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Abstract 

Background:  There is a demand for non-destructive systems in plant phenotyping which could precisely measure 
plant traits for growth monitoring. In this study, the growth of chilli plants (Capsicum annum L.) was monitored in 
outdoor conditions. A non-destructive solution is proposed for growth monitoring in 3D using a single mobile phone 
camera based on a structure from motion algorithm. A method to measure leaf length and leaf width when the leaf 
is curled is also proposed. Various plant traits such as number of leaves, stem height, leaf length, and leaf width were 
measured from the reconstructed and segmented 3D models at different plant growth stages.

Results:  The accuracy of the proposed system is measured by comparing the values derived from the 3D plant 
model with manual measurements. The results demonstrate that the proposed system has potential to non-
destructively monitor plant growth in outdoor conditions with high precision, when compared to the state-of-the-art 
systems.

Conclusions:  In conclusion, this study demonstrated that the methods proposed to calculate plant traits can moni-
tor plant growth in outdoor conditions.
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Introduction
Agriculture is one of the important factors that human-
ity relies on. United Nations have included a goal in their 
17 sustainable goals to promote sustainable agriculture to 
provide sufficient food for everyone with the aim to end 
hunger [1]. One of the goals is to improve crop produc-
tion and plant breeding efficiency to successfully meet 
the growing food demands of more than nine billion peo-
ple by 2050 [2]. Plant phenotyping provides vital infor-
mation about crops which is helpful to farmers for their 
decision making process. Conventional phenotyping is 
manual, which is tedious, prone to errors, and labour 
intensive [3]. Plant-phenotyping is a set of protocols and 
techniques used to precisely calculate plant architecture, 

composition, and growth at different plant growth stages. 
Popular plant traits for growth monitoring include stem 
height, stem diameter, leaf area, leaf length, leaf width, 
number of leaves or fruits on the plant, and biomass [4].

Plant-phenotyping is an important area of research in 
plant breeding. It is implemented by a fusion of several 
techniques, such as spectroscopy, non-destructive imag-
ing, and high performance computing [4]. Plant traits are 
measured at different scales, e.g. at the level of organs, 
plants, and canopies. These measurements can be per-
formed using 2D or 3D imaging techniques. Some 3D 
imaging techniques, such as laser triangulation produce 
geometrically precise 3D plant models which enable 
accurate extraction of plant features. Some existing non-
destructive phenotyping systems use 2D hyperspectral 
imaging [5, 6], or stereo imaging methods for calculating 
structural parameters of the plant [7, 8].

Image-based 2D methods can also help to extract plant 
traits. Systems often consist of a single camera mounted 
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above the plant to produce a top view, occasionally com-
bined with one or two more cameras to produce side 
views to calculate the leaf area or biomass of the plant 
[9]. However, calculation of biomass of a plant using 2D 
images has limited accuracy because these techniques 
depend on the position of the camera relative to the plant 
(since whole plant is not visible from a single 2D camera). 
Precise leaf measurements can be achieved if the camera 
inspects a view perpendicular to the leaf. Nonetheless, 
this cannot be guaranteed in practical set-ups, providing 
inaccurate leaf measurements.

2D systems for plant measurement
A semi-automatic phenotyping system presented in [10] 
uses 2D images to monitor plant rosette growth rate and 
expansion of size during its vegetative stages. This system 
constantly rotates the positions of the pots within the 
greenhouse environment to reduce the effect of micro-
environmental conditions which is the strength of this 
system. However, since this system uses a single digital 
camera, it takes more time for data acquisition and pro-
cessing. In the initial growth stage of the plant, 2D images 
can monitor the growth efficiently as the plant architec-
ture is simple [11]. However, as the plant architecture gets 
more complex, 2D images cannot monitor the growth 
reliably. The system presented in [12] uses images taken 
from two different views (side and top view) for growth 
monitoring. During the growth monitoring period, dif-
ferent plant traits are measured, such as plant height and 
width. The measurements from this system were inaccu-
rate as it was not able to handle occlusion efficiently, and 

struggled in the presence of shadows and reflections. As 
the plant size increased, the plant architecture complex-
ity also increased making accurate measurement more 
difficult. Walter et  al. [13] presented a system in which, 
the growth and leaf area was calculated using a camera 
mounted above the plants. The limited information about 
the plant is achieved as the camera provided only one 
view. A growth monitoring system is presented in [14], 
which helped to calculate traits of plants growing in dif-
ferent pots. This system captures images from two views 
(side and top view) to calculate water use and growth. 
Table 1 shows the advantages and disadvantages of these 
methods in detail.

