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Abstract 

Background:  Classification and phenotype identification of lettuce leaves urgently require fine quantification of their 
multi-semantic traits. Different components of lettuce leaves undertake specific physiological functions and can be 
quantitatively described and interpreted using their observable properties. In particular, petiole and veins determine 
mechanical support and material transport performance of leaves, while other components may be closely related 
to photosynthesis. Currently, lettuce leaf phenotyping does not accurately differentiate leaf components, and there is 
no comparative evaluation for positive-back of the same lettuce leaf. In addition, a few traits of leaf components can 
be measured manually, but it is time-consuming, laborious, and inaccurate. Although several studies have been on 
image-based phenotyping of leaves, there is still a lack of robust methods to extract and validate multi-semantic traits 
of large-scale lettuce leaves automatically.

Results:  In this study, we developed an automated phenotyping pipeline to recognize the components of detached 
lettuce leaves and calculate multi-semantic traits for phenotype identification. Six semantic segmentation models 
were constructed to extract leaf components from visible images of lettuce leaves. And then, the leaf normalization 
technique was used to rotate and scale different leaf sizes to the “size-free” space for consistent leaf phenotyping. A 
novel lamina-based approach was also utilized to determine the petiole, first-order vein, and second-order veins. The 
proposed pipeline contributed 30 geometry-, 20 venation-, and 216 color-based traits to characterize each lettuce 
leaf. Eleven manually measured traits were evaluated and demonstrated high correlations with computation results. 
Further, positive-back images of leaves were used to verify the accuracy of the proposed method and evaluate the 
trait differences.

Conclusions:  The proposed method lays an effective strategy for quantitative analysis of detached lettuce leaves’ 
fine structure and components. Geometry, color, and vein traits of lettuce leaf and its components can be compre-
hensively utilized for phenotype identification and breeding of lettuce. This study provides valuable perspectives for 
developing automated high-throughput phenotyping application of lettuce leaves and the improvement of agro-
nomic traits such as effective photosynthetic area and vein configuration.
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Background
The morphogenesis and growth of lettuce leaves have 
complex regulation mechanisms. In addition to genet-
ics, habitat can also influence the variation in their leaf 
structure, color, and venation. Explainable and highly dis-
tinguishable features for large-scale lettuce varieties are 
very important for the applications of phenotype identifi-
cation and phenotype–genotype association analysis. It is 
impossible to find two identical leaves worldwide [1], but 
the leaves of different lettuce varieties are likely to show 
higher similarity. Obviously, the statistical traits of the 
whole leaf are insufficient to describe detailed differences 
among varieties. Visually, lettuce leaf can be divided into 
different functional regions, such as petiole and veins for 
mechanical support and material transport, and other 
regions for photosynthesis. Therefore, detailed structure 
phenotyping of lettuce leaves can provide more abundant 
traits for leaf classification and identification and a more 
accurate computation basis for leaf functional analysis.

The basic structure of leaves is established in the early 
stage of leaf development. Leaf morphogenesis includes 
the formation of the petiole, mid-rid, lamina, and mar-
ginal structures [2]. These internal components of the leaf 
can be characterized and used for leaf classification, iden-
tification, grading, and functional analysis. However, it is 
challenging to obtain these traits manually. Image-based 
phenotyping can provide an automated, non-destructive, 
and cost-effective method for quantifying lettuce plant/
leaf traits. At the plant population level, unmanned aer-
ial vehicle (UAV) has been used to evaluate the genetic 
diversity in red leaf lettuce germplasm [3], identify agro-
nomic characteristics and carotenoid-rich genotypes [4], 
and measure yield-related phenotypes from ultra-large 
aerial imagery [5]. At the plant level, high-resolution 
images of individual lettuces can be used to extract and 
evaluate more complex traits, such as aboveground bio-
mass [6], leaf canopy area, color, texture [7–9]. But leaf 
occlusion in lettuce canopy or side image makes it diffi-
cult to extract complete leaf structure [10]. Besides vis-
ible imaging, hyperspectral and chlorophyll fluorescence 
imaging have been used to assess the deterioration of 
freshly-cut lettuce leaves [11]. Moreover, other imaging 
modalities (transmission scanning [1], X-ray imaging 
[12], and microscope [13], etc.) can be used to capture 
leaf images for segmentation and analysis of leaf veins. 
Relatively, visible images of detached leaves reflect much 
information of leaves from color to vein configuration 
[14].

