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Abstract 

Background:  Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Conse-
quently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies 
do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as 
not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous 
observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and 
thermal data, making it possible for data fusion.

Methods:  To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI 
estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to 
extract the wheat canopy’s spectral, structural, and thermal features. After removing the soil background, all features 
were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.

Results:  The results show that: (1) the soil background reduced the accuracy of the LAI prediction of wheat, and soil 
background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the 
soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 
0.476. (2) The fusion of multi-sensor synchronous observation data could achieve better accuracy (R2 = 0.815 and 
RMSE = 1.023), compared with using only one data; (3) A simple LAI prediction method could be found, that is, after 
selecting a few features by machine learning, high prediction accuracy can be obtained only by simple multiple linear 
regression (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction of wheat.

Conclusions:  The method of this study can be transferred to other sites with more extensive areas or similar agricul-
ture structures, which will facilitate agricultural production and management.
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Background
Wheat is the most widely grown grain crop in the world, 
and it plays an essential role in the food supply, account-
ing for approximately 20% of total energy consumption 

[1–3]. As the primary photosynthetic organ, the leaves 
of wheat have a significant impact on the overall growth. 
Leaf area index (LAI), as an essential parameter of 
wheat growth, can provide dynamic information during 
wheat growth. It is a critical metric for assessing crop 
growth and is closely related to the aboveground bio-
mass and yield [4–7]. As a result, rapid, accurate, and 
non-destructive prediction of LAI is critical for field 
management. The traditional method of obtaining LAI 
is through artificial ground destructive sampling, which 
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is time-consuming, labor-intensive, and hinders crop 
growth. The advancement of remote sensing technology 
in recent years has provided a new means for the rapid 
acquisition of LAI [8, 9].

Because LAI is half the amount of leaf area per unit 
horizontal ground surface area [10], accurate vegeta-
tion extraction in remote sensing imagery is critical. The 
vegetation information of crop canopy extracted from 
imagery is primarily determined by the combined effects 
of vegetation types, soil properties, shadows, and other 
factors [11]. The background (soil, weeds, and shadow) 
accounts for a certain proportion of the plot area in crop 
growth. The soil background exists throughout the crop 
growth cycle. Not only does the soil background account 
for a large proportion of the plot area in the early stages 
of crop growth, but exposed soil is also found in the late 
stages of crop growth due to differences in some factors 
(such as seedling emergence rate) between crops. Previ-
ously, some researchers attempted to estimate crop LAI 
using satellite remote sensing imagery, such as Landsat 
and Sentinel-2 satellite imagery [12–14]. Kamenova et al. 
[13] used various vegetation indices (VIs) extracted from 
Sentinel-2 multispectral imagery to establish the LAI 
prediction model, and LAI of winter wheat can be better 
estimated. Meyer et  al. [14] found that the raw value of 
bands and VIs extracted from Landsat8-OLI multispec-
tral imagery were used to establish a prediction model 
that can effectively predict the LAI of the temperate 
deciduous broad-leaved forest.

It can be seen that research on satellite remote sensing 
has made progress. However, satellite imagery was lim-
ited by coarse spatial resolution. The extracted vegetation 
information is usually mixed with background informa-
tion such as soil, resulting in the wrong calculation of leaf 
area per unit horizontal surface area. Thus, the estimated 
LAI value of the crop is inaccurate. In recent years, 
Unmanned Aerial Vehicle (UAV) remote sensing can 
obtain centimeter-level high spatial resolution imagery, 
which is useful for distinguishing vegetation, and back-
ground information, and is often used to estimate crop 
traits [15–17]. However, most UAV remote sensing stud-
ies currently still use the way of satellite remote sensing, 
which means that the extracted vegetation information 
without background processing is directly used in crop 
trait estimation, resulting in inaccurate LAI estimation 
[18, 19]. Fortunately, some studies have noted the influ-
ence of the soil background. The remote sensing imagery 
of the UAV is processed in advance to remove the soil 
background. Still, it is only applied to estimating the 
crop’s chlorophyll content [16] or yield [20], and the esti-
mation of the crop’s LAI is little. Furthermore, previous 
research has shown that it is difficult to observe a vari-
ety of data synchronously using UAV remote sensing. To 

address this issue, the typical solution is to carry multiple 
sensors (multispectral and thermal infrared sensors, etc.) 
on the same UAV platform and calibrate the generated 
multiple imageries using ground control points (GCPs), 
which is inefficient. For example, Maimaitijiang et  al. 
[20], the Mapir Survey2 RGB and FLIR Vue Pro r 640 
cameras were installed on the DJI S100 + UAV platform 
to obtain visible and thermal infrared imagery, respec-
tively. And then, GCPs were used to calibrate two kinds 
of images to obtain spectral and thermal information. 
The integration of tiny sensors on UAV is increasing rap-
idly, UAV can be equipped with multiple imaging sensors 
and GPS systems to obtain many data sets (RGB imagery, 
3D points clouds and thermal imagery, etc.) simultane-
ously. It has become one of the most competitive tools, 
providing excellent possibilities for precision agricul-
ture [21–23]. A typical example, such as the Micasense 
Altum camera, is the integration of multispectral and 
thermal infrared cameras into a single unit, which has the 
advantage of overlapping fields of view and simultaneous 
access to canopy spectral, structural, and thermal infor-
mation [24]. Although a variety of data can be obtained 
by using the sensors integrated with UAV, few studies on 
their comprehensive utilization/fusion and potential in 
LAI application is still unknown.

