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Abstract 

Background:  In recent years, there has been an increase of interest in plant behaviour as represented by growth-
driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) 
movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associ-
ated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from 
environmental stimuli, such as light and gravity. Tracking these movements is therefore fundamental for the study 
of plant behaviour. Convolutional neural networks, as used for human and animal pose estimation, offer an interest-
ing avenue for plant tracking. Here we adopted the Social LEAP Estimates Animal Poses (SLEAP) framework for plant 
tracking. We evaluated it on time-lapse videos of cases spanning a variety of parameters, such as: (i) organ types and 
imaging angles (e.g., top-view crown leaves vs. side-view shoots and roots), (ii) lighting conditions (full spectrum vs. 
IR), (iii) plant morphologies and scales (100 μm-scale Arabidopsis seedlings vs. cm-scale sunflowers and beans), and (iv) 
movement types (circumnutations, tropisms and twining).

Results:  Overall, we found SLEAP to be accurate in tracking side views of shoots and roots, requiring only a low num-
ber of user-labelled frames for training. Top views of plant crowns made up of multiple leaves were found to be more 
challenging, due to the changing 2D morphology of leaves, and the occlusions of overlapping leaves. This required 
a larger number of labelled frames, and the choice of labelling “skeleton” had great impact on prediction accuracy, 
i.e., a more complex skeleton with fewer individuals (tracking individual plants) provided better results than a simpler 
skeleton with more individuals (tracking individual leaves).

Conclusions:  In all, these results suggest SLEAP is a robust and versatile tool for high-throughput automated track-
ing of plants, presenting a new avenue for research focusing on plant dynamics.
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Introduction
Interest in the study of plant behaviour, first described 
by Charles Darwin himself [1], has been steadily rising 
in the last two decades [2–8]. Plant behaviour has been 
defined as an individual’s response to some event or 
environmental change during the course of its lifetime 
[5], and thus a form of phenotypic plasticity [2, 3]. As 

in animals, many behaviours in plants are expressed as 
a form of movement, however, due to the sessile nature 
of plants, most movements are directly linked to growth. 
Such growth-driven plant movements can generally be 
classified into nastic (internally driven) and tropic (envi-
ronmentally driven) movements. Nastic movements 
include circumnutations, a circular movement of plant 
organs commonly associated with search and  explora-
tion, while tropisms refer to the directed growth of plant 
organs toward or away from environmental stimuli, such 
as light and gravity. Such growth-driven movements 
occur over long time scales, e.g., hours to days [2, 3], and 
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are manifested by a continuously changing morphology, 
as opposed to the locomotion of animals. Accordingly, 
when studying plant behaviour, it may be unclear how 
behaviours are expressed and thus which behaviours to 
analyse. Most plants are decentralized organisms with a 
modular structure composed of repeating units of leaves, 
shoots and roots, each of which can respond simultane-
ously to different local stimuli. With growth being a slow 
process, and responses happening in different places 
at once, observing plant behaviour can be challenging. 
Time-lapse imaging offers a great opportunity to record 
dynamic changes in behaviour of plants over long peri-
ods of time across the whole plant, e.g., tracking shoot 
and leaf growth. Unlike static phenotyping, however, this 
form of data collection quickly yields sequences of hun-
dreds or more images, making manual quantification of 
the morphological dynamics laborious if not intractable.

Previous studies have relied on classical image process-
ing techniques to automate this process, such as dense 
optical flow [9] based on algorithms first introduced by 
Lucas and Kanade [10] as well as Horn and Schunk [11]. 
These algorithms measure movement directly rather 
than identifying specific plant parts across each frame. 
Depending on the biological question, these algorithms 
can be useful for extracting general motion features, but 
they lack the ability to track the trajectory of specific 
morphological features of interest. Other approaches lev-
erage segmentation (foreground separation) as a pre-pro-
cessing step to specialized feature extraction procedures. 
RootStem Extractor [12] defines the plant’s skeleton by 
drawing points along a line through the base of the plant 
and extrapolating along the line to find the outer edges 
of plant organs. Here leaves or cotyledons serve as end-
points for the skeleton, meaning that only shoots and 
roots of young plants can be tracked. Phytotyping4D 
[13, 14] provides another tool that can be used to ana-
lyse plant movement. While this method allows to collect 
a whole range of detailed data, such as the location and 
height of plant parts, it requires a fairly complex setup 
and only allows for a maximum of five pictures per hour 
and is thus limited in the maximum temporal resolution 
of behaviours recorded.