From an image processing perspective, data-driven 
image techniques such as convolutional neural net-
works (CNNs) and their derived models can be used for 
the segmentation and classification of vegetable plants/
leaves [15, 16]. CNN-based models can be used to detect 
single or multiple objects in leaves [17, 18] and conduct 
image-level classification [19, 20] based on accurately 
annotated images [21, 22]. Once leaf components, such 
as mid-rid, vein venation, and petiole, are extracted and 
quantified, more detailed information can be used to 
describe the characteristics of lettuce leaves. For each leaf 
component, image-based features can be described using 
its morphology [23, 24], color [25, 26], and structure [1, 
14] properties. For the entire leaf, the venation and color 
indicate valuable biological and physiological properties. 
For example, various types of venation represent differ-
ent tolerance to hydraulic damage [27], and several spe-
cial features, such as vein density, vein branching, and 
the area ratios with blade area, are probably related to its 
photosynthetic capacity and fresh weight [28]. These vein 
features can also be used to investigate the effect of envi-
ronmental factors on vein patterns or compare venation 
patterns of various species for evolutionary studies [29]. 
Moreover, the colors of lettuce leaves are significantly dif-
ferent due to the accumulation of anthocyanins via genes 
controlling leaf color [30]. Traditional studies focused on 
quantifying whole leaf color but did not distinguish color 
between positive and back leaves. Leaf color is substan-
tially different between positive-back images of leaves, 
reflecting different physiological functions of leaves. To 
the best of our knowledge, leaf components and their 
trait differences between the positive-back leaves have 
not been quantitatively assessed.

This study aimed to develop an automated phenotyping 
pipeline to quantify detached lettuce leaves and evaluate 
the multi-semantic traits for large-scale lettuce cultivars. 
The study highlights the efficacy of an automated pheno-
typing pipeline in recognizing multiple semantic compo-
nents of lettuce leaves and evaluating traits differences 
not only for leaf components but between positive and 
back leaves.

Materials and methods
Image acquisition
More than 400 lettuce varieties were grown in a terraced 
greenhouse at the Beijing Academy of Agriculture and 
Forestry Sciences (BAAFS) from January 1 to February 
25, 2020. Lettuce varieties included Butterhead, Celtuce 
love, Italian, Red Coral, Red Lettuce, Red Oakleaf, and 
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Salad Grand Rapid (SGR) [31]. A studio section with a 
background cloth, a tripod, and a digital camera (77D, 
Canon Inc., Tokyo, Japan), was set up near the plants 
in the greenhouse for the photography. A 22 mm prime 
lens was used to obtain the images at a distance of about 
1.2  m. A white label paper was placed near the leaf to 
mark the object’s size. During data collection, one rep-
resentative leaf was cut from each lettuce cultivar and 
immediately used to acquire its positive-back images. In 
the procedure of image acquisition, it was challenging to 
ensure the consistency of leaf position and orientation 
(Fig. 1A). Therefore, these leaves need to be automatically 
detected and normalized for the subsequent phenotypic 
analysis, such as cropping regions of interest rotating leaf 
according to the positions of tip and petiole.

Semantic segmentation
As shown in Fig.  1B, the visible components of the 
lettuce leaf included the petiole, mid-rid, veins, and 

lamina. Thus, the structure of lettuce leaves were anno-
tated as four types of semantic components: blade 
(BD), mid-rid (MR), veins (VS), and lamina (LM). Two 
new semantic components were automatically gener-
ated based on these annotated semantic components 
(Fig.  1C). Venation (VV) was defined as a union set 
between MR and VS, and a marginal zone (MZ) was 
defined as a different set among the above semantic 
components (BD–VV–LM). Among them, MR divided 
the leaf into two parts (the left and right), and could be 
divided into petiole and first-order veins (from petiole 
to apex). VS (the second-order and smaller veins) were 
the vascular structures that transport water and pho-
tosynthetic materials. MR and VS divided the leaf into 
lots of flat-gridded laminas. The second-order veins 
and the first-order laminas had a corresponding rela-
tionship along with the MR from petiole to apex (vein 

Fig. 1  Image annotation specification for semantic components of lettuce leaves. A Images of lettuce leaves captured in an actual experimental 
environment. B The delineated leaf as four semantic components (BD blade, MR mid-rid, VS veins, and LM lamina). C Two new semantic 
components (VV venation and MZ marginal zone) automatically generated based on the corresponding semantic components. D Data annotation 
specification of six semantic components
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and lamina orders). The data annotation specification is 
shown in Fig. 1D.

