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METHODOLOGY

MultipleXLab: A high‑throughput portable 
live‑imaging root phenotyping platform using 
deep learning and computer vision
Vinicius Lube1, Mehmet Alican Noyan2, Alexander Przybysz3, Khaled Salama3 and Ikram Blilou1*   

Abstract 

Background:  Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water 
and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolu-
tion are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the 
structural and morphological features of roots remains challenging.

Results:  We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The 
system can continuously monitor thousands of seeds from germination to root development based on a conven-
tional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with inte-
grated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that 
allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root 
growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and 
showed that the system provides robust data and allows precise evaluation of germination index and hourly growth 
rate between mutants.

Conclusion:  MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive 
mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous appli-
cations by plant biologists, the seed industry, crop scientists, and breeding companies.
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Background
With the global increase in food demand, selecting crops 
that perform well is critical to improving food produc-
tion. Breeding for better crops includes selecting desir-
able phenotypic traits. However, isolating plants with 
particular phenotypes accurately and nondestructively is 
still challenging because it involves analyzing hundreds 

to thousands of samples and sometimes selecting spe-
cific complex features at multiscale levels ranging from 
the cell, tissue, and organ to the whole plant [1, 2]. Many 
platforms are available to achieve multimodal and multi-
dimensional phenotyping. These platforms can operate in 
a wide range of conditions ranging from controlled and 
semi-controlled environments to field conditions [2, 3]. 
High-throughput phenotyping is performed primarily at 
the organism and organ levels and has a limited resolu-
tion. Examples of these platforms include PlantScreenTM 
Systems, equipped with a three-dimensional (3D) laser 
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and multispectral camera and have a range of instru-
ments that allow phenotyping in growth chambers, 
greenhouses, and the field.1 Some systems can also phe-
notype the roots grown in either Rhizotrons2 [4] or Rhi-
zotubes3 [5]. The PlantEye can automatically image and 
compute multiple above-ground features nondestruc-
tively4 [6]. Other platforms are tailored to more spe-
cific traits, such as Phenopsis, which monitors the plant 
response to a water deficit [7]. In addition, LiDAR is a 
creative system for high-throughput phenotyping in the 
field [8, 9]. Additional platforms have also been valuable 
for live imaging. The 3D root growth and imaging system 
allows high-throughput phenotyping of rice root traits at 
the seedling stage [10]. RhizoChamber is a robotic plat-
form used to analyze root growth in rhizoboxes [11]. 
The system integrates hardware and software to ana-
lyze the spatio-temporal dynamics of root growth from 
time-course images of multiple plants. Although these 
systems allow high-throughput phenotyping, they are 
costly. Another attractive system to monitor root growth 
noninvasively is X-ray Computed Tomography, which 
allows 3D root phenotyping in soil  [12]. However, the 
system does not allow high-throughput phenotyping, the 
resolution is low and is also costly. Recently, efforts have 
been put forward to establish alternative approaches for 
low-cost live imaging of plants under stress conditions 
[13, 14]. For higher magnification imaging, the most 
commonly used systems are costly stereomicroscopes 
coupled with digital cameras. The proposed hybrid mini-
microscope offers an alternative low-cost tool that com-
bines physical and optical magnification to achieve high 
magnification and multifluorescence imaging [15, 16]. 
Although some of these platforms are easy to operate, 
and images can be captured rapidly, they are often heavy 
and nonportable, and the setup is inflexible. Moreover, 
they allow only one mode of imaging. High-throughput 
phenotyping often comes at the expense of resolution, 
whereas phenotyping at a high spatial and temporal reso-
lution is difficult to achieve at large scales.

This study proposes a platform that combines high-
throughput phenotyping with high resolution. The plat-
form can be used as a single-plate system to monitor 
biological processes at a high resolution. MultipleXLab 
is an optical, modular imaging setup for high-throughput 
phenotyping of seed germination and early root growth 
on agar and soil plates. MultipleXLab is based on off-
the-shelf, low-cost, portable camera components that 
we modified and adapted to capture dynamic processes 

noninvasively in living biological systems. The system 
comprises a digital camera and two different types of 
3D-printed multiplate holders with integrated growth 
LED lighting. Users can simultaneously capture 18 
square Petri dish plates containing multiple specimens, 
allowing screening of up to thousands of Arabidopsis 
seedlings to monitor germination rates and root-growth 
dynamics noninvasively. The system can acquire and ana-
lyze up to 100 images per hour, with each image having 
up to 64 seeds or roots, which allows automated imag-
ing of thousands of Arabidopsis and hundreds of tomato 
seedlings growing on agar plates at a high resolution. We 
also implemented computer-vision and pattern recogni-
tion technologies combined with machine learning to 
analyze and quantify distinct phenotypes. We used Mul-
tipleXLab to determine differences in seed germination 
index and growth rates of developmental, auxin, and cell-
cycle mutants.

We demonstrate that MultipleXLab has exceptional 
resolution for imaging worms, soil nematodes, insect 
behavior, and feeding habits in natural habitats. The 
system is highly flexible and can be adapted to perform 
dual-axis imaging of single plates, allowing both vertical 
or horizontal camera/lens orientations simply by flip-
ping the entire setup without the need to unscrew or 
turn a knob. MultipleXLab is ideal for mutant screening, 
where millions of seeds must be scored for a particular 
phenotype.

Results
Building a low‑cost, high‑resolution imaging system
The single-plate imaging setup comprises a digital Canon 
5DSr SLR camera devoid of a low-pass filter and replaced 
by a full spectrum filter made from fused silica. High 
magnification is achieved using the Canon MP-E 65 mm 
f/2.8 1–5× lens [17] stacked on a 2:1 teleconverter to 
achieve nearly 10:1 magnification. The camera system’s 
position is actuated with micro-steps using a vertical/
horizontal motorized rail (Fig. 1A to H, Additional file 1: 
Table  S1). This setup provides a field of view (FOV) 
of 36 ×  24 mm at 1× magnification (life-size 1:1) and 
3.88 ×  2.55  mm at 9–10× (life-size 10:1) magnification 
using the teleconverter.

Implementation for biological systems
To evaluate the quality of the single-plate imaging system, 
we first imaged organs from different plant species using 
Arabidopsis and wild-grown specimens (Fig.  2A–G), 
including flowers, leaves, and roots, which demonstrates 
that this setup can provide high-quality, detailed images 
(Fig. 2A to F). The system enabled the visualization of tis-
sue layers and fine structures, such as the stigma papillae 
on a flower carpel of Hibiscus, at the micrometer scale 

2  https://​plant​pheno​typing.​com/​produ​cts/​plant​screen-​root-​system/.
3  https://​www.​qubit​pheno​mics.​com/​rhizo​tube/.
4  https://​www.​pheno​spex.​com/.