In recent years, the development and use of machine 
learning algorithms, such as convolutional neural net-
works (CNNs) have greatly advanced the state-of-the-art 
in image-based data processing tasks across the fields of 
behaviour and neuroscience [15–19]. For motion cap-
ture applications, CNNs enable automatic estimation of 
the posture of an animal without the need of additional 
markers on the animal itself. Instead, these networks 
exhibit exceptional capabilities for learning the structure 
of natural features of the animal’s body, such as joints, 
from the image patterning alone [19, 20]. This suggests 

that approaches for markerless pose estimation may be 
suited for plants as well—a crucial step forward since 
markers placed on plants can directly influence their 
growth and movement, for example by locally inhibiting 
photosynthesis or by triggering a touch response. In addi-
tion to obviating the need for specialized physical equip-
ment, such as markers or special imaging hardware, these 
approaches also do not require segmentation, which is a 
typically error-prone or manually laborious pre-process-
ing step involved in most computational approaches for 
plant phenotyping.

Here we evaluated the suitability of an animal pose 
tracking framework, Social LEAP Estimates Animal 
Poses (SLEAP; www.​sleap.​ai; [20]), to the task of plant 
tracking. SLEAP is a deep learning-based tool developed 
for multi-animal pose tracking using CNNs. The pro-
gram offers an easy-to-use graphical user interface (GUI) 
for image labelling and allows for GPU-free training and 
inference using Google Colab. It is highly accessible, with 
complete documentation and tutorials available, includ-
ing datasets. Importantly, SLEAP is particularly useful 
for this application as it supports training customizable 
lightweight neural network models; these small networks 
function as “specialists” which are fast to train (< 1  h) 
and can work few (< 10–100) labelled images. This differs 
from most deep neural network architectures which rely 
on large-scale datasets (> 1000 labelled images) for train-
ing “generalist” models. As we will show, this unique fea-
ture is key to enabling efficient labelling for typical plant 
phenotyping projects in lab settings which typically do 
not exceed 1000 frames. We used time-lapse videos from 
five separate setups and three different types of plants 
(Arabidopsis, bean, and sunflower) differing in imaging 
angles (side-view and top-view), lighting conditions (full 
spectrum, blue and infrared light), scales (100  μm-scale 
and cm-scale), movement types (circumnutations, trop-
isms and twining) and organ types being tracked (shoots, 
roots and leaves). Unlike animals, plant morphology 
changes over the course of a time-lapse video, introduc-
ing a problem since SLEAP requires the “skeleton” (the 
fixed set of morphological landmarks to track) to be pre-
defined during labelling. Hence, we leverage SLEAP’s 
high model training efficiency to explore different model 
configurations and approaches optimized for each data-
set, to deal with this challenge and to achieve reliable 
tracking with few labels.

Methods
For this study we analysed the movement of different 
plants from time-lapse videos which were generated 
for different experimental protocols (Table  1). Each 
experiment name includes the plant species and type 
of plant movement being tracked, and an acronym for 

http://www.sleap.ai
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convenience: Arabidopsis gravitropism (AG), Arabi-
dopsis phototropism (AP), bean twining (BT), sun-
flower phototropism (SP). In the case of the sunflower 
shade avoidance experiments, which involve the top 
view of a plant crown, we adopted two different label-
ling definitions, where individuals are defined as either 
single leaves (STL) or as whole plants (STP). Table  1 
details the lighting regime and viewing direction, the 
resulting image dimensions and video size, the number 
of individuals tracked simultaneously within the same 
frame, and lastly the number of labels per individual. 
The skeleton used in each experiment are illustrated in 
Fig. 2.