Many regression methods based on statistics and 
machine learning, such as Partial Least Squares Regres-
sion (PLSR) [25], Artificial Neural Network (ANN) [26], 
and Random Forest Regression (RFR) [27], are cur-
rently used in crop trait estimation to realize the fusion 
of multi-sensor data [18]. However, most studies tend to 
add all the features extracted from remote sensing data 
to the model for training in data fusion using machine 
learning methods. The advantages of this are that it con-
siders all the features, but it does not consider how add-
ing them may affect the model’s efficiency and lengthen 
its running time [28, 29]. Previous studies have found 
different important features for different crops [18, 20]. 
For example, Lee et al. [18] found that when using RFR 
to predict the nitrogen content of maize, the VIs such as 
Modified Simple Ratio (MSR), Wide Dynamic Range Veg-
etation Index (WDRI), and Ratio Vegetation Index (RVI) 
performed well. Maimaitijiang et al. [29] discovered that 
canopy height and vegetation coverage extracted from 
UAV imagery performed well in estimating aboveground 
biomass and LAI of soybean. However, there have been 
few studies on the critical features of wheat LAI estima-
tion [30]. Furthermore, most studies have shown that 
Multiple Linear Regression (MLR) is used to estimate 
crop traits rapidly. Because it has fast modeling speed, 
does not require very complex calculations, and still 
runs fast in the case of large amounts of data. However, 
there are few studies on the potential of MLR in the rapid 
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estimation of wheat LAI, and few can propose a simple 
model for wheat LAI, that is, using a few important fea-
tures with MLR.

The main purpose of this study is to find a method to 
estimate LAI with high precision by making full use of 
the advantages of UAV remote sensing, which means 
using the advantage of high spatial resolution of UAV 
imagery combined with multi-sensor synchronous obser-
vation. The specific objectives are as follows: (1) to inves-
tigate the influence of soil background on LAI estimation 
using the high-resolution UAV imagery; (2) to evaluate 
the potential of data fusion based on multi-sensor in LAI 
estimation and find an efficient and straightforward LAI 
prediction method.

Materials
Test site and filed layout
The study area is located in wheat-growing farmland in 
Xi county, Henan Province, China, and covers an area 
of approximately 3565.497 m2, as shown in Fig.  1. The 
climate in the region is subtropical monsoon, with an 
annual average temperature of 15.5 ℃, average yearly 
rainfall of more than 1200 mm, and a daily average tem-
perature of 10 ℃. As a result, it is ideal for wheat planting 
and growth in this case. The wheat was planted in Octo-
ber and harvested the following June. The experiment 
was conducted here on May 1, 2021. Currently, wheat 
was in the heading stage of the growth period, with dark 
green leaves. To further facilitate establishing and verify-
ing the LAI prediction model, 80 2  m × 2  m plots were 

Fig. 1  Test site of the wheat fields shown using red, green, blue (RGB) sensor mosaic imagery taken on 1 May in Xinyang County, Henan Province, 
China
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designed, and the ground data was measured on 80 plots. 
At the same time, 8 GCPs are arranged in the study area 
for UAV imagery correction and registration, as shown in 
Fig. 1.

Data and processing
Field data acquisition
LAI of 80 plots was measured by LAI-2200C Plant 
Crown Analyzer (LI-COR Inc., Lincoln, NE, USA) on 
May 1, 2021. The field data are obtained according to the 
measurement guidelines recommended in the instru-
ment manual. 23 LAI values are randomly collected from 
each plot and then averaged to represent the LAI values 
of each plot. The number of plots within a certain LAI 
value range is counted, as shown in Fig. 2. It is shown that 
the LAI of 80 plots is different. The LAI values are con-
centrated in the ranges of 1–2, 2–3, and 6–7, with 20, 13, 
and 12, respectively. The LAI value is in the range of 7–8, 
and the number of plots is two.

UAV imagery acquisition and processing
The UAV imagery was obtained at 10:24 a.m. on May 
1, 2021, when the weather was clear and cloudless. This 
study used MicaSense Altum (Seattle, WA, USA) sen-
sor installed on DJI Matrice200 four-axis aircraft. The 
MicaSense Altum has five high-resolution multispectral 
bands (blue, green, red, red edge, and near-infrared) and 
integrated long-wave thermal infrared (TIR) sensor (based 
on the FLIR Lepton), which is aligned with the multispec-
tral sensors. The specific spectral parameters of the cam-
era are shown in Table 1. The TIR sensor recalibrates every 
5 min or when a 2 K change in temperature occurs. The 
reported accuracy is ± 5 K with thermal sensitivity of < 50 
mK. The flight altitude of the UAV is set at 30 m, the head-
ing overlap is 80%, and the side overlap is 70%.

The UAV images were processed using a photogram-
metry software called Pix4D mapper (Pix4D SA, Laus-
anne, Switzerland). Pix4Dmapper was used to generate 
an orthomosaic image of each field by stitching hundreds 
of different images captured during the same flight into 
one single 2D image and correcting for perspective. The 
mosaic images were automatically radiometrically cor-
rected in Pix4D with a spatial resolution of 1.49 cm/pixel. 
Pix4D uses the Structure from Motion (SfM) technique 
and has been well-suited for UAV data as it combines 
images from multiple angles. In addition, the geographic 
coordinates of the eight ground control points were used 
during the photogrammetric workflow of Pix4Dmapper 
to improve the vertical and horizontal accuracy of the 
output orthomosaics.