1  https://​plant​pheno​typing.​com/​produ​cts/; https://​www.​qubit​pheno​mics.​
com/​produ​cts/.

https://plantphenotyping.com/products/plantscreen-root-system/
https://www.qubitphenomics.com/rhizotube/
https://www.phenospex.com/
https://plantphenotyping.com/products/
https://www.qubitphenomics.com/products/
https://www.qubitphenomics.com/products/
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Fig. 1  Components of the imaging setup and automated MultipleXLab. A the camera body; B perspective view of the camera attached with lens 
and visible bandwidth pass filter, teleconverter, and ring flash unit; C front view of B; D step-motor module; E stage with z-stepper rail assembled 
vertically and F) horizontally; G x–y micropositioning sample stage with a black velvet backdrop attached to the camera stage; H assembled 
imaging setup composed of an off-the-shelf motorized stage, camera, and power components; I lightbox providing soft and diffuse continuous 
lighting. The total weight of the single-plate imaging setup is under 8 kg; J MultipleXLab computer-generated image showcasing the prototype 
used to achieve high-throughput screening to capture macro-to-micro scale images of plants. MultipleXLab weighs less than 25 kg. Petri dish 
plates mounted on a 3D-printed multiplate carousel K. N = 1152. N is the number of plants used in this study
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(Fig.  2A, B), and the cell morphology and organization 
of epidermal layers of a Hibiscus petal flower (Fig.  2C, 
D), flower buds (Fig.  2E) and trichomes of Arabidopsis 
(Fig. 2F), and root hairs of tomato plants (Fig. 2G). Using 
the system handheld for 5:1 photomacrography assisted 
by a ring flash attached to the lens provided excellent 
images of trichomes on a cucumber (Fig. 2H). We were 
also able to detect thrips infesting Arabidopsis (Fig.  2I, 
Additional file 2: Movie S1) and acquired images with the 
detailed anatomy of a ladybird beetle (Fig. 2J), where we 
observed the eyes, antennae, and mouthparts, such as the 
maxillary palpus with sensory hairs of 100 to 200 μm in 
length (Fig. 2J).

Automatizing image acquisition
We sought to automate image acquisition and facilitate 
stacking to increase the system potential (Fig.  1H to J). 
Thus, we micropositioned the camera system with the aid 
of stepper motors capable of reaching a maximum reso-
lution of 1 μm per step, which facilitates refocusing and 
acquiring z-stacks to mitigate the downsides of a shallow 
depth-of-field (DOF) in extreme macrophotography [18]. 
This feature enables the end user to maximize the opti-
cal resolution of the imaging system by increasing the 
numerical aperture of the lens to its optimal maximum. 

This maximization results in shallow DOF images that 
can be automatically stacked and systematically masked 
using computer software and post-processing workflows, 
producing an overall sharper image with an extended 
DOF [19].

Time‑lapse live imaging
We implemented this setup to capture dynamic biologi-
cal processes in challenging environments using the opti-
cal arrangement and resolution obtained above. To this 
end, we first optimized the time-lapse imaging of plant 
samples using the camera’s built-in intervalometer to 
establish an adequate frequency for visualizing dynamic 
processes. This setup allowed us to operate the camera 
autonomously and use a computer to control the system 
for more specific and intricate tasks, such as automated 
focus stacking operations.

Because plant roots grow underground, monitoring 
changes during growth noninvasively in time and space 
is challenging. To overcome this challenge, we used the 
customized mini-rhizotron system (Additional file 1: Fig. 
S1). We latched this mini-rhizotron onto the single-plate 
camera stage using the camera’s versatile orientation 
(horizontal in this case) and noninvasively monitored 

Fig. 2  Imaging plant organs. A Flower of Hibiscus rosa-Sinensis L. (N = 3); B enlarged view of the stigma in A using 61 stacked images; C petal from 
Hibiscus rosa-Sinensis L. (N = 5); D enlarged view of petal in C using 13 stacked images; E) Arabidopsis thaliana mature leaf with the flower bud 
enlarged in F) using 20 stacked images (N = 5); G root tip of tomato roots growing on agar (N = 10); H handheld 5:1 magnification photograph of 
a juvenile cucumber fruit growing in the greenhouse (note the ring flash reflects the cellular structure, making its boundaries more pronounced) 
(arrow) (N = 20); I single shot of a Thysanoptera in an Arabidopsis stem (N = 15); J) image of a ladybird beetle (Harmonia axyridis) on Arabidopsis 
leaves using 40 stacked images (N = 1). N is the number of plants used in this study. Scale bars: A and C 10.0 mm, B 0.04 mm, D 0.1 mm, E 2.4 mm, F 
0.8 mm, G 0.25 mm, H and I 0.5 mm, and J 0.61 mm



Page 5 of 22Lube et al. Plant Methods           (2022) 18:38 	

Arabidopsis roots for three days, and tomato root growth 
and lateral root behavior for up to 14 days (Additional 
file 3: Movie S2).

With this setup, we detected microscopic worms and 
free-living nematodes interacting with the tomato root 
surface in the soil (Additional file  4: Movie S3) and 
insects feeding off the surface of a tomato root (Addi-
tional file  5: Movie S4). Because the system is port-
able, we tested its long-term capabilities outside the 
laboratory by placing it in the greenhouse and monitor-
ing root recovery after wounding using tomato plants 
(Additional file  1: Fig. S2, A to J). Our live time-lapse 
imaging system allowed us to determine the recovery 
time for roots after wounding and monitor the root 
regeneration process occurring after 45 to 50 hours in 
cut roots (Additional file  1: Fig. S2G and Additional 
file 6: Movie S5).

Optical and imaging system performance
To assess the optical performance of the proposed sys-
tem, we compared it with the similarly priced Stemi 508 
stereomicroscope. To this aim we used a resolution tar-
get also termed test chart that allows testing and com-
paring the optical performance of the two systems. The 
chart consists of multiple precision chrome patterns on a 
glass substrate (Fig. 3A–G). We used the standard target 
chart USAF 1951 that contains 7 groups and each group 
contains 6 elements (Fig. 3A) and each element has three 
lines with a constant spacing (Fig. 3D–G). We used this 
chart to test the ability of both systems to transfer the 
modulation frequency, in similar conditions to the exper-
imental settings to compare contrast at the pixel level.

We found that, for both systems, the resolution target 
could be used for up to element 6 in group 6 (114 line 

Fig. 3  Imaging performance. A 1951 USAF resolution target (63 × 63 × 2 mm) on the stereo microscope stage. Red arrow highlights the group 
element used for optical benchmarking; B and C depict groups 6 and 7 from both positive B and negative C chrome patterns, respectively. The 
contrast of the modulation frequency of 114 lp/mm obtained from the resolution target was evaluated on the negative group 6—element 6 using 
the imaging setup and stereo microscope. The contrast tests were performed at maximum native 5:1 and 4:1 magnifications for D the imaging 
setup and F stereomicroscope systems, respectively; E and G are crops from D and F, respectively. The vertical and horizontal intensity line probes 
on element 6 are depicted in (E-v) and (E–h) and in (G-v) and (G-h) for the imaging setup and Stemi 508, respectively; (H) an average three-fold 
superior contrast between the imaging setup (E-v) and (E–h) (29.4%) compared to the Stemi 508 (G-v) and (G-h) (10.1%) is shown in the intensity 
gradient from horizontal and vertical line pairs. The line probe intensity values for (G-v) and (G-h) have a higher absolute value, despite the lower 
contrast. This attenuated brightness was challenging to control due to the intense chromatic aberration in the brightfield illumination using the 
Stemi 508; I field of view (FOV) comparison between the two imaging systems depicting the much larger FOV in the imaging setup across the 
entire corresponding magnification range. Scale bars: B and C 0.02 mm
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pairs per millimeter [lp/mm]; Fig.  3D–F). Beyond ele-
ment 1 of group 7, the resolution target became visibly 
unreliable for both positive and negative patterns in both 
imaging systems, as the pattern on the mask had manu-
facturing issues (Fig. 3B, C, red box). Hence, we used the 
modulation transfer function response from the imag-
ing setup (Fig.  3E) and Stemi 508 (Fig.  3G) from ele-
ment 6 in group 6 to evaluate the difference in contrast 
at that modulation frequency (114 lp/mm; Fig. 3H). We 
acquired the target image in the center of the lens/image 
from both systems. We performed the contrast tests at 
4:1 and 5:1 magnification, the maximum native zoom of 
the stereomicroscope and the proposed imaging setup, 
respectively. From the vertical and horizontal intensity 
line probes assessed on element 6, we compared the con-
trast of 29.4% from the imaging setup (Fig. 3E-v and E-h) 
with the Stemi 508 (Fig. 3G-v and G-h) of 10.1%, indicat-
ing higher contrast and higher resolving power using the 
proposed imaging setup.