Description of plant growth and setup
Arabidopsis gravitropism (AG)
Arabidopsis thaliana  was grown in 12/12  h  day-night 
cycle, on half-strength MS phytagel medium, in the 
growth chamber at 24  °C for 72–96 h. After germina-
tion, seedlings were transferred to another Petri dish 
under a biological hood. Seedlings were arranged 
by groups of five and the roots were placed between 
the lid of the Petri dish and a block of fresh phytagel 
(same recipe as for cultivation). The Petri dish was 
then mounted on  a rotating plate, the inclination of 
which is set by an Arduino microcontroller. During the 
experimental period, the  device  keeps the Petri dish 
vertical (seeds growing upward) for  10  h, then tilts it 
90 degrees for 48 min, and then tilts it back to its ini-
tial orientation for the rest of the experiment  for 8 h. 
White light was provided from the top only, except 
when taking pictures (light from side). Pictures were 
taken every 10 min using a Nikon D750. For this study 
we only used the images taken after the tilting of the 
plants.

Arabidopsis phototropism (AP)
Arabidopsis seedlings were germinated as in (a).  After 
germination, seedlings were transferred into small 3D 
printed cases which left only the hypocotyl exposed to 
light. As for gravitropism protocol, roots were placed 
between a wall of the box and a fresh phytagel block. 
During the experiment, seedlings were left in complete 
darkness during the experiments and pictures were taken 
every 10  min using to near infra-red  (peak wavelength: 
940  nm)  flashes. A single transient blue-light stimula-
tion (10 s) was provided using a set of LEDs from the left 
side.

Bean twining (BT)
Beans (Phaseolus vulgaris) were germinated in soil 
at 24  °C and a 16/8  h  day/night cycle. After germina-
tion they were transferred to individual (9 × 9  cm) pots 
with 20–20-20 N-P-K fertilizer until they reached about 
30  cm in height. The plants were then transferred into 
the experimental setup and were each offered a hanging 
straw as support for twining. Pictures were taken every 
2 min from the side with a Nikon D7500.

Sunflower phototropism (SP)
Sunflower (Helianthus annus) seeds were kept in a fridge 
(5 °C) for 12 h before peeling them and soaking them for 
24  h in water. They were than germinated in vermicu-
lite within 50  ml tubes and a 12  h  day and night cycle 
at 24  °C. After germination small orange dots (~ 1 mm) 
were painted  with acrylic paint along the stem of the 
seedlings. The seedlings were then placed in groups of 
5 within black-painted tube-racks into the experimental 
setup, where they were subjected to unilateral blue light 
(with wavelength of 450 nm, and light intensity between 

Table 1  Overview of videos and analyses for movement tracking using SLEAP

The names of the experiments include the plant species, the type of growth-driven movements being tracked, and an acronym. Corresponding images of the plants 
are shown in Fig. 2, illustrating the view direction, the number of labels per plant, and the number of individuals being tracked in each frame. We analysed the 
sunflower shade avoidance video in two ways, tracking separate leaves (STL) and tracking separate plants (STP). An example of labelling and tracked frames for each 
experiment can be found in Fig. 2

Experiment and acronym Lighting View Video size [MB] Dimensions [pixels] # Frames # Individuals # Labels per 
individual

Arabidopsis Gravitropism (AG) Full spectrum Side 0.35 462 × 714 450 5 8

Arabidopsis Phototropism (AP) IR and short 
burst of blue 
light

Side 1.36 1226 × 524 180 4 5

Bean Twining (BT) Full spectrum Side 71.8 1990 × 2792 645 1 8

Sunflower Phototropism (SP) Blue light Side 8.32 1080 × 720 345 5 6

Sunflower shade avoidance (STL) Full spectrum Top 5.7 1280 × 960 90 21 4

Sunflower shade avoidance (STP) Full spectrum Top 5.7 1280 × 960 90 3 19
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300–1200  μW/cm2 depending on location)  for ~ 22  h. 
Pictures were taken every 4 min throughout the experi-
ment using a D3400 Nikon camera.

Sunflower shade avoidance (STL & STP)
After germination of sunflower seeds as in (d), seed-
lings were transferred into soil within 9 × 9  cm plastic 
pots. The plants were then grown with a day-night cycle 
of 16/8 h at ~ 22 °C. We grew three plants in a row, with 
pots being right next to each other. Pictures were taken 
every 5 min from ~ 40 cm above the plants, using a web-
cam (Logitech c270 webcam) connected to a Raspberry 
Pi (Raspberry Pi 4 model B, Pi Foundation, Cambridge, 
UK).