Methods
The workflow (Fig.  3) that we used in this study was 
divided into two sections. The first section was feature 
extraction, preparing the input variables for the LAI pre-
diction model; the second section was LAI prediction 
model building and validation, which could find impor-
tant variables and a fast LAI prediction method.

Firstly, to investigate the influence of soil background 
and the potential of data fusion of multi-sensor synchro-
nous observation in LAI prediction. The UAV high spa-
tial resolution dataset was divided into two parts: one 
with the soil background removed and one with the soil 
background retained. The canopy’s spectral, structural, 
and thermal features were extracted from the dataset. 
Second, after fusing the spectral, structural, and thermal 
features, machine learning methods (RFR and SVR) were 
used to model. The model’s accuracy was then evaluated 
to find the optimal feature combination. Finally, to find a 
rapid and efficient LAI prediction method, each variable’s 
importance in the model was ranked based on the opti-
mal feature combination. The common variables among 
the top ten variables were selected. MLR was used to 
model, and the model’s accuracy was evaluated.

Fig. 2  Number of plots with different measured leaf area index area

Table 1  Spectral characteristics of the six MicaSense bands

Band# Name Center 
wavelength(nm)

Bandwidth(nm)

1 Blue 475 32

2 Green 560 27

3 Red 668 14

4 Red edge 717 12

5 Near-infrared (NIR) 842 57

6 Thermal infrared Band Range (μm): 8–14
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Feature extraction
To explore the potential of multi-sensor synchronous 
observation data in LAI prediction, it is mainly divided 
into three parts: canopy spectral, structure, and thermal 
information. The data set needs to be processed simply 
before feature extraction, and the specific operation is 
as follows: firstly, two datasets were prepared. For one 

dataset, the soil background was retained, which means 
no background processing is done on dataset, referred to 
as the dataset with soil background; for another dataset, 
the soil background was removed, referred to as the data-
set without soil background. The process of removing 
the soil background is as follows: display the UAV mul-
tispectral imagery in the true color composite of the blue, 

Fig. 3  A workflow diagram of data processing, feature extraction and LAI prediction model building and validation
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green, and red bands. Support Vector Machine (SVM) 
classifier was used to identify wheat and soil on the UAV 
imagery. A binary mask layer was established to exclude 
background soil pixels from all spectral, structure, ther-
mal, and texture features extracted from UAV imagery 
for further processing. The performance of the SVM 

classifier was evaluated using the confusion matrix and 
accuracy statistics overall accuracy (OA) and Kappa coef-
ficient based on randomly selected independent test sam-
ples. The SVM classification resulted in an OA of 98.1% 
and a Kappa coefficient of 0.976 (Fig. 4).

Fig. 4  Vegetation fraction and soil removal. a shows the entire field, b is a close-up RGB image, and c shows the corresponding vegetation and soil 
map of the close-up view

Table 2  Definitions of the features extracted from different imagery

Feature Features Formulation References

Spec. Info Blue (B), Green (G), Red (R), Red-Edge (RE), Near-infrared (NIR) The raw value of each band –

Ratio vegetation index RVI = NIR/R [31]

Green chlorophyll index GCI = (NIR/G)−1 [32]

Red-edge chlorophyll index RECI = (NIR/RE)−1 [32]

Normalized difference vegetation index NDVI = (NIR−R)/(NIR + R) [33]

Green normalized difference vegetation index GNDVI = (NIR−G)/(NIR + G) [34]

Green–red vegetation index GRVI = (G−R)/(G + R) [31]

Normalized difference red-edge NDRE = (NIR−RE)/(NIR + RE) [35]

Normalized difference red-edge index NDREI = (RE−G)/(RE + G) [36]

Simplified canopy chlorophyll content index SCCCI = NDRE/NDVI [37]

Optimized soil adjusted vegetation index OSAVI = (NIR−R)/(NIR + R + L) (L = 0.16) [38]

Modified chlorophyll absorption in reflectance index MCARI = [(RE−R)−0.2*(RE−G)] *(RE/R) [39]

Transformed chlorophyll absorption in reflectance index TCARI = 3*[(RE−R)−0.2*(RE−G) *(RE/R)] [40]

MCARI/OSAVI MCARI/OSAVI [39]

TCARI/OSAVI TCARI/OSAVI [40]

Wide dynamic range vegetation index WDRVI = (a*NIR−R)/(a*NIR + R) (a = 0.12) [41]

Struc. Info Canopy Height Model (m) CHM = DSM−DEM /

Therm. Info Normalized relative canopy temperature index NRCT =
Ti−Tmin

Tmax−Tmin

[42]
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For the two datasets with and without soil background, 
the following same processing is performed. Average 
pixel values for each of the spectral, structure, and ther-
mal raster layers listed in Table  2 were computed at a 
small yield plot level using zonal statistics to relate them 
with the corresponding wheat LAI. The Arcpy library 
and Python 2.7 programming language were used to 
apply zonal statistics, remove soil background, and auto-
mate and streamline the extraction of raster layers, the 
extracted features as shown in Table 2.