Clearly, 2D image-based methods have limitations 
such as inability to handle occlusion, not providing suf-
ficient information about plant traits (since the 2D 
camera systems do not cover all the plant views), plant 
measurements depend on the orientation of the camera 
and leaf. These limitations lead to inaccurate plant trait 
measurements. The list of various plant traits is provided 
in Table  2. To overcome these issues, 3D imaging tech-
niques have been used and documented in the literature 
[15].

3D systems for plant measurement
Image-based 3D methods can be divided into active and 
passive techniques, with the major approaches being 
LiDAR [16], structured light [16–18], structure-from-
motion [3, 15], and stereo vision [19–21]. The advantage 
of using active techniques like LiDAR is that the some of 
the LiDAR products are robust against sunlight, since the 

Table 1  Summary of 2D systems reviewed in this section

Method Viewpoint Plant traits Advantages Disadvantages

Phenoscope [10] Top Drought stress Reduces the 
effects of 
environmental 
variation

More amount of time between data acquisition and processing

R. Subramanian [11] Side Seedling root and root tip Low-cost 
system and 
high image 
resolution

Limited to seedling-level monitoring

HTPheno [12] Side and top Plant height and width Cost-effective Inefficient occlusion handling, struggles in shadows and reflections

GROWSCREEN [13] Top Leaf area and root growth Cost-effective Limited plant information

GlyPh [14] Top and side Water use and growth Low-cost Struggles with complex plant architecture

Table 2  Various 2D plant traits considered in the literature

Structural Physiological Temporal

Plant height plant width leaf length stem height 
leaf angle

Temperature content stress level of leaves water 
level drought carbohydrate content

Leaf elongation rate plant growth rate stem angle 
trajectory leaf curvature rate reproduction of 
organs
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sunlight interference affect the laser light’s wavelength. 
Also the LiDAR is able to get depth information in dim 
light. However, LiDAR has several disadvantages, such 
as some products have poor resolution (depending on 
the application, one can use high-end LiDAR to give bet-
ter resolution). In plant trait measurement, it is essential 
to have high resolution sensor to reconstruct the plant 
precisely. Another disadvantage is the warm-up time is 
required for stable measurement [16], it needs multiple 
captures for occlusion handling, struggles with presence 
of dust, and the sensor is costly [3, 16]. Structured light 
systems have struggled to perform well in outdoor condi-
tions due to insufficient contrast of the projected patterns 
within bright sunlight [22]. On the contrary, passive tech-
niques can give high resolution, accurate measurement of 
plant traits, and low sensor cost. However, these require 
computationally more expensive processing e.g. GPU. 
These GPU are in constant demand and costly. Compu-
tation time also depends on the complexity of the plant 
architecture. In brief, passive approaches are mainly used 
in applications where accurate measurements, occlusion 
handling, and obtaining high resolution 3D models are 
important [15].

The popular passive approaches for 3D modeling are 
structure-from-motion (SfM), stereo vision, and shape 
from texture/silhouette/focus/shading [23–28]. Stereo 
vision system is the most widely used technique in the 
literature for obtaining 3D information. It provides high 
resolution depth data from two different views; however, 
it is restricted due to the texture of plants (it requires tex-
ture on the plants) and has a relatively high computation 
time. Shape-from texture/silhouette/focus/shading uses a 
single camera to capture images, making it simpler to set 
up than stereo vision but results in self-occlusion. SfM 
extends stereo imaging to construct a 3D model from a 
large number of input images, reducing problems related 
to self-occlusion, and correspondence. Nonetheless, SfM 
has several disadvantages, such as a large computation 
time and the quality of the 3D model can depend on the 
number of input images and the image quality. Table  3 
shows the computation time taken based on number of 
images used for 3D reconstruction.

In conclusion, every sensor and technique has its mer-
its and demerits and their accuracy may vary. One should 
choose the sensors and techniques depending on the 
budget and requirements. In this study, we will be using 
SfM because of its cost-effective nature.

Structure‑from‑motion based studies
In recent years, computer vision researchers have pre-
dominantly used SfM for generating high quality 3D 
models. SfM is implemented on a large collection of 
overlapped images to get sparse and dense point clouds 

and can be applied to a range of scales such as seedlings, 
plants, and trees. The potential of SfM was examined by 
Snavley et al. [29] who used Bundler software to recon-
struct an object in 3D using hundreds of overlapping 
images acquired by a single camera. SfM detects and 
matches identical features in images acquired from differ-
ent views. Distinctive features in each image are detected 
using a scale invariant feature transform (SIFT) [30]. This 
method has performed well in outdoor conditions.

