color type can be used for all 
lesion selections. Outputs from the workflow include a 
color corrected image (also used in the ImageJ analysis), 
a prediction image of what could be captured as pixels 
of interest, and a pseudo-colored map image showing 

what was captured as pixels of interest. Additionally, two 
space separated text files were generated with measure-
ment data about the shape and color of each lesion. The 
shape file includes nineteen trait measures such as area, 
height, circularity, etc. The color file includes is a light-
ness histogram of 0–255 for each lesion. The text files 
were uploaded into R and processed using a custom 
script designed to read and format the data and create a 
comma separated value (CSV) file. For the color file, the 
histogram data were used to calculate lesion gray-scale 
mean. The variance explained by twelve machine learn-
ing derived traits were calculated and plotted in R using 
a custom partial correlations script. Area and gray-scale 
mean data for all lesions were compared across differ-
ent treatment types using a Kolmogorov–Smirnov (KS) 
statistical test in R. All plots were generated in R with a 
dpi = 300, width = 8.66, and height = 6.86.
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