Canopy spectral information
The original bands (Blue, Green, Red, Red Edge, and 
Near infrared) from multispectral orthomosaics were 
used as canopy spectral features. In addition, a group of 
VIs was used for crop monitoring and trait estimation 
as usual, such as NDVI, RVI, and NDRE, were selected 
(Table 2).

Canopy structure information
The canopy height model (CHM) was extracted from 
photogrammetric point clouds and used as canopy 
structure features to predict LAI in this study. To obtain 
CHM, the digital surface model (DSM) and the digital 
elevation model (DEM) [43, 44], which were created by 
photogrammetric 3D point clouds, were obtained firstly. 
Because DSM represents the height of the ground and 
all objects on the ground, while DEM only represents 
the height of the ground, the CHM could be obtained by 
subtracting DEM from DSM. An essential step in creat-
ing DEM and DSM is to identify Ground Points (GP) and 
Non-Ground Points (NGP) in dense point clouds, which 
is performed in Pix4Dmapper software. This tool allows 
distinguishing between GP, NGP, and noise points. DSM 
is created from all categories except noise points, while 
DTM is calculated only from points identified as GP.

Canopy thermal information
To facilitate the use of temperature data, it is normal-
ized and mapped to the range of 0–1. The thermal fea-
ture of LAI prediction, the Normalized Relative Canopy 
Temperature (NRCT) [42], was calculated from thermal 
infrared images. NRCT was computed using the canopy 
temperature in the imagery, the minimum temperature 
(Tmin, lower baseline), and the maximum temperature 
(Tmax, upper baseline) of the whole study area, as shown 
in Fig.  5. NRCT has been used to evaluate water status 
and crop traits. The larger the value of NRCT, the higher 
the temperature; the smaller the value of NRCT, the 
lower the temperature [42, 45]. The NRCT was calculated 
based on the following equation:

where Ti represents the canopy temperature of the i th 
pixel, Tmin is the lowest temperature in the whole field 
trial, and Tmax the highest temperature in the whole field 
trial.

LAI prediction model building and validation
Several machine learning methods were used in remote 
sensing applications, especially in crop monitoring and 
trait estimation, such as RFR and SVR. This study used 
RFR and SVR to estimate the LAI based on canopy spec-
trum, structure, and thermal features. RFR is a nonpara-
metric integration method based on the Classification 
and Regression Tree (CART). It is made up of different 
trees that have been trained using bagging and random 
variable selection, which is more tolerant of outliers 
and noise [46, 47]. The number of decision trees deter-
mines the performance of RFR. The number of decision 
trees tested was 50, 100, 150, and 200. To strike a bal-
ance between calculation time and accuracy, the number 
of decision trees was finally set at 100. SVR is a form of 
nonparametric modeling that defines boundaries in a 
high-dimensional space using a hyperplane [48, 49]. To 
construct an SVR with good performance, the selection 
of kernel function is the key, so the linear kernel function 
is selected [48].

First, multiple features are fused, and then the fused 
features are used as input features of the model. To bet-
ter train and evaluate the model, 70% randomly selected 
input features and LAI were used as training samples, 
and the remaining 30% were used as unseen samples to 

(1)NRCT =

Ti − Tmin

Tmax − Tmin

Fig. 5  Normalized relative canopy temperature index distribution 
map (removed soil pixels are represented by white color)
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test the performance of the model. The coefficients of 
determination (R2) and root mean square error (RMSE) 
were computed to evaluate the performance of the LAI 
prediction model and can be expressed as follows:

where yi and ŷi are the measured and the predicted LAI, 
respectively. y is the mean of measured LAI, and n is the 
total number of samples in the testing set.

To estimate LAI quickly and efficiently, the best feature 
combination was determined by comparing the model’s 
accuracy. For the best feature combination, according to 
the importance of variables in the RFR and SVR models, 
common variables were found in the top ten variables of 
the two models. And then, MLR was to build the model 
based on common variables. It is known that the MLR 
is to predict or estimate the dependent variable by the 
optimal combination of multiple independent variables, 
which is more effective and practical than using only one 
independent variable [50]. The IBM SPSS Modeler 18.0 
was used to build the LAI prediction model and variable 
importance ranking.

MLR is one of the statistical methods, which attempts 
to model the correlation between involving variables and 
a response variable depending on linear equation into the 
observed data. Compared with most regression methods 
of machine learning, it is simpler and easier to operate. 
The MLR model is:

where, yi is the dependent variable; b0 is the intercept; xi,k 
is an independent variables; bk is the vector of regression 
coefficients; and ei is random measured errors.

Results
Correlation between LAI and each variable
Features were extracted from datasets with and without 
soil background to investigate the influence of soil back-
ground on LAI prediction under high-resolution UAV 
imagery. The correlation analysis experiments were car-
ried out to obtain the R2 between each feature and LAI, 
and the results are shown in Fig. 6.

To begin, it can be seen that the correlation between 
LAI and various features differs with and without soil 
background, such as the correlation result between LAI 
and CHM (R2

ns = 0.421 and R2
s = 0.377). Second, the 

correlation between LAI and each feature is different, 

(2)R2
= 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2

(3)RMSE =

√∑n
i=1 (yi − ŷi)2

n

(4)yi = b0 + b1xi,1 + b2xi,2 + · · · + bkxi,k + ei

and the R2 between BLUE and CHM is higher relatively 
(BLUE: R2

ns = 0.338 and R2
s = 0.370, CHM: R2

ns = 0.421 
and R2

s = 0.377). The correlation of LAI and VIs is poor 
(NDVI: R2 ns = 0.137 and R2 s = 0.133, RVI: R2 ns = 0.106 
and R2 s = 0.086). It demonstrates that the correlation 
between LAI and each feature is not high whether there 
is soil background or not.