Recently, many studies have been conducted on 3D 
plant reconstruction. Golbach et  al. [31] used a shape-
from-silhouette for 3D reconstruction of plants. This 
study considered the plant traits, such as leaf length, leaf 
width, stem height, and leaf area. However, this study has 
several limitations, firstly, the system can not precisely 
measure leaf length and width of the leaf is curled. Sec-
ondly, this study considered only seedlings for measur-
ing plant traits which makes the 3D reconstruction and 
measurement process easier as the plant architecture is 
simple.

Yu et al. [32] used SfM for the reconstruction of a sweet 
potato plant by capturing images from different views. 
In this study, various plant features are considered for 
growth monitoring, such as leaf area, plant height, num-
ber of leaves on the plant, and leaf area index (LAI). High 
correlation was achieved between ground truth measure-
ments and extracted measurements from the 3D model. 
However, this study did not consider other important 
plant traits, like leaf length and leaf width which are also 
important for plant growth monitoring.

Jay et  al. [33] used SfM to reconstruct a crop row 
using a single camera mounted above the crop row hav-
ing only one view (top view). This approach provided 
limited information about the crop, such as number of 
leaves, leaf length, and leaf width. Santos et al. [34] used 
SfM and used a computer-vision based image acquisi-
tion approach by moving a single camera over the crop 
to get overlapping images from different views to solve 
the occlusion problem. This study achieved good cor-
relation between measured and ground truth values of 

Table 3  Computation time for SfM based on number of images 
used for 3D reconstruction

Plant Number of input images Computation 
time (min)

Chilli 90 7.5

78 6.4

65 6

50 5.1

35 4.5

25 3
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the plant by reducing overall average percentage error. 
However, there is a need to consider more plant traits 
like leaf length and leaf width for growth monitoring in 
this study to make the system reliable [31]. Rose et al. 
[26] also used SfM for 3D plant modeling and extracted 
plant features of a 3  week old tomato plant, such as 
plant height, convex hull of the plant and leaf area. 
Overall this study reported good correlation between 
ground truth values and measured values. Paturkar 
et  al. [35] used smartphone’s camera to capture the 
plant images and then used SfM for 3D modeling of the 
plants. Various plant traits were measured in this study 
including plant height, number of leaves, and leaf area 
index. However, this study did not consider measuring 
the stem height, leaf length, and leaf width when it is 
curled. This study demonstrated that it is possible to 
achieve good 3D modeling results using a smartphone 
camera.

All these studies used SfM for 3D modeling and used 
standard methods for plant trait calculation. In these 
studies, the primary aim was to extract the plant’s trait 
measurement accurately. However, some techniques 
have considered seedlings to work with which makes 
it easier to measure the traits. Also, some methods 
struggled to measure plant trait accurately when the 
plants are at a more advanced growth stage. In addi-
tion, even though some studies considered plants at 
an advanced growth stage, they did not measure the 
plant trait when the leaf and stem is curled. This is 
a very common problem in this area and none of the 
studies tries to address it. Therefore, there is need to 
consider additional features to monitor plant growth 
such as, leaf length and width which have rarely been 
considered in the literature. These features are impor-
tant as the photosynthesis process is dependant on 
leaves, making leaf dimensions important traits in 
growth monitoring. Paturkar et al. [36] presented the 
range of traits one can consider based on the need. 
Such measurements need to be robust even if the leaf 
is not flat (which is common). In this study, we will 
consider these plant traits (leaf length and width) 
along with other traits, such as number of leaves, and 
stem height. We will also look at leaf trait measure-
ments when the leaf is curled.

We propose a 3D plant trait measurement system that 
addresses these challenges. The feasibility of the pro-
posed method to measure leaf length, leaf width, leaf 
area, stem height, and number of leaves was validated 
by evaluating the reliability and accuracy of measur-
ing these traits at different growth periods of the plant 
and in outdoor conditions. The overall aim is to extract 
accurate plant traits from the 3D model. Our contribu-
tions include: 

1.	 Considering additional plant traits for growth moni-
toring, such as leaf length and width along with num-
ber of leaves, and stem height.

2.	 Investigating a novel approach to measure leaf length 
by calculating the distance between apex (tip) of the 
leaf through considering additional points in the 
middle region of the leaf to the stipule (point where 
leaf attaches to the stem). This way we can measure 
leaf length accurately even if the leaf is curled.

3.	 Investigating a novel approach to measure leaf width 
by measuring the widest part of leaf. The widest part 
is perpendicular to the leaf axis from apex to stipule.