The classical U-NET [32] was used separately to train 
semantic segmentation models for six components due 
to its good performance and adaptation for small data 
sets. A set of image augmentation techniques [33] was 
applied to increase the number of leaf instances and 
decrease model over-fitting. Each annotation data set 
was randomly divided into training, validation, and 
testing sets (7:2:1). The training and validation sets 
were used to train the model, and the testing set was 
used to evaluate the performance of the model. Based 
on these semantic segmentation models, six semantic 
components could be extracted from the positive and 
back images of lettuce leaves and used for the subse-
quent phenotypic analysis (Fig. 2).

Normalization and semantic representation
Lettuce leaves could be represented using size-related 
and size-free traits. The size-related traits of lettuce leaf 
consist of common geometry indices, such as leaf area, 
perimeter, length, and width. These traits were calcu-
lated based on the resulted semantic components from 
the end-to-end semantic segmentation. However, leaves 
of different lettuce varieties had significant differences in 
size and leaf area at the same growth period. Thus, these 
leaves were rotated to the same orientation and scaled to 
the same size (width) to eliminate the effect of the size 

difference and improve the efficiency of the phenotyping 
process.

Leaf normalization was performed to obtain standard 
“size-free” images of lettuce leaves via rotation and scal-
ing procedures. The leaf was rotated to an upright posi-
tion according to its mid-rid (petiole and apex at the 
bottom and top of the image, respectively) (Fig.  3A). It 
could be seen that the mid-rid was curved, and the width 
of the petiole was always large. Thus, the petiole and apex 
regions of the mid-rid were identified as follows: first, 
the OBB (oriented bounding box) of the mid-rid was 
computed, then divided into two rectangles by cutting 
the two longer edges of OBB. Further, pixel numbers of 
the mid-rid were calculated for the two rectangles, and 
the region with a larger area was identified as the peti-
ole region. Finally, the centroids of the petiole and apex 
were calculated and connected into a straight line which 
was taken as the reference line for leaf rotation. Size nor-
malization was used to proportionally scale the leaf to 
the same width with a size-dependent scaling factor (the 
ratio of the original leaf width to the normalized width); 
thus, the normalized leaves had the same width and dif-
ferent lengths. In this study, the leaf width was set as 500 
pixels to achieve a balance between computational effi-
ciency and accuracy.

Four semantic components (mid-rid, veins, vena-
tion, and marginal zone) of positive and back leaves 
could be skeletonized (Fig.  3A–D). The endpoints and 
intersections of each skeleton were used to describe the 

Fig. 2  Six semantic components of positive and back lettuce leaf based on the classical U-NET models
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Fig. 3  The normalized semantic components and the skeleton-based visualization of vein architecture. A–D Semantic components (mid-rid, veins, 
venation, and marginal zone) and their skeleton representations. E The merged skeletons of four semantic components. F Semantic component of 
the lamina. G Heatmap of individual regions divided by skeletons. H Heatmap of laminas

Fig. 4  The flow chart of the phenotyping pipeline for lettuce leaves
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vein network (marked using blue and green solid cir-
cles, respectively). These skeletons had a high overlap-
ping degree and were merged to the original leaf image 
to demonstrate the consistency of veins (Fig.  3E). The 
skeletons divided the whole blade into lots of individual 
regions. An equivalent colormap was applied to visual-
ize the leaf structure according to the area of each region 
(Fig. 3G). The laminas could also be colored (Fig. 3F) and 
were very similar to Fig. 3G. This suggested that the lam-
ina-based method could be used to describe and assess 
vein architecture.

Phenotyping of lettuce leaves
Geometry and color traits of each semantic component 
could be calculated directly using semantic segmentation 

results. However, more valuable descriptions could be 
extracted from these semantic components, such as the 
petiole and vein architecture. The phenotyping pipeline 
of lettuce leaves was proposed to calculate the petiole, 
vein architecture, and related statistical traits, as shown 
in Fig. 4.

The petiole was defined as the region along the mid-rid 
from the leaf base to the first lamina; thus, the mid-rid 
could be divided into the petiole and first-order veins. 
The laminas and mid-rid could be combined into a new 
object by a dilate operation of the mid-rid region. The 
max contour of the new object could contain all adjacent 
lamina regions, and the lamina closest to the leaf base 
was used to determine the petiole. Moreover, the mid-rid 
could divide the whole leaf into the left and right parts. 

Fig. 5  The lamina-based approach for vein architecture analysis. A Lamina classification and vein angle representation. B Lamina analysis. Blue lines 
indicate the skeleton line segments of the mid-rid; blue circles represent attachment points; two red arrows from each attachment point represent 
vein angle, and angle values are shown at the node furthest from the mid-rid; grey lines indicate the position of the petiole
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Thus, the skeleton line of the mid-rid was utilized to 
divide semantic components (blade, veins, lamina, mar-
ginal zone) into two parts (the left and right parts).