Comparison with a stereo microscope
To compare the system’s optical resolution and image 
quality, we imaged an Arabidopsis flower (45-days-old) 
and tomato roots (12-days-old) and compared them with 
the Zeiss Stemi 508 8:1 stereomicroscope images (Fig. 4A 
to I). We found that, at its maximum 4:1 magnification 
(due to the 0.5× demagnifying camera adapter), the Zeiss 
Stemi 508 stereo microscope had a FOV of approximately 
1.44 × 1.08 mm. At its maximum magnification of 10:1 
using the teleconverter, the proposed system still had 
a FOV eight times larger than the Zeiss Stemi 508 at its 
maximum 4:1 magnification. Likewise, the stereo micro-
scope had a FOV of 11.61 ×  8.67  mm at the minimum 
magnification, covering an area six times smaller than 
that from the imaging setup (Fig.  4I). In addition, the 
image sensor in the AxioCam 105 had a resolution of 
4.92 megapixels (2560  ×  1920 pixels). In contrast, the 
image sensor in the imaging setup had more than tenfold 
the number of pixels (50.6  megapixels or 8688 ×  5792 
pixels).

We demonstrated that we could achieve better image 
quality than the stereomicroscope (Fig.  4, A and B) by 
adequately lighting the specimens. The ability to perform 
focus stacking from snaps taken with z-axis steps of 10 
μm at 10:1 magnification produced detailed images of 
the Arabidopsis flower (45-days-old) and tomato root, 
as depicted in Fig.  4. The superior performance and 
dynamic range were also visible in the noticeably cleaner 
images with less noise, chromatic aberration, and inter-
fering reflections from specular surfaces (Fig. 4C and D).

Monitoring dynamic deformation of the root surface
The focus stacking capabilities and higher resolution 
obtained by the imaging setup prompted us to create a 
framework for acquiring the surface profile of living roots 
during states of dehydration and rehydration (Fig. 4J and 
K). Using subsequent stacks of images taken at different 
times, we reconstructed a time-resolved outer surface of 
roots using the prescribed depth map given by the pro-
filometry stack. This combination allowed us to acquire 
a dynamic deformation of the 3D models to study full-
field displacement on the surface, providing the basis 
for implementing a brand new 4D imaging technique of 
roots in vivo (Additional file 7: Movie S6).

Expanding the system to a multiplex design
Our single-plate imaging setup allowed us to acquire 
high-resolution images (Additional file  8: Movie S7). 
Next, we sought to convert the setup into a multiplate 
imaging platform; we named the resulting system Multi-
pleXLab (Additional file 1: Fig. S3, A to E). To build Mul-
tipleXLab, we designed and 3D-printed a carousel stage 
that allows the user to load up to 18 plates at a 90° angle 
(Fig.  5). MultipleXLab enables autonomous micropo-
sitioning of multiple plates relative to the camera. The 
device can be preprogrammed and independently oper-
ated using the onboard control systems. Alternatively, it 
can provide full functionality using the computer soft-
ware MultipleXLab Control Center UI (Additional file 1: 
Fig. S3E). For example, it can allow the end user to track 

Fig. 4  Real-world benchmarking of the Stemi 508 and imaging setup. (A-B) Arabidopsis flower imaged using the stereomicroscope and 
imaging setup at the native maximum of 4:1 and 5:1 magnifications, respectively (A-B right-hand corner); (A-B) are 7 × digitally enlarged crops 
highlighting the details from the right-hand corner full images. A close-up comparison in C and D depicts the stigmatic papilla imaged using 
both stereomicroscope and imaging setup, respectively. The snap in D is the same stack as in B but using only 12 images so that only the stigma 
is in focus (N = 5). Similarly, we compared these two imaging systems using a tomato root (320 μm in diameter at the elongation zone) placed in 
a small acrylic plate with agar and an interface of dark fabric E. H root tip enlarged 10 × from F obtained using the stereomicroscope. Likewise, I 
7 × enlarged snap of G shot using the imaging setup (N = 3). J surface triangulation using the root profilometry methodology on a root tip enlarged 
from (K-i, control/hydrated). (K-i, ii, and iii) datasets represent one full rehydration cycle on the same root illustrated by the arrow below, starting 
from a hydrated state (K-i), to a dehydrated one (K-ii), revealing that the shape distortions occurred due to disturbance in the cellular hydrostatic 
equilibrium. After rehydrating (K-iii) the root, a partial recovery of the original shape of the root is shown (N = 10). N, number of specimens analyzed. 
Scale bars: A, B, C, and D 0.1 mm, E 2.5 mm, F and G 0.25 mm, (H), I and J 0.05 mm, J and K 0.1 mm

(See figure on next page.)
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the plate images tagged with a QR or barcode to control 
the lighting; acquire images on demand; and perform 
device calibration, focus stacking, and proper allocation 

of image files acquired in large numbers into labeled fold-
ers linked by the QR code.

Fig. 4  (See legend on previous page.)
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High‑throughput imaging and data analysis
MultipleXLab enables autonomous micro-positioning 
of multiple plates relative to the camera and can detect 
seeds, follow their germination, and track root growth. 
The system automatically exports the temporal infor-
mation as a graphical germination dashboard (Fig.  6) 
accompanied by a datasheet file containing all data 
throughout the growth cycle. We developed an image 
processing pipeline combining traditional computer-
vision algorithms with deep learning to achieve this. At 
its core, the pipeline relies on two deep learning mod-
els for image segmentation: SeedNet for finding seed 
pixels and RootNet for finding root pixels. The pipeline 

starts by analyzing the first frame and finds the seed 
pixels using the SeedNet model. The pipeline uses the 
OpenCV connected component algorithm to locate the 
individual seeds [20]. The connected components analy-
sis returns the bounding boxes for each seed instance. 
The pipeline employs RootNet to locate the root pixels 
in each frame and expands the bounding boxes as the 
roots grow using the connected component algorithm. 
The pipeline determines bounding boxes for each root 
in each frame. Then, using the skeletonization algorithm 
implemented in the scikit-image processing library [21], 
the pipeline calculates the root length of each plant 
across the time series.

Fig. 5  Toward high-throughput root imaging. A MultipleXLab monitors 18 plates, each containing 64 Arabidopsis seeds for 4 days, and B collage 
image showcasing the frame for each plate at the end of 3 days of monitoring. Nonlinear adjustments were applied using a custom preset in 
Photoshop to even out the brightness of each image vertically. Scale: 1 cm. N = 1152 of seeds analyzed per run
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Finally, we used this information to plot root length 
versus time for each plant in a growth cycle. We fitted 
a line to the plot section, starting with the germination 
and ending with either an overlap between neighbor-
ing roots or the termination of the time series. Then, 
we calculated the growth rates as the slope of the fitted 
line.

Scores of the deep learning models
The F1 scores (harmonic mean of precision and sensitiv-
ity) for SeedNet and RootNet on the test set were 0.8048 
and 0.7395, respectively. The mean absolute percentage 
error on the root length measurements using long wild-
type (WT) roots for validation was 4.18% (N=12).