4.	 Leaf trait measurements when the leaf is curled.

The rest of the paper is organised as follows: methods 
used in this study are explained in “Methods” section, 
with ground truth measurement presented in “Ground 
truth measurements” section. Detailed results are 
described in “Results” section. “Comparison with the 
state-of-the-art” section compares the proposed system 
with state-of-the-art systems. We end the paper with 
brief discussion along with conclusion and future scope 
in “Discussion and conclusion” section.

Methods
Experimental set‑up
We considered chilli plants (Capsicum annum L.) grown 
on commercial land in Palmerston North, New Zealand. 
We selected the chilli plant because it has constant demand 
and high value over the year. Chilli plant seedlings were 
transplanted in February 2020 and the growth of these 
seedlings was monitored twice a week from March 2020 till 
April 2020. We aimed at monitoring individual plants, so 
the plants were well-spaced so that other plants in the sur-
rounding are did not interfere in the model. The plant traits 
measured include leaf length, leaf width, stem height, and 
number of leaves. Manual measurement for ground truth 
was obtained by counting the number of leaves, and meas-
uring leaf length, leaf width, and stem height using a ruler 
scale. The detailed flow chart for 3D plant reconstruction 
and plant trait measurement is shown in Fig. 1.

3D image acquisition
Images of the plant were captured using a mobile phone’s 
main camera (Apple iPhone 6s Plus with 12MP, f/2.2, and 
29 mm focal length). Images were captured sequentially 
with the camera following an approximately circular path 
around the plant axis. Six rounds were captured from dif-
ferent distances and heights. Around 15 images were cap-
tured at approximately 25◦ intervals in each round. The 
distance of the camera from the plant was kept between 
10 and 40 cm. This acquisition process produced up to 
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90 images with 95% overlap between images. The actual 
number varied depending on the growth stage and cor-
responding complexity of the plant architecture. Table 4 
shows the number of input images with the growth of the 
plant. At each location, the camera was oriented in such 
a way that the complete plant was in the field of view. 
No camera calibration is required as the SfM algorithm 
determines both camera intrinsic and extrinsic param-
eters which is an important advantage of using this tech-
nique. The image acquisition scheme, the camera angle 
toward the plant (triangles in the image are the camera 

perspectives), and a sample of images acquired from vari-
ous locations (views) are shown in Fig. 2.

3D modeling of the plant
SfM is a widely used technique for 3D reconstruction 
[15, 37–41]. As shown in Fig. 1, 3D modeling has 3 main 
steps.

First, distinctive keypoints on the plant need to be 
found in each image. It is the matching of these keypoints 
from one view to another that enables a 3D model to be 
constructed. The scale-invariant feature transform (SIFT) 

Fig. 1  Flowchart of 3D plant reconstruction and plant trait measurements
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[30] is used for this because the resulting keypoints are 
invariant to image scaling, rotation, and translation. The 
important steps in SIFT are as follows: 

1.	 Scale-space extrema detection: The primary step 
of SIFT searches over all image locations and scales 
using a difference-of-Gaussian function to detect 
promising keypoints that are orientation and scale 
invariant.

2.	 Localisation of keypoints: Keypoints are filtered to 
remove those with poor stability. Stability is a meas-
ure of the sensitivity of keypoints to changes in posi-
tion and scale.

Fig. 2  Image acquisition scheme, sample images acquired, and the camera angles (triangles) toward the plant

Table 4  Comparison of number of input images with the 
growth stage

Date of measurement Number of 
input images

15/3/2020 18

19/3/2020 27

22/3/2020 35

26/3/2020 48

29/3/2020 60

2/4/2020 72

5/4/2020 78

10/4/2020 90
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3.	 Orientation assignment to the keypoints: The ori-
entation of every keypoint is determined from local 
image gradient directions. These are calculated based 
on the detected scale to give scale invariance.

4.	 Keypoint descriptor: The pattern of local image gra-
dients at the chosen scale in the area around each 
keypoint are used to form a (hopefully unique) 
descriptor. Gradients provide invariance to changes 
in illumination and are relatively insensitive to shape 
distortion.

5.	 Keypoint matching: These keypoints are matched 
between pairs of images of the chilli plant acquired 
from various angles and views. Bundle adjustment is 
used to form a sparse 3D point cloud of the plant and 
retrieve camera positions and intrinsic parameters 
simultaneously.