The vein architecture mainly contained the angles and 
distribution of the second-order veins. In this study, the 
lamina-based approach was used to analyze vein archi-
tecture (Fig.  5A). All laminas adjacent to the mid-rid 
were taken as the first-order laminas, which were used 
to calculate the angle and direction of the corresponding 
veins. In Fig. 5B, the first-order laminas could be divided 
into LM_L and LM_R (left and right) and further merged 
as two parts (LM_VS_L and LM_VS_R) using morphol-
ogy operations. Obviously, LM_VS regions contained 
both the first-order LM and second-order VS and could 
be used to calculate a new mid-rid (MR_by_LM) which 
was highly consistent with the segmentation result of the 
mid-rid (MR). This indicated that laminas could effec-
tively represent the vein architecture.

Vein angles could be calculated based on the first-order 
laminas (LM_L and LM_R). The contour of each lamina 
was simplified as a polygonal chain using fewer points 
based on the Douglas–Peucker algorithm. The approxi-
mated polygon retained the original contour shape (con-
trolled by the specified tolerance), and fewer nodes were 
used to eliminate the ambiguity in angle calculation. 
The simplified polygon had a subset of the points of the 
original contour. Due to the normalized leaves, a default 
tolerance, such as five, could be applied to almost all the 
laminas. Among the polygon nodes, the closest point to 
the leaf base and mid-rid was selected as the appropriate 
attachment point. The corresponding vein angle of each 
attachment point was calculated using its two adjacent 
line segments of the polygon.

The complex shape and structure of the lettuce leaves, 
such as leaf folds, twisted veins, multiple main veins, etc., 

presented challenges to the leaf phenotyping. For these 
particular leaf cases, it was difficult to extract leaf seman-
tic components accurately by image techniques. The phe-
notyping pipeline could only be applied for the leaf types 
that conformed to data annotation specification (Fig. 1D), 
not for all leaf types. Thus, lettuce leaf images needed to 
be manually screened to ensure their validity. Moreover, 
there are always similar semantic components between 
the positive and back images of the lettuce leaf. There-
fore, the positive-back images could be used not only to 
verify the reliability of the phenotyping methods but also 
to analyze trait differences between positive-back leaves.

Results and discussion
Evaluation of semantic segmentation
Since data annotation was highly time-consuming and 
labor-intensive, only 41 representative lettuce leaves 
were annotated based on the specification in Fig. 1D. Six 
semantic segmentation models (i.e., BD, VV, MR, VS, 
LM, and MZ) were trained respectively for 200 epochs 
using the same backbone and parameters (Learning rate: 
5× 10

−5 , batch size: 4, backbone: inception-ResNet-v2) 
to achieve convergence. The Intersection over Union 
(IoU) and Loss of the training and validation sets are 
listed in Additional file 1: Table S1. IoU scores of blade, 
lamina, and mid-rid models achieved over 90%, but that 
of veins was as low as 70%. For the testing data set, the 
average IoU (mIoU) and F1 (mF1) of all semantic compo-
nents demonstrated a similar performance with training 
and validation. Among components that were related to 
vein architecture (i.e. mid-rid, venation, and veins), the 
mid-rid’ model achieved relatively higher segmentation 
accuracy.

Fig. 6  Data normalization for the positive and back leaves. A Rotated and normalized positive and back leaves using an angle sequence [0, 30, 60, 
90, 120, 150, 180]. B The corresponding scaling factors. The normalized image was colored and scaled for visualization (blue and green represent the 
mid-rid and laminas, respectively; B202 indicates lettuce cultivar
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Evaluation of data normalization
Leaf normalization operation was an important proce-
dure to ensure the consistency of phenotyping analysis. 
Each leaf image was rotated in an angle sequence [0, 30, 
60, 90, 120, 150, 180] to construct test image sets which 
were used to evaluate the robustness and reliability of the 
proposed leaf normalization method. The data normali-
zation results for the positive and back leaves are shown 
in Fig. 6. Mean scaling factors were very close (1.492 and 
1.501) and had similar standard deviation (std) (0.002). 
The results indicated that the data normalization was 
suitable for both the positive and back images of lettuce 
leaves. Notably, the normalized image might need to be 
flipped (Fig.  6A), which was the follow-up operation of 
data normalization.