Fig. 6  Germination dashboard. A Wild-type (WT) Arabidopsis seed detection based on SeedNet; B initial overlapping of bounding boxes from 
neighboring roots at 67 h; and C plots of individual root lengths from germination to the last viable timepoint for measurement—only half of the 
seeds are depicted here, see Additional file 1: Fig. S9 for the entire set. The group of five numbers on top of the plots represent the (i) seed/root ID 
(row, column), (ii) timepoint in which germination began (in hours), (iii) timepoint for the last measured timepoint (in hours), (iv) root length (mm) 
at the last viable timepoint, and (v) growth rate of roots (mm/h). The red horizontal line in seed ID 41 indicate nongermination. Scale: A and B 58.4 
pixels/mm. N = 64. N is the number of plants used in this study. Ten biological replicates were performed using this system
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Implementing MultipleXLab for high‑throughput 
phenotyping
To test the potential of MultipleXLab, we monitored 
seed germination and root outgrowth of several develop-
mental, auxin transport and cell-cycle mutants (Figs.  7, 
8, 9 and 10). For the root-developmental mutants, we 
used the stem cells and asymmetric cell division factors 
scarecrow (scr), shortroot (shr), Retinoblastoma related 
1 (RBR1) RNA interference (Rbi), and jackdaw (jkd); the 
quiescent center function regulator Wuschel-related 
Homeobox  5 (wox5); and the root hair patterning dou-
ble mutant triptychon caprice (trycpc) [22–27]. We 
found that WT plants have a germination index ranging 
between 92 and 100% (Tables  1, 2, 3, 4). Among these 
mutants, only shr and trycpc exhibited a lower germina-
tion index of 74% and 80%, respectively (Tables 1 and 2).

Next, we tested the auxin transport mutants using the 
auxin influx carriers aux1 and lax3, the auxin efflux car-
rier pin2, and the double mutant pin2aux1 [28–30]. We 
found that lax3 had a lower germination index (53%) 
compared to WT (92%) and other auxin transport 
mutants (Table 3).

We also included the cell-cycle regulators e2fa-
1, the cell-cycle-dependent kinase double mutants 
cdkb1;1cdkb1;2, and a mutant of the Arabidopsis D-Type 
Cyclin CYCD2;1 the cyclin d2;1 (cycd2-1) [31–33]. We 
found that e2fa-1 and cyclin d2;1 had a lower germina-
tion index than the WT at 78% and 80%, respectively, 
whereas other cell-cycle mutants were similar to the WT 
(Table 4).

Next, we calculated the growth rate by monitoring the 
germination and root growth of individual seeds and 
roots hourly for each mutant. To this end, we combined 
time-lapse imaging with image segmentation based on 
deep learning in root systems (Additional file  9: Movie 
S8). This approach allowed us to evaluate and extract 
differences in growth dynamics of thousands of samples 
simultaneously and precisely detect the germination initi-
ation timepoint. We found that shr mutants have a slower 
growth rate (Fig. 7), with an average growth rate (AGR) 
of 0.03135  mm/h in shr compared to 0.15672  mm/h in 
the WT.

Hourly image acquisition allowed us to evaluate the 
growth rate of each mutant. We found that the WT had 
the most significant growth rate during the initial 48 h 
(AGR = 0.15672 mm/h for the entire cycle), while scr and 
Rbi grew more slowly (AGR = 0.1324 and 0.11503 mm/h, 
respectively) in the beginning and caught up after 65 h, 
exhibiting growth rates similar to WT at the end (Fig. 7). 
In addition, shr mutants displayed a slow and constant 
growth (AGR = 0.03135 mm/h) with the lowest growth 
rate of all the mutants. Despite not displaying statistically 

Table 1  Germination index and growth rate of root stem cell 
regulator mutants

Tukey; different letters indicate that individual means are significantly different 
(p < .05)

Genotype Germination 
index (%)

Growth rate (mm/h) N

WT 96 0.15672a 53

scr 98 0.13240b 55

Rbi 98 0.11503b 51

shr 74 0.03135c 28

Table 2  Germination index and growth rate of root stem cell 
and patterning mutants

Tukey; different letters indicate that individual means are significantly different 
(p < .05)

Genotype Germination 
index (%)

Growth rate (mm/h) N

WT 100 0.17367a 56

jkd4 95 0.13914a 53

wox5 96 0.15751a 52

trycpc 80 0.14568a 45

Table 3  Germination index and growth rate of auxin transport 
mutants

Tukey; different letters indicate that individual means are significantly different 
(p < .05)

Genotype Germination 
index (%)

Growth rate (mm/h) N

WT 92 0.11854b 57

aux1 94 0.15267a 60

lax3 53 0.09149c 34

pin2 100 0.08241c 64

pin2aux1 100 0.07152c 61

Table 4  Germination index and growth rate of cell-cycle 
regulator mutants

Tukey; different letters indicate that individual means are significantly different 
(p < .05)

Genotype Germination 
index (%)

Growth rate (mm/h) N

WT 94 0.14602b 60

e2fa-1 80 0.12230c 51

cdkb1;1cdkb1;2 100 0.09782d 59

cycd2;1 78 0.16982a 49
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different root length phenotypes compared to the WT, 
we found that the double mutant  trycpc  had a rela-
tively constant growth rate during the first 30 h and was 
revealed to be slower throughout the entire cycle (AGR = 
0.14568  mm/h). In contrast,  the wox5  growth was slow 
(AGR = 0.15751 mm/h) due to delayed germination, as 
initial growth was observed 4  h after the WT (Fig.  9). 
Finally, jkd also displayed a slight delay in growth during 
the first 5 h but gained speed to reach WT’s growth rate 
at the end (AGR = 0.13914 mm/h).

Subsequently, we followed the growth of mutants 
involved in auxin transport. These mutants are challeng-
ing to evaluate because of their agravitropic phenotype, 

causing the root to curl and obstruct certain parts under 
itself, leading to discontinuity and artifacts during meas-
urements; hence, it may introduce a biased result for the 
root length measurements (Additional file 1: Fig. S4, A to 
C). We used the skeletonization algorithm to measure the 
root segment summation length within the root domain 
prescribed by the bounding box (Additional file  1: Fig. 
S4C) to mitigate this challenge. We found that lax3 has 
significantly shorter root growth than the WT (AGR = 
0.09149 and 0.11854  mm/h, respectively). The double 
mutant pin2aux1 was similar to lax3. We also analyzed 
the efflux carrier mutant roots and found that pin2 (AGR 
= 0.08241  mm/h) has significantly shorter roots than 

Fig. 7  Root stem cell regulator mutants. Germination and growth rate scoring based on the analysis of variance and Tukey test. The wild-type (WT) 
has the highest growth rate, followed by scr and Rbi, and shr exhibited the lowest growth rate (mm/h). The growth rate of each root (datapoint) 
is calculated as the slope of the fitted line for the entire growth cycle. The number (N) of roots measured in each group of mutants for the WT, 
scr, Rbi, and shr were 53, 55, 51, and 28, respectively (total N = 187). In A, the y-axis represents the growth rate (mm/h), and the x-axis represents 
different mutants. In B, the y-axis represents the root length (mm), and the x-axis indicates the duration of root growth in hours. C represents the 
hourly growth rate throughout the growth cycle; the x-axis represents the time point of growth of each mutant. Colored bars indicate the mutants 
analyzed. Additional file 1: Fig. S10A complements C. Overlapping between roots first started at 49 h in the WT group. Three biological replicates 
were tested using this system
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the WT (AGR = 0.11854 mm/h). The roots of pin2aux1 
(AGR = 0.07152 mm/h) double mutants exhibited a phe-
notype similar to pin2, indicating that pin2 is epistatic to 
aux1 in term of root growth. While analyzing the growth 
dynamics of the auxin mutants, we noticed that the WT 
controls had a 7-h delay in growth (Additional file  10: 
Movie S9). Moreover, pin2 had the fastest germination, 

whereas pin2aux1 and lax3 had the slowest growth rate 
of the auxin mutants tested in this study (Fig. 10).