Labelling and training of videos
Each video was labelled within the SLEAP (v1.1) GUI, 
see Fig. 1 for an overview over the SLEAP workflow and 
Fig. 2 for an overview of the skeleton used for each video 
analysis. To test the influence of the number of labelled 
frames on prediction accuracy, we trained the networks 
with 5, 10 and 20 labelled frames per video. The first five 
labelling frames were distributed evenly across the video 

in order to capture the variation of plant morphology 
over time due to growth. We saved the training package 
used for training the networks in Google Colab. All addi-
tional labels were randomly distributed across the video, 
and after reaching 10 and 20 labelled frames respectively 
we again saved the training package.

SLEAP offers two approaches to train models for 
identifying the posture of multiple individuals: “top-
down” and bottom-up”. In the top-down mode, a 
network first finds the different “instances” (here: 
individual plants) and then estimates the location of 
each part (morphological landmarks belonging to the 
same plant). In the bottom-up approach, first all land-
marks are identified and only then are they grouped 
into instances. While an “instance” typically refers 
to a single organism, SLEAP is agnostic to the defini-
tion and can be used to track repeated morphological 
features, such as leaves. Following preliminary test-
ing, we chose the bottom-up approach to train our 
models, though which approach makes more sense 
depends on the model system and biological question. 
We employ the UNet architecture in SLEAP, config-
ured with an encoder with 5 downsampling blocks of 2 

Fig. 1  Simplified overview of the SLEAP workflow
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convolutions with ReLU followed by max pooling with 
a stride of 2; the decoder portion of the network uses 
a bilinear upsampling layer (stride of 2) with 2 convo-
lutions with ReLU until reaching an output stride of 
2; the filters scale by a factor of 1.5 at each block and 
skip connections connect the encoder and decoder, as 
previously described [20]. To train the SLEAP models, 
we used Google Colab and code provided in the SLEAP 
tutorials (www.​sleap.​ai), whereby we recorded the time 
needed to train the networks. Because the bean twining 
video was large and resulted in out-of-memory errors, 
we resized it by setting the ‘input scaling’ to 0.5 in the 
training configurations, before training on this video.

For training, SLEAP trains models for a maximum of 
200 epochs (which are rarely reached before converging), 
where an epoch is defined as the total number of batches 
that are required to perform one iteration over the train-
ing dataset, or 200, whichever is smaller, with a batch size 
of 4, initial learning rate of 1e-4 with the Adam optimizer 
as previously described [20]. The learning rate is reduced 
by a factor of 0.5 after the loss fails to improve by 1e-8 for 
10 epochs, and training is terminated after 200 maximum 
epochs or 20 epochs without improvement. After train-
ing we predicted the position of each plant part using the 
SLEAP GUI on the 20 user labelled frames (for the accu-
racy analyses) as well as the whole video. For this we set 

Fig. 2  Examples for predicted movement for each video analysis across all the frames of a video using the model trained on 20 user labelled 
frames, as well as the skeleton used for labelling and training. a Arabidopsis Gravitropism, b Arabidopsis Phototropism, c Bean Twining, d Sunflower 
Phototropism, e Sunflower Shade Avoidance, tracking individual leaves, f Sunflower Shade Avoidance, tracking individual plants. See additional file 
for animated movement trajectories

http://www.sleap.ai
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the maximum number of individuals to be identified in 
each video (see Table 1 for details on the number of indi-
viduals per video analysis). We used the ‘simple’ tracker 
for cross-frame identity matching (see https://​sleap.​ai/​
guides/​proof​readi​ng.​html#​track​ing-​method-​detai​ls for 
more details). For each video analysis we exported both 
the user labels and the predicted labels.

Analysis
Here we detail three types of analyses we performed in 
order to assess the performance of SLEAP in the case of 
plant growth dynamics: training time, prediction accu-
racy, and comparison to other tracking methods. All sta-
tistical tests were calculated to a significance level of 0.05.

Training time
To examine whether training time was influenced by the 
total number of labels per frame and the file size of each 
video, since different video analyses converged after a dif-
ferent number of epochs, we first calculated the mean 
training time SLEAP needed per epoch. We then calcu-
lated a linear mixed model (LMER) [21] with the mean 
training time per epoch as response variable, the num-
ber of labelled points per frame as well as the file size 
of the input video as explanatory variables. Because we 
had repeated analyses for each video differing only in the 
number of labelled training frames, we added this num-
ber as a random term in the model.