Once features from different views are extracted and 
matched, a sparse 3D point cloud is produced. This 
sparse model is filtered to remove outliers, and other 
artefacts (caused by keypoint mismatching) and irrel-
evant reconstructed topography. Subsequently, the 
estimated camera positions, orientations, and param-
eters are used to generate a dense 3D point cloud using 
a form of stereo matching. Cross-correlation is used 
to match a pixel in one image with the corresponding 
pixel in the next image on the epipolar line [42]. This 
method is repeated for each and every overlapped pair 
of images.

The generated sparse and dense point cloud is pro-
cessed (smoothed and cleaned) using filtering and 
remeshing tools in Meshlab [43]. Figure  3 shows four 
different 3D reconstructed views of a month old chilli 
plant. The plant architecture was quite complex at this 
growth stage and still the chilli plant is reconstructed 
accurately. The stem and leaves are clearly visible. The 
same 3D model is used later in this paper to illustrate 
segmentation and trait extraction.

Discussion of 3D modeling of the plant
We intentionally selected SfM for the reconstruction pro-
cess because of its high flexibility. The number of images 
and its viewpoints do not need any calibration which 
makes the process simpler. A large number of images can 
be processed without preprocessing. However, SfM does 
require significant computation time. The computation 
time and memory depend on the number of images used 
for reconstruction. This varies with the growth stage.

Furthermore, the quality of the reconstructed plant 
3D model also depends on the number of images being 
used for reconstruction. Fewer images will provide a less 
accurate 3D model. In contrast, increasing the number of 
images will result in a more accurate 3D model but pro-
cessing redundant information from overlapped images 
will increase computation time. Therefore, it is important 
to have an appropriate number of input images to bal-
ance between computation time and the quality of the 
3D model. The 3D modeling method explained in “3D 
modeling of the plant” section will be repeated on differ-
ent subsets of randomly selected images for a particular 
set of input images. The size of the subset for this chilli 
plant is varied from 25 images through to 78 images. For 
each subset size, the experiment is repeated five times, 
selecting a different random subset. The quality of the 
reconstructed 3D model was determined by comparing 
the features extracted from the model with ground truth 
data (manually measured values of the actual plant). 
Plant features, such as stem height and number of leaves 
were extracted. By exploring the correlation of extracted 
features with ground truth values, the number of images 
required to give an accurate reconstruction of chilli plant 
was determined. The number of input images for 3D 
reconstruction varied in this study as the plant was grow-
ing. Fewer images reconstructed a poor 3D model based 
on the correlation between ground truth and extracted 
features. In contrast, more images reconstructed a rela-
tively accurate 3D model. Please refer to [44] for detailed 

Fig. 3  Four different views of a 3D model of a chilli plant
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explanation. In addition, SfM has helped to tackle the 
issues reported in the literature for other reconstruction 
methods, such as self occlusion and the correspondence 
problem.

Plant trait segmentation
In our previous work, we developed a plant trait segmen-
tation algorithm [45] (please refer to this article for more 
details) which uses Euclidean distance for segmentation 
of the point cloud. Also, this algorithm does not require 
prior knowledge about the plant architecture. The point 
cloud is first pre-processed to the remove background 
and outliers, and the point cloud is down-sampled if it is 
required. Once the point cloud is pre-processed, it is then 
used for further analysis, and segmentation. A brief out-
line of the segmentation algorithm is presented here.

In plant point clouds, the cluster size varies from region 
to region. For instance, the leaf cluster may have different 
point cloud size to that of the stem cluster.

Let P be the set of points in the point cloud being seg-
mented with a radius threshold rth . Two points, pi, p2 ǫ P 
are adjacent if:

Points pi and pj are in the same cluster Ci if they are con-
nected by a path of adjacent points. Consequently, points 
are in different clusters if there is not such a path, i.e.:

An appropriate value of rth can be found using an itera-
tive search. This algorithm has performed well on differ-
ent plant species and various plant architectures. Figure 4 
shows the result of plant segmentation. It can be clearly 
seen that the algorithm segments the plant accurately.

Figure  5 shows the segmentation results of the pro-
posed method at different growth stages. This illustrates 
that proposed segmentation method has segmented 
plant’s stem and leaves efficiently and accurately at vari-
ous growth stages of the plant. We repeated the same 
method at all the growth stages and achieved accurate 
segmentation results.

Plant trait measurements
After leaf and stem segmentation, important plant traits 
for growth monitoring are measured: leaf length, leaf 
width, number of leaves, and stem height. These traits are 
important as the leaf size plays a vital role in the plant 
growth. In this study, we repeated these proposed meas-
urements for all growth stages of the plant to validate its 
accuracy and reliability.