The cell-cycle mutants displayed an interesting 
growth rate. The analysis revealed that e2fa-1 (AGR = 
0.1223  mm/h) has a slightly slower root-growth 
rate than the WT (AGR  =  0.14602  mm/h). We also 
observed large fluctuations, especially during the 

Fig. 8  Root stem cell and patterning mutants. Germination and growth rate scoring based on the analysis of variance and Tukey test. No statical 
difference was detected for mutants jkd4, wox5, and trycpc compared to the wild-type (WT) mean growth rate (mm/h). The number (N) of roots 
measured in each group of mutants for the WT, jkd4, wox5, and trycpc was 56, 53, 52, and 45, respectively (total N = 206). In A, the y-axis represents 
the growth rate (mm/h), and the x-axis represents the time point of growth of each mutants. Colored bars indicates the mutants analyzed. In 
B, the y-axis represents the root length (mm), and the x-axis indicates the duration of root growth in hours. C represents the hourly growth 
rate throughout the growth cycle; the x-axis represents the time point of growth of each mutants. Colored bars indicate the mutants analyzed 
Additional file 1: Fig. S10B complements C. Overlapping between roots first started at 64 h in the WT group. Three biological replicates were tested 
using this system
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early time points. For example, cycd2,1 seemed 
to have a faster growth (AGR  =  0.16982  mm/h), 
which stabilized after 24  h, and cdkb1,1;cdkb1;2 
(AGR  =  0.09782  mm/h) germinated faster. However, 
its growth halted and became slower until 15  h, after 

which the growth speed became similar to that of 
the WT (AGR =  0.14602  mm/h; Fig.  10). Finally, the 
e2fa-1 mutant behaves similarly to cdkb1,1;cdkb1;2 but 
resumed normal growth after 36 h.

Fig. 9  Cell cycle mutants. Germination and growth rate scoring based on the analysis of variance and Tukey test. The cycd2;1 had the highest 
growth rate, and e2fa-1 and cdkb1;1cdkb1;2 had the lowest. The number (N) of roots measured in each group of mutants for the wild-type 
(WT), e2fa-1, cdkb1;1cdkb1;2, and cycd2;1 was 60, 51, 59, and 49, respectively (total N = 219). N is the number of plants used in this study. In A, 
the y-axis represents the growth rate (mm/h). x-axis represents different mutants. In B, the y-axis represents the root length (mm), and the x-axis 
indicates the duration of root growth in hours. Colored bars indicates the mutants analyzed C represents the hourly growth rate throughout the 
growth cycle; the x-axis represents the time point of growth of each mutant. Colored bars indicate the mutants analyzed Additional file 1: Fig. S10C 
complements C. Overlapping between roots first started at 53 h in the cycd2;1 mutants. Three biological replicates were tested using this system
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Discussion
Our imaging setup provides a solution to the long-
standing challenge faced by biologists when captur-
ing images of dynamic processes in large samplings 

of living organisms. During growth, organs change 
continuously in shape and size and, particularly in the 
case of plants, are formed throughout an organism’s 
entire life cycle. A wide variety of platforms have been 

Fig. 10   Auxin transport mutants. Germination and growth rate scoring based on the analysis of variance and Tukey test. The aux1 had the highest 
growth rate, and the mutants lax3, pin2, and pin2aux1 had the lowest growth rates (mm/h). The number (N) of roots measured in each group of 
mutants for the wild-type (WT), aux1, lax3, pin2, and pin2aux1 was 57, 60, 34, 64, and 61, respectively (total N = 276). In A, the y-axis represents 
the growth rate (mm/h), and the x-axis represents different mutants. In B, the y-axis represents the root length (mm), and the x-axis indicates the 
duration of root growth in hours. C represents the hourly growth rate throughout the growth cycle; the x-axis represents the time point of growth 
of each mutant. Colored bars indicate the mutants analyzed. Additional file 1: Fig. S10D complements C. Overlapping between roots first started at 
67 h in the aux1 mutants. Three biological replicates were tested using this system
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designed for different biological systems to follow plant 
growth [10, 33–38], digitize and 3D model insects [39], 
and employ hybrid microscopy [16] in addition to other 
setups for 3D automated imaging [13] and photogram-
metry [40]. We demonstrate that MultipleXLab, with 
its high-range 3D-printed carrousel (Additional file  1: 
Fig. S5), provides a solution for a wide range of applica-
tions by resolving features at a high magnification and 
resolution (Additional file 1: Fig. S5, C and D).

We used the proposed system to monitor the ger-
mination index and root-growth rate for thousands of 
Arabidopsis seeds. The ability of the system to image 
and quantify the growth rate of several samples simulta-
neously in an hourly manner enabled us to extract new 
phenotypes, such as the slower growth of Rbi and lax3 
mutants and the faster growth rate for cdkb1,1;cdkb1;2. 
The system can also dissect differences between mutants 
and to evaluate the seed quality in different seed batches. 
The experiment using auxin mutants is a good example, 
where the delayed WT growth is most likely related to 
the seed batch.

Based on cameras/lenses designated for the consumer 
market, the proposed system is more versatile than 
microscopes for simultaneously resolving macro- and 
micrometric structures, primarily due to its high-density 
pixel sensor and additional flexibility in lighting the spec-
imens. Moreover, in the proposed system, the camera 
can be detached from the rail and repurposed for gen-
eral photography. The various configurations proposed 
in this setup allow reasonable working distances between 
the outer-filter element on the lens and specimen, which 
permits proper illumination. Additionally, the optics 
can be easily stacked, and the widely available camera/
lens mount adapters available for the Canon EF bayonet 
allow for fast and straightforward lens swaps, includ-
ing infinity-corrected microscope objectives (Additional 
file 1: Fig. S6, G and H). These unique features allow the 
user to alternate between a reduced FOV for maximum 
magnification or a larger FOV for optimized magnifica-
tion, offering more flexibility to fit a wide range of speci-
men dimensions. Most importantly, this setup has the 
advantage of allowing us to adapt inexpensive optics 
from innumerable different focal lengths, including the 
adapted legacy lenses, making this type of imaging sys-
tem more versatile than most commercially established 
benchtop lab systems.

Creating surface topography images allows the pro-
posed system to have unique applications, such as the 
nondestructive surface mapping of a living organism. 
This feature becomes relevant when dealing with liv-
ing organisms subjected to changes in their surround-
ing environment (e.g., plant roots subjected to drought, 

nutrient depletion, and changes in soil composition) or 
reacting to continuous threats from pathogens, such as 
fungus, soil nematodes, and insect herbivores. Using this 
imaging setup, we monitored changes over time in the 
3D structure of the root surface during drought, allow-
ing us to create a surface representation of the root topol-
ogy (Fig. 4J and Additional file 7: Movie S6). We predict 
that this methodology can be extended to other organs, 
plant species, and organisms. Combining the multiplate 
stage holder with preprogrammed cycles enabled us 
to continuously monitor and grow multiple specimens 
indoors and precisely control the lighting used for plant 
growth using a specific daily cycle [16 h on and 8 h off]. 
The automation speed for acquiring multiscale images, 
stitching, and stacking makes MultipleXLab a versatile 
and powerful CNC microscope.