The rotation invariance of data normalization could 
be assessed by the scaling factors. The mean and std of 
scaling factors were 1.949 and 3.452× 10

−3 , respectively, 
for 112 images of lettuce leaves, indicating that the data 

normalization obtained highly consistent results for leaf 
images. The mean and std of the rotated images were cal-
culated for each leaf (Fig.  6B), which were then statisti-
cally analyzed (Fig.  7). The Smallest and largest scaling 
factors of these leaves were 0.933 and 4.283, respectively, 
and the standard deviation distribution of scaling fac-
tors was less than 0.03 for all the test images (Fig.  7A). 
The normalized images with different scaling factors 
had area deviations (Std). The average area deviations 
of six semantic components (BD, MZ, LM, VV, VS, and 
MR) were 781.812, 779.015, 657.497, 645.293, 523.569, 
222.495 pixels, respectively (Fig.  7B–G). This suggested 
that the data normalization could adjust the leaves to the 
same orientation and had little influence on the area of 
each semantic component.

Leaf area rapidly increased during leaf vegetative 
growth, while the vein architecture (the mid-rid and 
second-order veins) slightly increased. Scaling factors 
could be used as an individual trait of lettuce leaves since 

Fig. 7  Evaluation of data normalization for 112 leaf images. A The deviations (Std) of scaling factors. B–G Area deviations of semantic components
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they directly reflected leaf growth. Data normalization 
was valuable to extract size-related traits for evaluat-
ing lettuce leaves with large size differences. Moreover, 
data normalization greatly reduced the image size, thus 
improving the computation performance of the time-
consuming techniques.

Accuracy of the phenotyping pipeline
Eleven traits of 112 images from 56 lettuce leaves (each 
leaf contained positive and back images) were manu-
ally measured to validate the computation accuracy of 
the phenotyping pipeline. Manually measured traits are 
listed in Table 1. Three types of traits (geometry-related 
traits, the number of the first-order laminas, and angles 
of the second-order veins) were manually counted or 
measured using Image J software [34]. The laminas and 
the second-order veins were divided into two left and 
right parts to analyze the symmetry of vein architecture. 
The unit of geometry-related traits by manual measure-
ment was pixels ( 4.785× 10

−2 mm/pixel).
The comparison analysis of the 11 traits was conducted 

to identify the relationship between manual and com-
putation measurements. R2  (Coefficient of determina-
tion), MAE (mean absolute error) and MAPE (the mean 
absolute percentage error) of the manual and computa-
tion measurements were used to evaluate the consistency 
and accuracy of the computation method. R2 was used to 
determine how well the computation values fit the man-
ual measurement. Moreover, BD_L, BD_W, and MR_L 
were widely used in lettuce breeding and cultivation, 
which demonstrated strong correlations between manual 
and computation measurement, (R2 values, 0.981, 0.983, 
and 0.985, respectively) (Fig. 8 A).

MR_L had a higher correlation coefficient than BD_L. 
PE_L was determined by the position judgment of the 

first lamina in manual measurement. PE_L had the least 
correlation between manual and computation methods 
( R2 = 0. 514), possibly due to the uncertainty of petiole for 
both manual measurements and computation (Fig.  8B). 
The MAE of size-related traits ranged from 40 to 82 
pixels, indicating that the prediction error varied from 
1.914  mm to 3.924  mm. The number difference of the 
left and right laminas was about 2, and that of the total 
laminas was less than 3 (Fig.  8C). The counting errors 
mainly came from the laminas with a small area (the first 
and last) on the leaf. LM_N had a higher R2(0.828) than 
LM_N_LT and LM_N_RT. This study assessed the aver-
age angle of the second-order veins (Fig. 8D). The MAE 
of average vein angle (8◦ ) was strongly correlated with 
R
2(over 0.6) between manual and computation measure-

ments. Overall, the consistency between computed and 
manually-measured traits confirmed the efficacy of the 
digital phenotyping of lettuce leaves since several new 
and hard-to-measure traits could be acquired using the 
proposed method.

The phenotyping pipeline of lettuce leaves was further 
utilized to process positive and back images of all let-
tuce cultivars. In this study, 400 valid lettuce leaves (a leaf 
corresponds to a variety and contains positive and back 
images) were utilized to verify the accuracy of the pro-
posed method and evaluate the trait differences between 
positive and back images.