LAI prediction model
RFR and SVR were employed for LAI prediction using 
canopy spectral, structure, and thermal features with or 
without soil background, respectively, the validation sta-
tistics of different models in Table 3.

Firstly, the features extracted from the dataset without 
soil background are analyzed. It can be seen that when 
only spectral features are used, the range of R2 is 0.679–
0.746 and the range of RMSE is 1.233–1.185. Compared 
with the blue or near-infrared band used alone in the 
subsection “Correlation between LAI and each variable”, 
R2 is increased by 0.25 or 0.62. It demonstrates that fus-
ing all spectral features is superior to using any spectral 
feature alone, and the accuracy has been significantly 
improved.

When compared to spectral features alone, combining 
spectral and thermal features slightly improve the accu-
racy of the SVR model (R2: 0.701 and RMSE: 1.176), R2 
increases by 0.03, and RMSE decreases by 0.057. The 
prediction accuracy of the RFR model decreases (R2: 
0.689 and RMSE: 1.391), R2 decreases by 0.11, and RMSE 
increases by 0.206. It is demonstrated that the combina-
tion of spectral and thermal features performs poorly in 
the LAI prediction model, as shown in Fig. 7.

When combining structural and spectral features, 
the prediction accuracy of both RFR and SVR models is 
improved compared with the spectral features alone and 
the combination of spectral and thermal features. Com-
pared with spectral features alone, R2 of the RFR model 
increases by 0.05 and RMSE decreases by 0.05; R2 of 
the SVR model increases by 0.07, and RMSE decreases 
by 0.106. Compared with the combination of spectral 
and thermal features, R2 of the RFR model increases by 
0.11 and RMSE decreases by 0.256, R2 of the SVR model 
increases by 0.04, and RMSE decreases by 0.049.

When all features were added to the model, the mod-
el’s prediction accuracy improves to some extent, and 
the accuracy peaks (R2: 0.748–0.815 and RMSE: 1.023–
1.121), as shown in Fig.  7. R2 increases by 0.069, and 
RMSE decreases by 0.162 compared to the RFR model 
using only spectral feature; R2 increases by 0.069, and 
RMSE decreases by 0.112 compared to the SVR model 
using only spectral feature. When combining spectral 
and thermal features, R2 increases by 0.126, and RMSE 
decreases by 0.368 for the RFR model; for the SVR model, 



Page 9 of 16Wu et al. Plant Methods           (2022) 18:68 	

R2 increases by 0.047, while RMSE decreases by 0.055. 
Compared to the combination of spectral and structural 
features, R2 increased by 0.023 and RMSE decreases by 
0.112 for the RFR model, R2 increases by 0.007, and RMSE 
decreases by 0.006 for the SVR model. It can be seen that 
the model accuracy of the combination of all features is 
not improved compared to the model of the combination 
of spectral and structural features, indicating that adding 
thermal features to spectral and structural features has 

little effect on LAI prediction accuracy. Simultaneously, it 
is demonstrated that combining all features is superior to 
using only one or two features.

Similar to the model without soil background, the mod-
el’s prediction accuracy with soil background is reduced 
by combining thermal and spectral features compared to 
the combination of spectral features. Combining spec-
tral and structural features improves the model’s accu-
racy using only spectral features (R2: 0.584–0.773 and 
RMSE: 1.135–1.391). Secondly, for the RFR model, the 
prediction accuracy of combining spectral, structural, 
and thermal features reaches the highest (R2 = 0.748, and 
RMSE = 1.128).

However, the model with soil background was differ-
ent from the model without soil background. Whether 
RFR or SVR was used, the model without soil back-
ground was higher (R2: 0.679–0.746 and RMSE: 1.185–
1.233). Similarly, for the combination of spectral and 
thermal features and the combination of spectral and 
structural features, the model without soil background 
has higher accuracy than the model with soil back-
ground (R2: 0.689–0.701, RMSE: 1.176–1.391, and R2: 
0.741–0.746, RMSE: 1.135–1.127). When combining 
spectral, structure, and thermal features, compared 
with the model with soil background, the R2 of the RFR 
model without soil background increases from 0.781 to 

Fig. 6  Correlation between LAI and various features with or without soil background. Ns and s denote the feature with no soil background and 
with soil background

Table 3  Validation statistics of different models for wheat LAI 
prediction

Sp spectral features, St structure features, Th thermal features

Feature Metrics Removing soil 
background

Retaining soil 
background

RFR SVR RFR SVR

Sp R2 0.746 0.679 0.684 0.539

RMSE 1.185 1.233 1.441 1.472

Sp + Th R2 0.689 0.701 0.573 0.536

RMSE 1.391 1.176 1.604 1.474

Sp + St R2 0.792 0.741 0.773 0.564

RMSE 1.135 1.127 1.135 1.391

Sp + Th + St R2 0.815 0.748 0.781 0.576

RMSE 1.023 1.121 1.128 1.304
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0.815, and the RMSE decreases from 1.128 to 1.023; for 
the SVR model, R2 increases from 0.576 to 0.748 and 
RMSE decreases from 1.304 to 1.121. It is shown that 
the soil background can be removed well with the help 
of high-resolution UAV imagery. This operation retains 
the pure vegetation characteristics, avoids the interfer-
ence of soil factors on the model, and improves the pre-
diction accuracy of LAI.