Leaf length
Our definition of leaf length is the length along the mid-
rib. The midrib is a strengthened vein along the middle of 
a leaf running from the apex (tip of the leaf ) to the stip-
ule (leaf ’s connection to the stem). The midrib is detected 
using the method proposed in [46], which converts the 
leaf into its principal component analysis (PCA) coordi-
nates to find the apex and the stipule. The segmentation 
method has precisely segmented each leaf (see Fig.  6). 
The apex of the leaf is defined as the point on the leaf 
which is furthest from the stipule. In contrast, stipule of 

(1)min || pi − pt ||< rth

(2)min || pi − pj ||≥ rth, ∀ pi ǫ C1, pj ǫ C2

Fig. 4  Plant trait segmentation

Fig. 5  Additional segmentation results of the proposed method at different plant growth stages. Orientation of the 3D segmented model is kept in 
a way to visualise the segmentation results clearly and therefore, it is different at various growth stages
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the leaf is defined as the point on the leaf which furthest 
from the apex. These points are marked by black points a 
and s in Fig. 6.

In our study, we also measured leaves which are curled 
which makes the measurement challenging. If the leaf 
is straight then the Euclidean distance between apex 
and stipule will provide the leaf length. However, when 
the leaf is curled, this approximation will underestimate 
the true length. Therefore, to tackle this challenge, we 
consider additional points in between apex and stipule 
which will provide a close approximation of leaf length. 
We calculated the leaf length by considering 3 to 8 addi-
tional points between apex and stipule. However, the 
results from 5 to 8 points were identical and therefore, we 
selected 5 points to reduce computation time. These five 
points are marked by red points (b-f) in Fig.  6. The leaf 
length is measured using:

Leaf width
To measure the leaf width, the widest region of the leaf 
which is perpendicular to the axis through the apex 
and stipule is found, marked by a black line in Fig.  7. 
The widest region on the leaf is determined by the part 
where the Euclidean distance between the two red dots 
is maximum. However, to find the location of these red 
dots is difficult. To do that, for all points on the leaf, the 
orthogonal projection on the line from the apex to stipule 
is measured. The distance between the apex and stipule is 
divided into 25 equidistant areas. The leaf points having 
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projection in an area are selected, shown in red dots 
(Fig. 7). These red dots form a band across the leaf. The 
leftmost red point on the line, LP and rightmost point 
on the line, RP are used to approximate the width of that 
area. This step is repeated for all 25 areas; the leaf width 
is defined by the maximum of:

Stem height
To measure stem height, we tried an approach used 
in [31] called mid-line tracking which scans the num-
ber of points on the stem. However, we analysed that in 
some cases at the initial growth stage of the plant when 
the stem is very short, the stem is not detected. In addi-
tion, in natural conditions, stem can be curved as well 
and hence a close approximation of true stem height is 
also needed. To tackle this problem and to measure stem 
height precisely, we selected three points on the plant 
stem. Figure  8 shows these three marked points, one 
point at the bottom of the stem, one at the middle and 
one at the point where the topmost leaf is connected. 
The stem height is measured by calculating the distance 
between these three points. The marked black points are 
selected by visual cues to measure stem height precisely.

Number of leaves
The number of leaves is another important trait of 
the plant for growth monitoring. Plant growth mainly 
depends on the leaves as they photosynthesise. Dur-
ing the segmentation process, we have already derived 
the stipule of the leaves. Therefore, we have the count of 

(4)Leafwidth = max
(∥

∥

∥

�LP − RP

∥

∥

∥

)

Fig. 6  Leaf length measurement
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number of stipules in the model which ultimately pro-
vides the information about number of leaves.

Ground truth measurements
In this study, to establish the ground truth, we meas-
ured different plant traits, such as leaf length, leaf width, 
number of leaves on the plant, and stem height. 8 sets 
of measurements were made (twice per week) during 
the period 15 March 2020 to 15 April 2020. The number 

of leaves varied over the growth period; Table  5 shows 
ground truth values of number of leaves and stem height.

It is very easy and straight forward to count the number 
of leaves on the plant, simply by moving around the plant 
and carefully counting them. To measure leaf length, leaf 
width, and stem height, we used a conventional method 
of taking measurements with a ruler [32].

We define these measurements as the ground truth, 
although these measurements may not be accurate 
because of physical or human errors. For instance, 
some leaves are curled in such a way that it is difficult 
to measure accurately in the real world as the leaf may 
be damaged in the process of making it flat. However, 

Fig. 7  Leaf width measurement

Fig. 8  Stem height measurement

Table 5  Ground truth measurements for number of leaves and 
stem height

Date of measurement Number of leaves Stem 
height 
(cm)

15/3/2020 3 5

19/3/2020 4 7

22/3/2020 6 10

26/3/2020 7 13

29/3/2020 8 15

2/4/2020 9 20

5/4/2020 10 23

10/4/2020 11 27
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careful measurements reduce these errors. In this study, 
we have considered these factors while calculating system 
accuracy.