Evaluation of semantic components
The common geometry traits of lettuce leaves, such as 
length, width, pixel area, convex hull area, were cal-
culated based on each semantic component after data 
normalization (Additional file 1: Table S2). The area pro-
portion relationship between five semantic components 
(mid-rid, veins, venation, lamina, and marginal zone) 
and the total leaf was essential for understanding the leaf 
structure and components. Eight indicators were used to 
evaluate the area ratio of each semantic component rela-
tive to the total area of BD (Fig.  9A), i.e. MR_A_Ratio, 
VS_A_Ratio, VV_A_Ratio, LM_A_Ratio, MZ_A_Ratio, 
MR_VS_A_Ratio, MR_VV_A_Ratio, and VS_VV_A_
Ratio. The average area ratios of MR, VS, VV, LM, and 
MZ were 5.126%, 11.493%, 21.430%, 60.939%, and 
38.001%, respectively. Laminas had the largest area ratio, 
more than three-fifths of BD. The total area of petiole and 
vein venations was also more than one-fifth of BD. The 
total area of LM and MZ reached 98.94% of the BD. The 
total area of MR and VS was significantly lower than the 
area of VV (16.619% vs. 21.430%). Moreover, the seman-
tic components of the lettuce leaf had overlay regions 
(pixels), such as (MR + VS) and VV; (LM + VV) and BD; 
(MZ + LM) and BD. Three indicators were used to evalu-
ate the area relationship among semantic components, 

Table 1  The traits of lettuce leaves by manual measurements

Index Abbreviation Description Unit

1 BD_L Leaf length Pixel

2 BD _W Leaf width Pixel

3 MR_L Length of mid-rid vein Pixel

4 PE_L Length of petiole Pixel

5 AP_L Length from petiole to the apex Pixel

6 LM_N_LT Number of left laminas

7 LM_N_RT Number of right laminas

8 LM_N Total number of laminas

9 LM_Ave_ANG_LT Average vein angles of left-side 
leaf

Degree(◦)

10 LM_Ave_ANG_RT Average vein angles of right-side 
leaf

Degree(◦)

11 LM_Ave_ANG Average vein angles of the leaf Degree(◦)
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i.e. EVA_MR_VS_2_VV, EVA_LM_VV_2_BD, EVA_MZ_
LM_2_BD (Fig.  9B). MR, VS, and VV had the highest 
overlapping ratio (EVA_MR_VS_2_VV, 22.222%), while 
MZ, LM, and BD had the least overlapping ratio (EVA_
MZ_LM_2_BD, 1.060%).

Area ratio and area relationship of semantic compo-
nents between positive and back leaves were calculated 
to evaluate the accuracy of semantic segmentation. 
PB indicates the area difference between positive and 
back leaves. As shown Fig.  9C, the absolute area differ-
ences between positive and back leaves for six semantic 

components were as follows: PB_MR_A (−7.780%) > PB_
VS_A (4.050%) > PB_MZ_A (−3.983%) > PB_LM_A 
(1.282%) > PB_VV_A (−1.078%) > PB_BD_A (0.448%). 
Obviously, the semantic segmentation models had good 
adaptability for BD (the positive and back) but the largest 
error for MR (the positive and back). The area difference 
among five semantic components had similar results as 
follows: PB_MR_A_Ratio (−7.409%) > PB_VS_A_Ratio 
(4.449%) > PB_MZ_A_Ratio (−3.577%) > PB_LM_A_
Ratio (1.735%) > PB_VV_A_Ratio (−0.651%), as shown in 
Fig. 9D.

Fig. 8  Comparison between measurement and computation traits of lettuce leaves using the scatter plots. A Leaf length, width, and mid-rid 
length. B Petiole length and apex length. C The first-order lamina number of the leaf-side, right-side, and entire leaf. D Average angle of the 
second-order veins obtained using the lamina-based approach



Page 11 of 18Du et al. Plant Methods           (2022) 18:54 	

The structure and the area relationship among seman-
tic components of lettuce leaves were quantitatively 
evaluated. The results indicated that the segmentation 
models of the entire leaf, venation, lamina, and marginal 
zone were more robust and could obtain high consist-
ency for positive-back leaves. The segmentation of MR 
and VS were relatively sensitive to positive-back leaves, 
therefore more vein-related semantic components were 
used for the subsequent evaluation of vein architecture.

Evaluation of vein architecture
MR, VS, VV, and LM were utilized to quantitatively ana-
lyze the vein architecture of lettuce leaves based on skel-
eton-based (Fig.  3) and lamina-based methods (Fig.  5). 
The lamina-based technique was used to calculate the 

angles of the second-order veins due to its higher seg-
mentation accuracy and simpler post-processing opera-
tions. The detailed traits of vein architecture are shown 
in Additional file 1: Table S3.