Predictive power
To determine the predictive power of the trained mod-
els we calculated the percentage of frames in which the 
labelled points and the number of individuals were cor-
rectly predicted. For this and the following analyses we 
categorized the labelled points for each video analysis 
into categories marked as B (representing base points), 
M (midpoints), T (tips) and TB (branching points). For 
more detailed definitions according to the observed 
organ, see Table 2, and Fig. 2f for an example.

For each plant part across each video analysis we used 
Kruskal–Wallis tests [22] to check whether the per-
centage of frames in which a plant part was identified 
depended on the number of user-labelled frames used 
to train a model. In some instances, such an analysis was 
not possible, for example, when SLEAP was able to cor-
rectly identify all plant parts across 100% of frames. In a 
next step, we calculated the Euclidean distance between 
each user labelled point and the corresponding predicted 
point for each of the 20 user labelled frames and each 
video analyses. To test whether the number of labelled 
training frames as well as the plant part had an influ-
ence on prediction accuracy, we then calculated separate 
linear models for each video analysis [23, 24] with the 

logarithm of the distance between predicted and user-
labelled points as response variable and the interaction 
between plant part category and the number of labelled 
training frames as explanatory variables. Finally, we nor-
malized the distances by the width of each image to make 
them comparable across video analyses and compared 
the median normalized distance and the overall nor-
malized distance across video analyses using a Kruskal–
Wallis test, as assumptions for a parametric test were 
violated.

Comparison with RootStem Extractor
SLEAP predicts the image coordinates of morphological 
landmarks but not derived features like shoot angles. To 
evaluate its performance for downstream analysis tasks, 
we next compared it to a specialized algorithm designed 
for plant phenotyping. To do this, we calculated and plot-
ted the angles of the shoot tip for the AG, AP and SP 
analysis to demonstrate that the information provided by 
SLEAP can be used to investigate tropisms. Specifically, 
we calculated shoot angles, as the angle between the 
highest midpoint along the shoot and the tip branch (i.e., 
from 5–6 for AG, 2–3 for AP and 3–4 for SP). We then 
compared the tip angles of the AP video analysis calcu-
lated with SLEAP with those calculated using the Root-
Stem Extractor (Chauvet et  al., 2016; https://​forge​mia.​
inra.​fr/​hugo.​chauv​et-​thiry/​roots​temex​tract​or) and kindly 
provided by M. Rivière. Angles in RootStem Extractor 
are averaged along the top part of the shoot, equal to two 
mean diameters of the shoot [12]. As a similar proof of 
concept, we plotted the nastic circumnutation move-
ments for the sunflower plants (STP).

Results
We successfully tracked the movement of plants across 
all videos, and the models successfully predicted indi-
viduals on all frames for each of the different video anal-
yses. See Additional file  1: Video S1; Additional file  2: 