The importance of variables
It can be seen that the highest prediction accuracy can 
be obtained based on the combination of spectral, struc-
tural, and thermal features without soil background. The 
importance of variables in RFR and SVR models was 
ranked based on the optimal feature combination, as 
shown in Fig. 8.

It could be seen that the score of CHM is the high-
est among the importance of variables in the RFR and 
SVR models, indicating that the structural feature plays 
an essential role in both models (Fig. 8). It is due to the 
structural feature being relatively independent of the 
other features in the model and contributing the most to 

the LAI estimation. In addition to the CHM, which has 
the highest importance score in the RFR model, NDREI, 
NIR, BLUE, and NRCT have higher importance scores. 
NRCT, RECI, GCI, and NDRE have higher importance 
scores except for CHM in the SVR model. The impor-
tance scores of thermal features and some VIs are high 
relatively, indicating that they performed well in LAI 
estimation.

It can be found that there are four common variables 
in the top ten variables of the two models, namely CHM, 
BLUE, NRCT, and NDRE. To quickly estimate the LAI of 
wheat, MLR was used based on these four common vari-
ables, and the multivariate linear formula was as follows.

To better evaluate the effect of the MLR model in esti-
mating LAI, RFR and SVR models are used simultane-
ously, the results are shown in Table 4.

It can be seen that the prediction accuracy of the 
SVR model based on four common variables is the 

(5)
y =− 390.65 ∗ xBLUE − 12.14 ∗ xNDRE

− 3.2 ∗ xNRCT + 9.49 ∗ xCHM + 12.92

Fig. 7  The validation scatter plots for measured versus prediction LAI
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lowest (R2 = 0.584 and RMSE = 1.413), and the predic-
tion accuracy of the RFR model is the highest (R2 = 0.584 
and RMSE = 1.156). High prediction accuracy can be 
obtained using the MLR model predicted LAI of four 
variables (R2 = 0.679 and RMSE = 1.231). In addition, 
compared with the prediction accuracy of the RFR 
model (R2 = 0.815 and RMSE = 1.023) and SVR model 
(R2 = 0.748 and RMSE = 1.121) using all the features with-
out soil background, the prediction accuracy obtained by 
MLR is little different. Although the prediction accuracy 
of the MLR model is slightly lower than that of the RFR 
model, MLR is easier to operate, and the running time is 
shorter than RFR. It is demonstrated that to some extent, 
using four variables (CHM, BULE, NRCT, and NDRE), 
the MLR model can replace the RFR model using all fea-
tures. It is also demonstrated that using fewer variables 
instead of all variables could achieve higher LAI predic-
tion accuracy, reduce the system calculation time, and 
improve efficiency. At the same time, the MLR formula is 
used to predict LAI, and the prediction map is obtained, 
as shown in Fig. 9.

Discussion
Influence of soil background
Our study found that the soil background could 
reduce the accuracy of the LAI prediction., The accu-
racy improved significantly after removing the soil 

background, R2 raised by about 0.27, and RMSE fell by 
about 0.476. It could be because UAV imagery has the 
high spatial resolution, giving it an advantage over satel-
lite images in distinguishing soil and vegetation. Previous 
research had also discovered the effect of soil background 
on estimating plant traits. Shu et al. [17] discovered that 
removing the soil background from 1.9  cm/pixel UAV 
hyperspectral imagery can effectively estimate the SPAD 
value of corn leaves, which is consistent with our find-
ings. In recent years, some researchers have studied the 
effects of soil backgrounds on crop canopy reflectance 
spectrum and VIs. They found that VIs with no soil back-
ground can better reflect plant growth and ecological 
parameters [51, 52], indicating the importance and fea-
sibility of removing the soil background of VIs, which is 
consistent with our findings.

Fig. 8  Top 10 features in importance

Table 4  Verification accuracy of different regression methods

CHM + NRCT + BLUE + NDRE MLR RFR SVR

R2 0.679 0.734 0.584

RMSE 1.231 1.156 1.413

Fig. 9  LAI prediction map derived when applying the MLR model to 
the 4 common variable images



Page 12 of 16Wu et al. Plant Methods           (2022) 18:68 

Previous studies found that the influence of soil back-
ground with different brightness on canopy spectral 
information (such as NDVI) is different [53]. In terms 
of NDVI, the dark soil background reduced the over-
all reflectance of the canopy, while the bright soil back-
ground increased the reflectance of the canopy. As the 
brightness of the soil background increased from dark 
to bright, the value of NDVI showed a trend from high 
to low, allowing us to investigate further the influence of 
soil brightness on canopy spectral information. Further-
more, it is widely assumed that the influence of soil back-
ground on vegetation-soil systems has two components 
[11]. One factor is that soil components derived from 
mixed vegetation and soil pixels directly impact vegeta-
tion reflectance. The other factor is that multi-scattering 
between soil and vegetation indirectly affects the vegeta-
tion spectrum, which is more complex. We will further 
consider the impact of soil factors on vegetation spectral 
information in the future.