In addition, we implemented an image segmentation 
pipeline powered by deep learning to facilitate and accel-
erate the analysis of numerous multidomain images. This 
approach has recently received much attention because 
it provides an attractive solution for fast detection and 
measurement tasks in complex applications [41–45], pro-
viding a basis for automatically measuring phenotypic 
traits. These tools can perform supervised and unsu-
pervised root segmentation using convolutional neural 
networks based on classical deep learning architectures. 
These new solutions help automate data extracted from 
large datasets, such as those generated in this study. 
Although these tools are valuable and attractive to use, it 
is essential to carefully design a well-trained and robust 
pipeline that allows the user to obtain reliable measure-
ments that are representative of the phenotype in ques-
tion, in our case it required manual labeling of thousands 
of seed/roots (Additional file 1: Fig. S7, A to D). In agrav-
itropic roots, the high temporal and spatial resolution of 
image acquisition every hour provides a basis for tightly 
expanding bounding boxes around roots. This resolu-
tion allows the root pixels inside each bounding box to 
be computed even when root components may discon-
tinue during development for several reasons, such as 
obstruction of roots into itself or by the hypocotyl, seed 
coat, or cotyledons. In a few cases, the system failed to 
detect and track certain seeds into developed roots due 
to a high degree of seed displacement due to agar shrink-
age by drying (Additional file 1: Fig. S4D). Therefore, the 
computer-vision interpreter and actuator of the bound-
ing box expansion have room for improvement (e.g., 
using an analysis of component connectivity with more 
flexible expansion parameters). Furthermore, improving 
the segmentation model by extending the training using 
more edge cases can improve detection and tracking in 
future datasets.
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High-throughput phenotyping technologies pow-
ered by artificial intelligence are now important tools 
for advancing genetic gain in breeding programs [2] and 
assessing the effects of natural variation or treatments 
on plant development [46]. This study demonstrates 
that computer-vision analysis permits autonomous 
image processing in pipelines designed to analyze grav-
itropism and explore temporal micro-morphometrics in 
overwhelmingly large multiscale datasets. These high-
throughput analyses are fundamental steps to alleviate 
bottlenecks in precision agriculture in crop phenomics 
(Additional file 1: Fig. S8). Some of these limitations are 
data storage and functional modes to evaluate root-phe-
notypic metrics with multiple and distinct traits quanti-
tatively [47].

A downside of the proposed system is that is lacks the 
capacity to extend the duration of experiments. In the 
current device we can monitor root growth continuously 
only for a limited time window (maximum 4 to 5 days) 
when using agar plates because of the dehydration of agar 
over long experiments. Another limitation is the water 
condensation on the lid that we bypassed by removing, 
but this sometimes caused fungal contamination. Fur-
thermore, when using Arabidopsis, the lighting respon-
sible for plant development can get limited in certain 
seedlings due to the plating scheme (8 rows x 8 columns). 
Upon development of large cotyledons on the top rows 
around the fourth day after plating, it can cause the bot-
tom rows with seedlings to get light-deprived, causing 
etiolation.

Some minors limitations of this imaging setup is the 
need to use band filters in front of the lenses to acquire 
images in specific spectrum ranges (ultraviolet-visible-
infrared), which may affect the working distance and the 
flexibility to illuminate the specimens at high-magnifica-
tions. Furthermore, the lack of auto-focus capabilities in 
the main optical array prevents this setup to automati-
cally pull focus in respect to the specimen, thus requir-
ing the operator to determine initial parameters of focal 
length/distance in the Control Center program. Addi-
tionally, large file sizes and computationally expensive 
tasks during post-processing operations may require a 
high-end computer/laptop to handle the data processing, 
depending on the duration of the time series.

Conclusions
MultipleXLab is a mobile, modular phenotyping platform 
for automatically monitoring seed germination and root 
growth. It can be used in multiple applications by plant 
biologists, the seed industry, crop scientists, and breed-
ing companies. First, the system can be used to screen 
seed vigor (germination and viability), allowing farm-
ers and seeds companies to test the newly received seed 

batches and evaluate the viability of seed stocks. Second, 
it can be used to screen for particular phenotypes result-
ing from ethyl methane sulfonate screens, including ger-
mination rates, root length, and gravitropism. Third, it 
can screen for mutants or cultivars under various condi-
tions, assessing their response to multiple stresses, such 
as salinity and nutrient deficiency. Finally, it can monitor 
the growth response to growth-promoting substances 
and beneficial bacteria or the resistance to pathogens.

Materials and methods
Sample preparation
Arabidopsis samples
Arabidopsis seeds were gas-sterilized using 100  mL of 
sodium hypochlorite (commercial bleach) supplemented 
by 3 mL of 37% HCl for at least 2 h. Seeds were embed-
ded in agarose and stratified overnight at 4  °C before 
sowing on half Murashige and Skoog (MS) plates. Seeds 
were sown in square Petri dishes with a distance of 1 cm 
between each other. Plates were imaged from germina-
tion to early root growth (up to 5 days) under a photo-
synthetic photon flux (PPF) of 180 µmol m-2 s-1 using an 
18/6-h lighting cycle.

Tomato samples
To test the imaging setup in the greenhouse (23°C; 70% 
relative humidity [RH]), we conducted an experiment to 
observe the effects of wounding on the roots of toma-
toes (Solanum lycopersicum). We planted tomato seeds 
on top of a nylon mesh between the soil and polystyrene 
plates, which resembled a small rhizotron. This small 
12.5 × 10 × 5 cm Petri dish rhizotron was cut at the top 
to allow the plants to grow out, with the planted seeds 
at about ¾ of the plate height at an angle of −45°. This 
configuration, combined with a nylon mesh interface 
between the seeds and soil, allowed the roots to grow 
only on the mesh, facilitating the monitoring of specific 
conditions in the root system architecture during long-
term experiments.

Tomato root regeneration
Tomato roots were grown for 4 days on soil, and then the 
meristem was excised using dental microneedles. The 
root growth was continuously monitored for a few days 
until full regeneration was detected.

Dehydration experiment
Tomato seedling with a few millimeters in length [3 days 
after sowing] was transferred onto a wet mesh sitting 
directly on the top of a Petri dish with no agar for the first 
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imaging stage (control/hydrated). As the moisture in the 
mesh dries in about 45 minutes (25 °C; 60% RH), the root 
begins to dehydrate, shrink, and deform (second stage − 
dehydrated). After the root was dehydrated, we wet the 
mesh for 10 min to rehydrate the root and capture the 
third and last stage. The stacking operation of 70 shots 
took approximately 15 minutes to be acquired in each 
stage.

Customized mini‑rhizotron
The mini-rhizotron system was set up using a standard 
transparent polystyrene square Petri dish cut open on 
one side. It was filled with soil and entirely covered by a 
100 μm resolution nylon mesh (Sefar Nitex 03-100/44; 
Additional file 1: Fig. S1) to prevent the roots from grow-
ing into the soil and remain visible on the mesh surface to 
facilitate imaging.

Building the imaging system
The initial imaging setup consists of a modified digital 
camera, the Canon 5DSr SLR (Canon Inc., Tokyo, Japan), 
with a 50.1-megapixel full-frame sensor (36 ×  24 mm). 
The camera is attached to a Canon MP-E 65  mm f/2.8 
1-5x lens stacked on a 2x teleconverter (Vivitar Series 1) 
mounted on a vertical/horizontal motorized rail system 
(WeMacro, Shanghai, China; Fig.  1, A to H, Additional 
file 1: Table S1), MultipleXLab’s simplest configuration. A 
step-by-step assembly of the single-plate imaging setup is 
presented in Additional file  8: Movie S7. The expanded 
version achieved by MultipleXLab (Fig.  4J) is also 
equipped with a Canon EF 40 mm f/2.8 STM lens stacked 
on a 2:1 teleconverter (Vivitar Series 1). This setup pro-
vides a unique 28° angle of view at 30 cm away to cover 
the entire view (150  cm2) of the Petri dish and permits 
proper lighting and larger magnification of 0.24x (0.18x 
without the teleconverter) at life-size, given by the 15 cm 
gain in the minimum focus distance. A set of band-pass 
filters, including infrared, visible light, and ultraviolet 
light, can be used in front of the lens element to narrow 
the spectrum of interest.