Table 2  Overview over node-label categories for each video 
analysis

Label 
category

Video analysis Description

B AG Root tip

AP, BT & SP Base of the plant

STL Base of the leaf

STP Centre of the plant crown

M AG, AP, BT, SP, STL & STP Midpoint(s) along the stem or leaf

TB AG, AP, SP Branching of the stem
towards the leaves

T AG, AP, BT, SP, STL & STP Leaf tips

https://sleap.ai/guides/proofreading.html#tracking-method-details
https://sleap.ai/guides/proofreading.html#tracking-method-details
https://forgemia.inra.fr/hugo.chauvet-thiry/rootstemextractor
https://forgemia.inra.fr/hugo.chauvet-thiry/rootstemextractor
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Video S2; Additional file 3: Video S3; Additional file 4: 
Video S4; Additional file 5: Video S5; Additional file 6: 
Video S6 and Fig. 2 for an overview of the total move-
ment trajectories of plants using the models trained 
with 20 user labelled frames, as well as an example skel-
eton for each video-analysis. Training time increased 
with both the number of points to track on each frame, 
and with the file size of the input video (see Additional 
file 7: Table S1, Figure S1). For each of the video analy-
ses with a side view (AG, AP, BT and SP), we predicted 
the correct number of instances on all frames. For the 
video analyses tracking sunflower crowns from the 
top, the models predicted all instances correctly across 
frames for the STP video analysis (tracking individual 
plants). However, in the STL analysis (tracking indi-
vidual leaves) only 28.6% of instances were correctly 
identified on all frames across all three models (i.e., 5, 
10 or 20 user-labelled frames). When comparing the 
different models, we found that the model trained on 
10 user-labelled frames outperformed the other two. 
Specifically, this model found on average 14 out of 21 
individuals compared to 12 for the model trained on 
20 user-labelled frames, and 11 for the model trained 
on 5 user-labelled frames (Additional file 7: Figure S2, 
Table  S2). We note that while both approaches (STP 
and STL) are able to track the same points, treating 
whole plants as instances greatly improves reliability 

of tracking, likely owing to the heavy occlusion across 
leaves in the STL approach.

The correct prediction of the presence of a plant part 
across frames did not depend on the number of user-
labelled frames used for training for any video analysis 
(Additional file  7: Table  S3, Fig.  3), apart from the STP 
video analysis where we found a trend that correct pre-
dictions of leaf tips increased with the number of training 
user-labelled frames.

The prediction accuracy, measured as distance between 
predicted and user-labelled plant parts, was overall high, 
but was explained by different factors across the differ-
ent video analyses (Additional file  7: Tables S4–S9). For 
the AG video analysis prediction accuracy was signifi-
cantly lower for the root tip (B) compared to the mid 
points (M) along the root and shoot, the tip (T) and tip 
branch (TB). There was also a significant effect of the 
number of labelled training frames with more labelled 
training frames resulting in more accurate predictions 
independent of the plant part being tracked (Fig.  4, 
Table  S4). In the AP video analysis accuracy was sig-
nificantly lower for the mid points (M) compared to the 
base of the shoot (B). We found no difference in accu-
racy between the shoot base, the tip (T) and tip branch 
(TB). Again, the number of user labelled frames used to 
train the different models had a significant effect on accu-
racy, with more labelled frames used for training leading 

Fig. 3  For each video analysis we plotted the percentage of frames for which a specific labelled plant part was identified, where B (base), M 
(mid-section), T (tip) and TB (tip branching) represent the label categories detailed in Table 2. Plotted are the mean and standard error (calculated 
across all individuals in a video). Different colours and shapes represent the number of frames used to train each model
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to more accurate results independent of the plant part 
being tracked (Fig.  4, Additional file  7: Table  S5). For 
the BT video analysis, we found a significant interaction 
between the plant part and the number of labelled train-
ing frames. Specifically, accuracy increased significantly 
with increasing number of labelled training frames for 
the mid points along the shoot (M) and the tip (T) (Fig. 4, 
Additional file 7: Table S6). For the SP video analysis, we 
found no effect of the number of labelled training frames. 
There was also no difference in the accuracy between 
the mid points along the shoot (M) and the base of the 
shoot (B), though accuracy was significantly lower for the 
tip (T) and the tip branch (TB) than for the shoot base 
(Fig.  4, Additional file  7: Table  S7). The accuracy in the 
STL video analysis was highest for the base of each leaf 
(B) compared to the midpoint along a leaf (M) and the 
leaf tip (T) and increased with the number of labelled 
training frames (Fig.  4, Additional file  7: Table  S8). For 
the STP video analysis accuracy did not depend on the 
number of labelled training frames, though the midpoint 
along each leaf (M) was less accurately tracked than the 
leaf tip (T) or centre of the plant (B) (Fig. 4, Additional 
file 7: Table S9).

Median normalized prediction accuracy was calcu-
lated in order to compare accuracy across video analyses, 

measured as the normalized distance between user 
labelled and predicted plant parts. This differed sig-
nificantly across the different video analyses (χ2 = 1536, 
df = 5, p-value < 0.001, Additional file 7: Figure S3a), con-
sistent with the overall differences in the distance distri-
butions. Some video analyses are characterized by wider 
distributions, i.e., STL (χ2 = 13.09, df = 5, p-value = 0.023, 
Additional file  7: Figure S3b). In an additional step, we 
checked whether models trained on one video of an 
experimental setup can be used to track plants in a dif-
ferent video of the same. However, this did not work for 
any video analysis presented here. We note that the short 
labelling and training times still make it feasible to track 
new sessions in a reasonable amount of time, but future 
work using more and more diverse labels may improve 
the ability of models to generalize to new sessions.