Contribution of different features
Our study demonstrated that the fusion of multi-sen-
sor synchronous observation data could achieve higher 
accuracy (R2 = 0.815 and RMSE = 1.023) than using only 
one feature, indicating the significance of feature fusion 
for wheat LAI prediction. Consistent with our findings, 
Maimaitijiang et  al. [20] discovered that combining the 
soybean canopy’s spectral, structural, thermal, and tex-
ture features, as opposed to using only one feature, can 
improve soybean yield prediction accuracy (R2 = 0.72 and 
RMSE = 478.9 kg/ha). Oliveira et al. [54] discovered that 
combining forage spectral and structural features could 
achieve higher prediction accuracy and accurate moni-
toring and prediction of forage yield. Combination of 
canopy spectral, structure, thermal and texture informa-
tion contained in diverse sensor systems has the potential 
to improve plant trait estimations in a variety of agricul-
tural applications over using features from a single sen-
sor [55]. It may be attributed to the fact that is estimating 
plant traits, such as biomass or grain yield, from spec-
tral information is hampered by asymptotic saturation 
observed from multi and hyperspectral optical sensors 
that do not account for three-dimensional (3D) structural 
information, especially among dense and heterogeneous 
canopies [56].

To begin, this study demonstrates that combining spec-
tral and structural features can significantly improve 
prediction accuracy, which is consistent with previous 
studies that have shown the potential of coupling spectral 
and structural features in crop monitoring and grain yield 
[57–59]. One possible reason for this phenomenon is that 
the structural feature contains independent information 
about canopy growth and structure rather than those 

obtained from spectral features [25, 57]. Another possi-
ble reason is that the structure feature, to some extent, 
can overcome the problem of asymptotic saturation 
inherent in spectral features [55]. Secondly, the fusion 
of spectral, structural, and thermal features of canopy to 
estimate LAI had achieved better accuracy, which may 
be because the spectral, structural and thermal features 
of canopy provide unique and complementary informa-
tion, which was consistent with previous studies [25]. It 
shows that the combination of canopy thermal, spectral, 
and structural features could improve the robustness of 
yield prediction under different weather conditions and 
crop development stages.

Previous research has shown that when all other fac-
tors are held constant, the greater the leaf area per unit 
surface area, or the greater the LAI value, the greater the 
water content of the crop itself [60, 61]. Because thermal 
features are related to leaf water content, pigment con-
centration, and canopy structure, LAI is closely associ-
ated with thermal features [62–64]. However, complex 
environmental conditions such as soil background, water 
availability, and atmospheric conditions all impact can-
opy temperature [65]. As a result, in this study, spectral 
and thermal features were used as input parameters of 
the model. Whether RFR or SVR was used, the accu-
racy will be reduced to some extent. This phenomenon 
could be caused by environmental factors such as aver-
age temperature, soil moisture, and organic matter com-
position in soil. In the follow-up research, it is necessary 
to further understand the relationship between canopy 
thermal feature and LAI, especially under various fac-
tors such as different plant species, development stages, 
environmental conditions, and interactions. It should 
be noted that adding thermal feature to the spectral fea-
ture reduced the accuracy. However, when ranking the 
importance of variables in the model after combining 
spectral, structural, and thermal features, it is clear that 
thermal feature had high significance. This phenomenon 
could be caused by the interaction of spectral, thermal, 
and structural features, emphasizing the importance of 
NRCT. Furthermore, NRCT was used in this study to 
quantify temperature. NRCT has been used to assess and 
forecast crop water status and traits. In general, NRCT 
requires the measured ground temperature to normalize. 
However, the canopy temperature was not calculated by 
the measured ground temperature due to external fac-
tors (environment and equipment, for example). Still, the 
NRCT was obtained directly by using statistical values 
in the thermal infrared image of the UAV. The measured 
ground temperature data will be used in the follow-up 
study to predict the LAI of wheat.
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Influence of high‑resolution UAV image
Our study also proved that UAV remote sensing has the 
characteristics of high spatial resolution, so it has cer-
tain advantages in removing soil background. It may be 
because of the coarse spatial resolution and unsatisfac-
tory time sampling of satellite imagery, which hinders its 
application in predicting plant traits. UAV remote sens-
ing has been developing in recent years. Compared to 
airborne and satellite platforms, UAV remote sensing has 
the high spatial and spectral resolution and low cost. It 
has the high spatial resolution, which allows it to distin-
guish features visually. At the same time, its high spec-
tral resolution improves the accuracy of feature spectral 
information, allowing for further research and analysis. 
Because of UAV remote sensing characteristics described 
above, UAV imagery could be widely used to estimate 
physical and chemical parameters of crops (such as LAI, 
N) and field-scale yield estimation, crop growth state 
monitoring, and other aspects [18, 55].