The computation traits of petiole and vein architec-
ture extracted from positive and back images of the 
same leaf were very close. A grouping correlation anal-
ysis was also used to evaluate vein architecture of posi-
tive and back leaves (Fig. 10). The position sensitivity of 
the petiole related to the starting lamina was observed 
from Fig. 5A, indicating a low determination coefficient 
of BD_PE_PX between positive and back leaves (0.62) 
(Fig.  10A). LM1_A_LT and LM1_A_RT had high deter-
mination coefficients (0.921 and 0.890, respectively). The 
second-order veins were ordered in sequence along with 
the mid-rid, and obtained two angle lists (LM_ANG_
List_LT and LM_ANG_List_RT). The average vein angles 

Fig. 9  Statistical analysis for area ratio of semantic components and area relationship among semantic components. A Area ratio of semantic 
objects. B. Area relationship among semantic objects. C Area ratio difference between positive and back leaves. D Area relationship difference 
between positive and back leaves
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(LM_Ave_ANG_LT and LM_Ave_ANG_RT) of the left 
and right leaves were calculated to reveal the consistency 
of vein architecture between positive and back leaves, 
and the average vein angle was about 0.5.

Evaluation of color traits of positive‑back leaves
The positive and back leaves had significant pheno-
type differences that were relative to their physiological 
functions, especially color differences. Six color spaces 
(RGB, HSV, LAB, LUV, YCrCb, and CIELab) were used 
to represent the color traits of each semantic compo-
nent of leaves. Each color space had three channels (18 

channels). The mean and standard deviation of each 
channel was calculated. A feature set was constructed for 
each semantic component (each feature vector contained 
18 mean color features) to identify the most important 
color feature of each semantic component. The orienta-
tion type (positive or back leaves) was used as a classifica-
tion variable.

A classification decision tree was used to deter-
mine the most important color features based on 
the classification variable (Fig.  11). All color features 
with importance scores greater than 0 were extracted 

Fig. 10  Vein architecture obtained using positive and back leaves. A Area comparison of semantic components between positive and back leaves. 
B Length comparison of the petiole. C Number comparison of lamina. D Average angle comparison of second-order veins
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from 18 color features. The important features of BD, 
MR, LM, VS, VV, and MZ were BD_HSV_mean_1 
(75.672%), MR_YCrCb_mean_2 (42.939%), LM_HSV_
mean_1 (81.538%), VS_CIELab_mean_2 (66.057%), 

VV_HSV_mean_1 (52.178%), and MZ_HSV_mean_1 
(61.050%), respectively. The total importance scores of 
the first five features were 89.431%, 72.940%, 92.646%, 
83.097%, 78.050%, and 81.460%, respectively, for each 

Fig. 11  The feature importance of each semantic component. A–F BD, MR, LM, VS, MZ, and VV, respectively

Fig. 12  The feature importance of the whole leaves. A Orientation (postive-back leaf ) as classification variable. B Semantic components as a 
classification variable
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semantic component. LM had the most color difference 
between positive and back leaves. Laminas were the 
main photosynthetic regions, and their color features 
and difference were more accurate in evaluating physi-
ological functions (chlorophyll content) of leaves. The 
color features of MR were complex, with a single fea-
ture explaining 42.939% at most. The petiole and vein 
network had a significant influence on the color repre-
sentation of the whole leaf. Moreover, Hue (HSV) was 
the most stable and distinguishable color feature for 
BD, LM, VV, and MZ of positive and back leaves.

Color features of six semantic components were inte-
grated into a feature set containing 216 color features 
to quantify the whole leaf color. The orientation (posi-
tive-back leaf ) and semantic components were respec-
tively used as classification variables to investigate the 
important scores of color features (Fig.  12A and B). 
The variance color features were found to play a cru-
cial role, especially in using the orientation type as the 
classification variable. HSV_std_1 obtained the highest 
importance score (43.825%), followed by LAB_mean_1 
(9.014%). The importance score of the first five-color fea-
tures was 73.495% (Fig. 12A). The most important feature 
(CIELab_mean_1) when the semantic component was 
used as the classification variable explained just 14.398%. 
The importance score of the first five-color features was 
only 27.406%. These results suggested that the color dif-
ferences among semantic components of lettuce leaves 
were significantly higher than that of positive-back leaves. 
Therefore, it was necessary to refine the color traits of the 
lettuce leaf by distinguishing semantic components.