Results
In this section, the accuracy of the system is assessed 
based on regression between the ground truth values and 
measured values from the 3D segmented model at differ-
ent growth stages. The correlation coefficient (R2) , indi-
cated the quality of the fit. In addition, the mean absolute 
percentage error (MAPE) of the measured values from 
our 3D model, Ft and ground truth values, At is used to 
assess the accuracy:

Leaf length
The length of each of the leaves were measured indi-
vidually over the period of 1 month. This gave a total 58 
ground truth values and 58 measured values from the 
segmented 3D models for the leaf length. The leaf length 
varied from 1.6 cm to 6.5 cm over the period of the 
experiment. Figure  9 shows our proposed method per-
formed well against the ground truth with a correlation 
coefficient of 0.97. The accuracy of the leaf length meas-
urement method is determined by calculating RMSE 
which is 0.2 cm. The mean absolute percentage error is 
5.8%.

(5)M =
100%

n

n
∑

t=1

∣

∣

∣

∣

At − Ft

At

∣

∣

∣

∣

Leaf width
Figure 10 shows high correlation between the measured 
values and ground truth values of leaf width with a cor-
relation coefficient of 0.96 with RMSE of 0.11 cm. The 
mean absolute percentage error is 8% which is higher 
than that for leaf length because the width is one-third of 
the leaf length.

Stem height
The stem height grew from 5 to 27 cm during the course 
of this experiment, with 8 ground truth values and 3D 
model values. The measurements from our proposed 
method showed high correlation with ground truth 
measurements as shown in Fig. 11 (left). The correlation 
coefficient for stem height is 0.99 with RMSE of 0.11 cm. 
The mean absolute percentage error is 2%.

Number of leaves
The segmentation algorithm has performed extremely 
well to segment the leaves from the plant. Therefore, it is 
easy to count number of leaves. High correlation between 
the measured number of leaves and the ground truth is 
achieved with correlation coefficient of 1 as shown in 
Fig. 11 (right). The RMSE is zero as there is exact corre-
spondence between measured and ground truth values.

Comparison with the state‑of‑the‑art
In this section, the proposed plant growth monitoring 
method is compared with different state-of-the-art sys-
tems. The detailed comparison is shown in Table 6.
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Fig. 9  Correlation between ground truth and measured leaf length
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Golbach et  al. [31] used shape-from-silhouette for 3D 
reconstruction of plants. This study considered similar 
plant traits, such as leaf length, leaf width, stem height, 
and leaf area. However, their system can not precisely 
measure leaf length and width if the leaf is curled. It also 
considered only seedlings for measuring plant traits, 
which makes the 3D reconstruction and measurement 
process easier as the plant architecture is simple. The 
proposed method has overcome these drawbacks and 
performs well even if the plant leaf is curled.

Zhang et al. [32], tested sweet potato in outdoor con-
ditions and extracted different plant traits such as plant 
height, number of leaves, and leaf area from a 3D model. 

However, they did not consider important leaf traits such 
as length and width.

Hu et al. [47], used a Kinect sensor to monitor growth 
of a leafy vegetable and extracted plant height, leaf area 
and volume. The results were highly correlated with man-
ual measurements but they did not test the system in out-
door conditions. The proposed approach achieves lower 
RMSE and good correlation between the measured and 
the ground truth values compared to Hu’s demonstrated 
system.

Rose et  al. [26] proposed a photogrammetric method 
for precise measurement of growth parameters of 3 week 
old tomato plants in the greenhouse and demonstrated 
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Fig. 10  Correlation between ground truth and measured leaf width

Fig. 11  Correlation between ground truth and measured values for stem height (left) and number of leaves (right)
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that all considered growth parameters are correlated 
with manual measurements. However, this study did not 
examine performance of the system in outdoor condi-
tions. The proposed system achieved better correlation 
for plant height compared to their study.

Jay et al. [33] proposed an approach to extract structure 
parameters for five different plants, which are leaf area 
and plant height. These two parameters are highly corre-
lated between calculated and manually measured values. 
Nonetheless, their approach did not deal with occluded 
leaves and did not have additional information to extract 
leaf length, leaf width, and number of leaves.