Since our study focused on investigating the impact 
of high spatial resolution combined with multi-sensor 
synchronous observation on LAI estimation, only UAV 
imagery with the high resolution of 1.49  cm/pixel is 
used for research. Previous research has shown that 
imagery with different spatial resolutions had different 
effects on the accuracy of plant trait estimation. For 
example, Guo et al. [66] used different flight altitudes 
to evaluate the impact of UAV imagery with different 
spatial resolutions on SPAD prediction. It was found 
that compared with imagery obtained with flight alti-
tudes of 75  m (2.1  cm/pixel), 100  m (2.8  cm/pixel), 
and 125 m (3.4 cm/pixel), imagery with a flying height 
of 50  m (spatial resolution of 1.8  cm/pixel) could be 
used to estimate SPAD in leaves accurately. To further 
investigate the impact of UAV imagery with different 
spatial resolutions on LAI prediction, we resampled 
the imagery in this study into the 5  cm/pixel UAV 
imagery without soil background. After combining all 
the features, RFR was used to predict LAI. Compared 
with the R2 obtained from the imagery of 1.49  cm/
pixel in this study, the R2 obtained from the 5 cm/pixel 
imagery modeling decreased by about 0.3–0.4, and the 
RMSE increased by about 2–3. It was demonstrated 
that using UAV imagery with higher spatial resolution 
can better help distinguish soil background and veg-
etation, which is beneficial in estimating wheat LAI.

Uncertainty and outlook
Since the purpose of this study is to investigate the appli-
cation potential of high spatial resolution of UAV imagery 
combined with multi-sensor synchronous observation in 
LAI estimation, RFR and SVR are used for all spectral, 
structural, and thermal features combinations. Of course, 

MLR is also used to estimate LAI, but due to the poor 
effect, it is not shown in this article; only the RFR and 
SVR methods with the best impact are shown. However, 
for a few essential features selected from all variables. The 
MLR method achieves satisfactory results, shortens the 
running time of the model, improves the efficiency, and 
provides an idea for rapid estimation of LAI of wheat.

In the past decade, the performance of deep learning 
developed from traditional neural networks has been sig-
nificantly improved, surpassing the traditional models in 
the field of earth observation [67]. However, it has cer-
tain limitations, for example, a large number of training 
data are needed to effectively converge the deep learning 
model to obtain the optimal model parameters. Shallow 
machine learning regression models, which include RFR, 
SVR, ANN, do not need a lot of training data. Compared 
with traditional algorithms, the machine learning regres-
sion model can effectively use data when dealing with 
high-dimensional and complex data to obtain higher pre-
diction accuracy of the model [18, 68]. Because our study 
focused on the influencing factors of wheat LAI predic-
tion (such as soil), we only used commonly used machine 
learning methods for data fusion (RFR, SVR, and MLR). 
At the same time, our study demonstrated that LAI of 
wheat could be effectively predicted under the data fusion 
framework of UAV high-resolution imagery and multi-
sensor synchronous observation. Previous research was 
consistent with our findings, indicating that plant traits 
could be effectively predicted under this framework. For 
example, Oliveira et al. [54] extracted the height and spec-
tral information of forage from UAV visible and hyper-
spectral imagery respectively and fused the features by 
RFR and MLR methods. Han et  al. [69] used the struc-
tural and spectral information provided by UAV imagery, 
combined with RFR, SVR and MLR to estimate corn bio-
mass. In addition, this study found that no matter which 
features fusion is used, RFR performs best in LAI predic-
tion, consistent with previous studies on other traits of 
crops [18, 70]. Zha et al. [70] found RF performed better 
than SVR, MLR, and ANN on predicting nitrogen content 
in rice using spectral features. Previous studies have also 
shown that SVR is a new generation of machine learning 
algorithms based on statistical learning theory. The advan-
tages of SVR are mainly reflected in solving linear insepa-
rable problems. It solves the inner product operation in 
high-dimensional space by introducing kernel function 
to solve the nonlinear problem [48, 49]. The kernel func-
tions of SVR include radial basis function, polynomial, sig-
moid kernel, and linear kernel function. Because of many 
experiments and the advantages of fewer parameters and 
fast speed, the linear kernel function with the best perfor-
mance was selected to predict the LAI of wheat.
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Previous research had shown that UAV imagery from 
the entire crop growth cycle could help us determine 
which period can accurately predict crop traits and 
growth in the early stages [19]. However, this study only 
used the imagery of wheat at the heading stage due to 
the weather and crew availability. In future research, we 
will consider the prediction of LAI throughout the wheat 
growth cycle.

Conclusions
Under the data fusion framework of UAV high-resolu-
tion imagery and multi-sensor synchronous observa-
tion, the influence of soil background on LAI estimation 
was investigated. The following conclusions could be 
drawn: (1) the soil background will affect the estima-
tion of wheat LAI. The high-resolution UAV imagery 
can effectively remove the soil background, and the 
prediction accuracy is significantly improved after 
removal, R2 is increased by about 30.78%, and RMSE is 
decreased by about 20.22%. (2) In addition to the com-
monly used structural feature (CHM), the temperature 
feature (NRCT) is also important for the prediction of 
LAI of wheat. (3) A simple method of combining mul-
tiple features for wheat LAI prediction, that is, using 
machine learning to screen out a few variables and then 
using one method, high prediction accuracy could be 
achieved (R2 = 0.679 and RMSE = 1.231).

The finding indicates that the method based on UAV 
high-resolution imagery combined with multi-sensor 
data fusion has a great potential for crop LAI estima-
tion. Furthermore, it has guiding significance for high-
precision LAI rapid prediction using UAV remote 
sensing technology and a reference value for precision 
agriculture promotion and application. However, to 
further assess its robustness, this method will need to 
be tested on different crop types at different stages of 
development and under different environmental condi-
tions in future research.
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