Lighting enclosure for high‑resolution imaging using 
the single‑plate setup
The imaging system was placed inside a large, illuminated 
lightbox (80 × 80 × 50 cm) that provides constant light-
ing for imaging, and it is used to assist in refocusing the 
optical system, as well as in video recording. Further-
more, a ring flash (Canon MR-14EX II) was attached to 
the lens, and two Speedlite flashes (Yongnuo YN600EX-
RT II) that were diffused with a strap-on light softbox 
(15.2 × 12.7 cm) were used. Mounted on articulated arms 
(Manfrotto 244 Variable Friction Magic Arm, Cassola, 

Italy), these external flashes provided oblique light on the 
specimens inside the lightbox to assist in high-magnifi-
cation imaging when high light intensity is required. We 
also used three 150 W E27 5500 K lightbulbs in the light 
modifiers outside the lightbox to provide constant fill 
light and facilitate sample alignment and focusing during 
imaging. These components are listed in Additional file 1: 
Table  S1 and depicted in Fig. 1I and Additional file  8: 
Movie S7.

3D‑printing a multiplate carousel stage
First, the hexagonal 3D-printed stage design was con-
ceptualized and designed using SketchUp (v.18.0.16976, 
Google LLC, Mountain View, California, USA). Then, it 
was rendered using Fusion 360™ (Autodesk®, Inc., Mill 
Valley, California, USA; Additional file  1: Fig. S5). The 
design file was exported to an STL format and converted 
into a printable file using the slicing software ideaMaker 
(Raise 3D, Irvine, California, USA) to set printing param-
eters on the raft base. The layer height was set to 0.2 mm, 
the infill to 15%, and two shells were used. The file was 
then loaded into the Raise 3D Pro 2 printer and printed 
in several sessions of 27 h for each stage level.

Building the MultipleXLab control system
The device is equipped with high-resolution stepper 
motors (Nema 17 or 23 Model 17HS15-1684S-PG5, 1.8° 
per step) in three linear actuators (400, 200, and 150 mm 
stroke) using ball screw (Fuyu Motion FSL40, Sichuan, 
China) and one rotary table (PX110, Beijing PDV Instru-
ment Co., Ltd, China) driving the carousel, which also 
interfaces with two stacked goniometers to provide fine 
tilt adjustments in high-magnification applications to 
achieve parallelism with the vertical axis carrying the 
camera. The system can operate under preset lighting 
cycles (18/6 on/off) using built-in plant-growth lighting 
at 24 V, providing up to 400 µmol m-2 s-1 of PPF within 
a 10  cm distance. Using the 3D-printed carousel with 
three levels, we can tightly fit 18 plates simultaneously 
(Additional file 1: Fig. S3) and precisely lighten the plates 
with cross-polarized lighting using an array of Speed-
light flashes covered with linear polarizer films (P100A-
3Dlens, Taipei, Taiwan) working in conjunction with a 
circular polarizer (B+W MRC filter, Bad Kreuznach, 
Germany) on the Canon EF 40  mm f/2.8 STM lens 
stacked on a 2:1 teleconverter, effectively turning it into 
an 80 mm focal length lens.

The system is integrated using a custom printed circuit 
board with an ESP32 as the master microcontroller to 
control the lighting and the camera shutter release (Addi-
tional file  1: Fig. S3D). It also reads a program from an 
SD card to perform routine monitoring cycles in selected 
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plates. Additionally, the ESP32 interfaces with an I2C 
port expander, enabling controlling and communicating 
with auxiliary sensors and actuators and a real-time clock 
module to synchronize the program timing and lighting 
cycles accurately. A slave microcontroller performed by an 
Arduino Nano acts as a liaison to the stepper motors, and 
it receives commands from the ESP32, completes step-
per operations, and handles limit switches in the calibra-
tion step. The power consumption of the entire system is 
approximately 0.1 kWh.

The device can be preprogrammed and independently 
operated using the onboard control systems. Alterna-
tively, the user can run the system using the MultipleX-
Lab Control Center UI software (Additional file  1: Fig. 
S3E). The software has features that allow the end user 
to perform device calibration and focus stacking, control 
the lighting, and acquire images on demand. Images cor-
responding to each plate were tagged with a QR or bar-
code to facilitate data acquisition and management. The 
images can be easily retrieved, allowing the proper allo-
cation of numerous images into labeled folders linked by 
the QR code.

Imaging settings
We employed a set of different imaging settings during 
z-stacking, single-snap, and time-lapse. For each condi-
tion, as determined by sample size, geometry, and envi-
ronment, we specifically tailored the lighting as needed 
by selecting different types of external lighting and light 
modifiers to create soft and diffused lighting around the 
specimens. For comparison, we also acquired images 
using the stereomicroscope Stemi 508 (Carl Zeiss 
Microscopy GmbH, Jena, Germany) coupled with a color 
CMOS camera (AxioCam 105 by Carl Zeiss Microscopy 
GmbH) using a camera adapter (Zeiss 60N-C 2/3 0.5X) 
operated using the manufacture’s ZEN lite imaging 
acquisition software.

Macrophotographs of plant organs were shot in raw 
CR2 format with a native resolution of 8688  ×  5792 
pixels, taken in 40-μm step increments in z-resolution 
at 5:1 magnification, f/2.8, 1/200  s, and ISO 100. These 
were combined with a 2:1 teleconverter turning the effec-
tive magnification to nearly 10:1 and two perpendicular 
Speedlight flashes optically triggered by one parallel ring 
light flash at 1/64 power mounted on the camera. The 
imaging parameters for the z-stacks were different for 
each specimen. The Thysanoptera in Arabidopsis leaves 
was imaged using a single exposure (i.e., no focus stack-
ing) because the insect was continuously moving; there-
fore, we used a faster shutter speed of 1/2500  s and an 
aperture of f/5.6 without the 2:1 teleconverter. When 
capturing the static ladybird beetle (Harmonia axyridis) 
on Arabidopsis leaves, we employed focus stacking with a 

finer 20-μm stepping in z-resolution to counter the even 
shallower depth of field.

We used a flower as a specimen to assess the perfor-
mance of the single-plate imaging setup versus a stereom-
icroscope. A stack of 21 (2560 × 1920 pixels) snaps was 
taken using the stereomicroscope by manually focusing 
through the entire depth of the visible parts of the flower. 
The image was obtained from 103 stacks (8688 ×  5792 
pixels) stepped in 10 μm in z-resolution at about 10:1 
magnification, f/5.6, 1/100  s, and ISO 100, using two 
perpendicular Speedlight flashes optically trigged by a 
ring light flash mounted on the camera using the single-
plate imaging setup; all set at 1/16 power. The close-up 
comparison of the stigmatic papilla was captured using 
the stereomicroscope and the proposed system. The 
final image was made from 13 stacked images obtained 
by manually focusing through the entire depth or radial 
thickness of the root using the stereomicroscope. The 
image obtained from the single-plate imaging setup was 
made using 12 images so that only the stigma was in 
focus. The entire datasets from time series acquired using 
the MultipleXLab were taken at f/11, 1/10 s, and ISO 200, 
with external flashes set at 1/32 power.

Batch processing using Adobe Photoshop CC (20.0.5) 
was employed to handle the thousands of images gener-
ated by the MultipleXLab device. Each raw image has a 
file size of around 50 MB. These raw images were treated 
using the Camera Raw Editor in Adobe Photoshop 
CC to apply a fixed preset that was created to even out 
brightness in the image, correct color temperature, and 
increase contrast. The output images were exported to 
digital negative format and aligned using the auto-align 
translation function through a batch process in Photo-
shop. Aligned frames from the same plate were center-
cropped to a fixed size of 4639 × 4480 pixels, comprising 
the region of interest. Frames were exported to TIFF for-
mat using an automated batch process, and each TIFF 
frame had a final file size of approximately 30 MB. Time 
lapses and animations were rendered using Final Cut Pro 
10.5.0 (Apple, Cupertino, California, USA).