Clustering and classification of lettuce leaves
These semantic components of lettuce leaves contrib-
uted lots of accurate and quantitative traits that were 
difficult to be measured manually. Some traits had clear 
physiological and ecological significance, or are related 
to lettuce quality and yield, such as color differences 
of positive-back leaves, and area ratio of leaf veins, etc. 
Thus, these image-based traits were not only valuable for 
gene function analysis and mapping of lettuce varieties, 
but also could be used for classification and identifica-
tion of lettuce leaves. The selection of important features 
were valuable for refining the description of lettuce leaf 
and its components. Principal component analysis (PCA) 
could be used for dimensionality reduction via fusion to 
reduce the number of features greatly. Both the single 
important feature or principal components could be used 
for leaf classification and grading. Herein, the feature sets 
were classified into four types [geometry-based (GEO, 
30), venation-based (VEN, 20), color-based (CLR, 216), 
and combined (COM, 266)], then used for PCA analysis 

(400 lettuce varieties). The top 10 principal components 
of each feature set could explain 98.415%, 97.493%, 
95.138%, and 89.004% of the overall variance, respectively 
(Fig. 13A). A hierarchically clustered heatmap was plot-
ted to determine the correlation matrix among 40 PCs 
(Fig. 13B).

Each cluster merged the non-singleton cluster and its 
children by drawing a U-shaped link. The length of the 
two legs of the U-link indicated the distance between its 
child clusters. The correlation among the 10 PCs of each 
type of feature set was linearly independent. Moreover, 
several PC pairs were highly correlated among different 
feature sets. For instance, GEO_PC1 and VEN_PC2 had 
a significantly high correlation coefficient (CC) of 0.77. 
CLR_PC4 was negatively correlated with GEO_PC1 and 
VEN_PC2 (CCs were −0.60 and −0.58, respectively). The 
first three PCs of COM and CLR were highly positively 
correlated. The detailed correlation coefficients among 
different PCs are shown in Fig. 13C.

Lettuce leaves could be clustered into different catego-
ries based on their feature set by minimizing the intra-
class gap and maximizing the inter-class gap. Each type 
of lettuce leaves was assigned an individual label for 
further analysis. The hierarchical clustering based on 
Euclidean distance was conducted using four types of 
PCs (Fig. 14). For positive images (Fig. 14), four clusters 
were classified using the PCs of GEO, CLR, VEN, and 
COM traits. Five images were randomly selected from 
each classified leaf group for visualization. The leaves 
had significantly different cluster groups based on dif-
ferent feature sets. Three intuitive and meaningful traits 
(MR_A_Ratio, LM_HSV_mean_1, and LM1_N) from 
GEO, CLR, and VEN traits, respectively, were used to 
evaluate the clustered leaves. The mean and std of these 
traits were calculated based on each type of clustered 
leaves. The statistical results were intuitively displayed in 
the clustered leaf images. The GEO traits of the clustered 
leaves distinguished MR and petiole (Fig. 14A). The MR 
of cluster 3 occupied a large area of the leaf. The mean 
value of MR_A_Ratio represented the area ratio between 
the MR and the whole leaf. The mean value of cluster 3 
(0.065) was higher than cluster 2 (0.038). The number 
of the first-order lamina (LM1_N) of cluster 1 (29.512) 
(Fig. 14B) was significantly higher than that of cluster 3 
(14.4) (Fig. 14C). Similarly, the regions of first-order lam-
inas of cluster 3 were large, and the second-order veins 
were well developed.
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Fig. 13  The principal components and correlation analysis of four types of traits. A Screen plot of the PCA model and the curves of 
cumulative explained variance. B Hierarchically-clustered heatmap for the correlation matrix of 40 PCs. C The correlation analysis for four types of 
PCs. Correlation coefficients less than 0.01 were not displayed
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Fig. 14  The hierarchical clustering and classification of positive leaves using the PCs of GEO (A), CLR (B), VEN (C), and COM (D). The leaves were 
clustered into four groups (the cluster id from 0 to 3, from top to bottom). Five leaves were randomly selected from each group and arranged in one 
row. The leaf number of each group is illustrated in the lower right corner, and statistical traits of each group are shown in the lower-left corner
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Conclusion
Here we developed a phenotyping pipeline to extract and 
quantify multiple semantic components of leaves for differ-
ent lettuce varieties. By fine definition and image annotation, 
semantic segmentation models were employed to automati-
cally decompose lettuce leaves into six types of semantic 
components. Through the normalization operations, leaves 
of great differences in size and orientation were rotated and 
scaled to the same level for trait quantification and compari-
son. The positive-back lettuce leaves were also for the first 
time used to evaluate the accuracy of semantic segmenta-
tion and their essential difference from the geometry, color, 
and venation perspectives. These semantic components 
contribute a large number of traits that are difficult to be 
measured manually and are helpful to discover the statistical 
differences of lettuce leaves for leaf classification and identifi-
cation. The proposed method can be improved in segmenta-
tion accuracy by supplementing richer annotated leaves and 
be extended for leaf phenotyping of other crops.
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