Paturkar et al. [35] which is a part of our previous work, 
measured stem height, number of leaf, and leaf area. 
However, this study did not address the issue to meas-
ure the curled stem. The proposed method demonstrated 
that even a mobile phone can be used for image capture 
to reconstruct the plants in 3D giving an R2 > 0.96 for leaf 
length, leaf width and also, R2 > 0.99 for stem height and 
number of leaves.

Discussion and conclusion
In this paper, methods are proposed to measure plant 
traits for growth monitoring based on reconstruction of 
plants in 3D. Measured plant traits consist of leaf length, 
leaf width, number of leaves, and stem height. These are 
the basic, yet important, phenotypic features of the plant. 
We considered calculating leaf area in our previous study 
[35] and hence did not include this parameter as we 
wanted to cover possible parameters for plant trait meas-
urement. The proposed method is accurate for plant trait 
measurements. Structure-from-motion is used for recon-
struction of plants in 3D. The image acquisition process 
has been conducted in such a way that from every camera 
perspective, the plant is clearly visible. The image acquisi-
tion process was conducted manually with a user captur-
ing images using a mobile phone camera without using 
a tripod or any other tools which made this process easy 
and adaptable. The time required for image acquisition is 

2–3 min and this time increases with the growth of the 
plant as more images are required. The computation time 
per plant for post processing takes 10–12 min for genera-
tion of the point cloud, 7–12 min for removing outliers 
and filtering. The segmentation time has varied from 3.2 
to 12.6 s and trait measurement time varied from 8.8 to 
17.5 s throughout the growth stages of the plant.

The generated 3D model of the plant is then accu-
rately segmented into leaves and stem parts. These seg-
mented parts are then used to calculate plant traits. Leaf 
length and leaf width can be measured with an abso-
lute mean percentage error of 5.8% and 8% respectively; 
error for stem height and number of leaves is 2% and 0% 
respectively.

The advantages of the proposed method include 
reduced user involvement for plant segmentation and 
precise plant trait measurements. The SfM algorithm 
estimates the intrinsic camera parameters automati-
cally which removes the need for explicit camera cali-
bration. In the initial growth stage the processing time 
was less but as the plant architecture gets more com-
plex with the growth, the processing time increases. 
We believe that the processing time can be reduced 
with more efficient algorithms. Also, the results of 
stem and leaf segmentation show a limitation in pro-
cessing high resolution point clouds. Also, the leaf and 
stem measurement techniques does not always find an 
optimal leaf and stem position. This can be improved 
by using skeletonization algorithm, which will provide 
a more accurate plant connections. This will help to 
improve plant segmentation as well as plant’s geometri-
cal measurements. One of the major challenges in this 
study is to deal with heavy occlusion of the plant leaves, 
for instance, situations where the leaves are just con-
nected or touching each other. Also, for plant pheno-
typing purpose, the accuracy should be increased in the 
future work. In addition, in terms of image acquisition 
sensor, there are various techniques available in the 
literature, but should choose the sensor based on the 

Table 6  Comparative analysis of state-of-the-art systems

Method Stem height Leaf length Leaf width Number of leaves

RMSE (cm) (R2) RMSE (cm) (R2) RMSE (cm) (R2) RMSE (R2)

Rose et al. [26] 0.14 0.96 NA NA NA NA NA NA

Jay et al. [33] 1.1 0.99 NA NA NA NA NA NA

Golbach et al. [31] 0.43 0.87 0.43 0.91 0.21 0.85 NA NA

Hu et al. [47] 0.29 0.99 NA NA NA NA NA NA

Yu et al. [32] 0.71 0.97 NA NA NA NA 4.03 0.99

Paturkar et al. [35] 0.13 0.97 NA NA NA NA 0.06 0.99

Our method 0.11 0.99 0.2 0.97 0.11 0.96 0 1
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requirements and budget. Similarly, there are various 
plant traits available to consider for plant phenotyping 
in 3D, one must select these traits based on the plant.

The leaf length was measured precisely by considering 
5 additional points in the middle region of the leaf from 
apex to stipule. This helped us to calculate leaf length 
accurately even when the leaf was curled with high cor-
relation of 0.97 between ground truth and measured 
values. Similarly, leaf width is calculated by determin-
ing the widest part of the leaf with RMSE of 0.11 cm and 
correlation coefficient of 0.96. These methods helped to 
overcome the disadvantage associated with inaccurate 
measurement of curled leaves.

In conclusion, this study demonstrated that the meth-
ods proposed to calculate plant traits have the potential 
to monitor plant growth in outdoor conditions. Future 
work consists of applying this system on multiple plants 
to determine the robustness and reliability.
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