Measuring pixel contrast between the imaging setup 
and stereomicroscope
The calculated theoretical maximum numerical aperture 
of the imaging setup was 0.09 at 1× magnification and 
0.03 at 5× magnification. Subsequently, we determined 
the lateral resolution of the entire imaging setup based 
on the calculated modulation transfer function using an 
inexpensive 1951 USAF resolution target5 with negative 
and positive chrome patterns manufactured according to 
MIL-S-150A standards, measuring 63 × 63 × 2 mm and 

5  https://​perma.​cc/​NW7W-​6D6F.

https://perma.cc/NW7W-6D6F
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containing the entire group and elements from 0 to 7, 
indicating a minimum and maximum of 1 to 228 lp/mm, 
respectively.

The resolution target was imaged at 4:1 magnification 
using the stereomicroscope at its maximum brightness 
illumination and auto-exposure based on a selected area 
of the negative chrome pattern on the mask. For the 5:1 
magnification image obtained using the proposed imag-
ing setup, we configured the imaging setup vertically to 
mimic the stereomicroscope orientation and used a mini-
LED light array (Aputure Amaran AL-MX Bicolor LED) 
as a transmitted light source behind the resolution target. 
The raw photos taken by the imaging setup were shot at 
f/3.2 (optimum optical resolution), 1/40 s, and ISO 100, 
with the native resolution of 8688 × 5792 pixels.

We calculated the contrast from the difference in the 
amount of light in the greyscale (0 to 255) peaks “max” 
and valleys “min” between dark and bright line-pair pat-
terns categorized from 0 to 100%. We used line probes 
in Avizo 2020.1 (Thermo Scientific, USA) to examine 
the intensity values of the target images quantitatively 
because this module scans the greyscale intensity values 
along a line probe assigned by the user. We identified the 
peaks and valleys that can be smoothed using sampling 
and averaging factors for better comparison. A graph of 
the contrast versus spatial frequency from both imaging 
systems can be obtained from the local modulation [48], 
given by Eq. (1):

Root profilometry
We exported TIFF files containing the depth map layers 
from the stacks using Helicon Focus (Helicon Soft Ltd. 
v.7.5.6, Helicon Soft Ltd), Kharkov, Ukraine). These lay-
ers were processed with Avizo, starting with the determi-
nation of the scale using the known physical size of the 
images in x, y, and z (2.55 × 3.88 × 0.01 mm), where the 
micro-step determines z between layers within the stack. 
After loading the scaled dataset into Avizo, an image con-
version step extracts the alpha channel from the stack 
made from the individual TIFF files. This channel is bina-
rized to generate a tetrahedral mesh to reveal a triangu-
lated surface of the root topography, which is carried out 
using the surface generation module in Avizo. Cleaning 
up the root-labeled channel may be necessary to obtain 
a result restricted to the region of interest because cer-
tain areas that do not represent the roots may be picked 
up due to uneven surfaces on the substrate where the 
root is growing or from dust accumulation in the sensor, 
creating ‘dust trails’ in the stack. Therefore, we advise to 

(1)
\(modulation = \frac{max −min}{max +min}\)

manually remove unwanted features in the Segmentation 
Editor in Avizo to apply a certain level of noise-smooth-
ing and correct the contour roughness due to voxel alias-
ing, so that accurate and somewhat complex surfaces 
can be rendered with ease in Avizo. When necessary, the 
cleanup step should be performed before generating a 
mesh.

To visualize the 4D dynamics on the roots during 
dehydration and growth we configured the imaging 
setup as shown in Additional file 1: Fig. S6F, and we set 
the acquisition time to observe these dynamics in space 
and time. For example, during the dehydration observa-
tions (Fig. 4J), we captured three consecutive stacks (con-
trol/ hydrated, dehydrated, and rehydrated) made from 
70 snaps at a 10-μm step in z, which generated 700-μm 
stacks imaged within 15 min. Therefore, the dynamics in 
a 700 μm stack imaged at a 10-μm resolution in z could 
not develop faster than the acquisition time (<15 min) to 
generate artifact-free datasets that could arise from spec-
imen movement during acquisition. The image acquisi-
tion period was primarily bottlenecked by the Speedlight 
flashes that could not fire successively at full power, 
requiring a 12-s recharging delay between shots. Down-
time could be improved by adding more light sources at 
lower relative power to allow for faster recharging.

High‑throughput analysis of developmental, cell‑cycle, 
and auxin mutants
We used the MultipleXLab to examine root-growth 
dynamics in several different Arabidopsis mutants. Small 
Petri dishes were used to plate either 64 or 56 seeds on 
1/2 MS agar mixed with charcoal to make the media 
dark, increasing the contrast between the roots and back-
ground. Plates were stored in a growth room (20.5  °C; 
67% RH) for 24  h prior to being loaded into the carou-
sel for hourly imaging for up to five days. The lid of the 
plates was removed to avoid condensation from blocking 
the view, and the entire device was enclosed using a plex-
iglass frame to minimize the drying of the agar plates and 
decelerate contamination that may happen after a week 
of ongoing experimentation.

Statistical analysis
Data analysis was performed using computer software 
(OriginPro 2020, OriginLab, Massachusetts, USA). Data-
sets were significantly drawn from normally distributed 
populations according to the Shapiro–Wilk test using a 
0.05 significance level [49]. The one-way analysis of vari-
ance followed by the post hoc Tukey test was employed 
using p <  .05 to .001 to compare the difference between 
mutants.
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SeedNet and RootNet models
To determine the initial seed locations in the first frame 
of the time series, we developed an artificial neural net-
work called SeedNet. The network is a binary image seg-
mentation model based on the U-Net architecture [50]. 
Given an RGB image, SeedNet outputs a pixel-wise mask 
classifying each pixel as a seed [1] or not [0]. Raw images 
were too large to be processed with SeedNet; therefore, 
we divided the original image into patches of 256 × 256 
pixels. Furthermore, we down sampled the patches to 
32 × 32 pixels because we aimed to locate only the seed 
positions. SeedNet outputs were then upsampled to 
256 ×  256 pixel patches and stitched back together to 
obtain a pixel-wise mask with the original size of the raw 
image.

Similarly, we developed an artificial neural network 
called RootNet based on the same U‑Net architecture. 
RootNet outputs a pixel-wise mask classifying each pixel 
as a root [1] or not [0] from a given RGB image. Raw 
images were also too large for RootNet; therefore, we also 
patched (256 ×  256 pixels) the original image. RootNet 
outputs were stitched back together to obtain a pixel-
wise mask of the original-size raw image, like in the Seed-
Net outputs.

SeedNet and RootNet were developed using Keras [51], 
an open-source software library. The implementation 
details for the models are provided in the supplementary 
information (Additional file 1: Tables S2 and 3).

To train both RootNet and SeedNet models the data-
set was randomly split into training [46 images] and 
testing [19 images] sets. Annotations were performed 
by labeling the root and seed pixels (Additional file  1: 
Fig. S7, B and D) using iLastik [52]. Each image had 
64 seed/roots, hence a total of 3200 annotated plants. 
Since one entire image is too large to be used for 
training, each image was divided into smaller patches 
(256 × 256 pixels) and these patches were used to train 
the models. Thousands of patches were used for train-
ing each model and it took <10 minutes on a desktop 
computer with 30 GB of RAM and an NVIDIA Quadro 
P4000 GPU.

Computing resources for image processing
For inference, the entire pipeline processing took about 
one hour to analyze a single timeseries on a laptop (8 
GB RAM, CPU 2.6 GHz Intel Core i5), alternatively, 
and it took 30 minutes using a workstation (128GB 
RAM, Intel Xeon Gold 6130 @ 2.10GHz; NVIDIA 
Quadro M2000 GPU). Image processing tasks using 
Photoshop were also carried out using the laptop and 
workstation.
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