Figure 5 shows different types of data that we extracted 
from the videos, including the periodic dynamics of 
circumnutations of sunflowers (STP), and the gravit-
ropic and phototropic responses of Arabidopsis seed-
lings (AG and AP). Additional tropic responses of plant 
shoots extracted from AG, AP and SP video analysis can 
be found in Additional file 7: Figure S4. When compar-
ing the shoot angles for the AP video analysis between 
different extraction methods (RootStem Extractor vs. 

Fig. 4  Plotted are the results of a linear model (estimate and 95% confidence bands) with the logarithm of the distance between user labelled 
points and predicted points as a response variable and the interaction of plant part and the number of labelled training frames the models as 
explanatory variables. For this analysis plant parts were categorized to make them comparable across the different video analysis, where B (base), 
M (mid-section), T (tip) and TB (tip branching) represent the label categories detailed in Table 2. Note that due to the different image sizes across 
videos, distances cannot be directly compared across analyses in this plot
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SLEAP), we found good overall agreement between the 
two methods (Fig.  5f ). It is important to note, that the 
two programs calculate angles differently. RootStem 
Extractor averages angles along the upper shoot (with 
one point ~ every 0.3 pixels) and the angles from SLEAP 
are calculated between point 2 and 3 on the skeleton 
(see Fig. 2). Accordingly, the angles are unlikely to match 
exactly but if the two programs track plants similarly 
well, the overall change in angle should be similar.

Discussion
In this work we adopted Social LEAP Estimates Animal 
Poses  (SLEAP)—a tool based on convolutional neural 
networks originally aimed at estimating animal poses—
for plant tracking. We tested it on time-lapse videos of 
a variety of cases including: (i) organ types and imag-
ing angles (e.g. top-view crown leaves and side-view 
shoots and roots), (ii) lighting conditions (full spec-
trum, blue light, IR), (iii) plant morphologies and scales 
(100  μm-scale Arabidopsis seedlings and cm-scale sun-
flowers and beans), and (iv) movement types (circum-
nutations, tropisms and twining). SLEAP successfully 
identified individuals and labelled points and tracked 
their movement across all types of the videos tested here. 
Training time depended both on the number of labelled 
points per frame as well as the size of the input video. 
We note that the exact training time will depend on the 
machine used and will be quicker using a computer with 
an integrated GPU.

The top view of plants provides a number of challenges 
compared to the side view. Particularly, plant crowns are 
comprised of many ‘sub-individuals’ (leaves) which dras-
tically change their shape during growth (as opposed to 
the one-dimensional growth of a single stem) and can 
furthermore occlude each other. We found that tracking 
the whole plant rather than single leaves proved more 
effective, by allowing tracking of all instances in all frames 
with consistently higher accuracy. Tracking single leaves 
has the benefit of a simple skeleton which remains fixed 
over time, in contrast to whole plants where new leaves 
can grow at any moment, requiring predefinition of more 
nodes within the skeleton than might be present for most 
of a video. However, though the skeleton was less com-
plex (only 4 points rather than 19), there were many more 
instances to track. In many cases specific plant parts were 
not assigned to the correct instance, thus leading to fewer 
instances identified than were present. For instance, too 
few instances were found when two or more leaves were 
partly occluded, and the remaining visible parts were 
assigned to a single instance. The STP analysis handled 
occlusions better, even when models were trained on 
only a few user-labelled frames.

The correct prediction of specific plant parts did not 
depend on the number of labelled training frames for any 
video analyses, aside from the STP analysis, where there 
was a small trend that predictions of leaf tips increased 
with the number of training user-labelled frames. Over-
all, when plant parts were found, accuracy was high, 

Fig. 5  a Sunflower shade avoidance setup. The blue dot on the first plant on the left represents the centre of the plant. The trajectory of this point 
(circumnutations)—a clockwise motion—as predicted by the model trained on 20 user labelled frames is shown in b. c Arabidopsis Gravitropism 
setup with the numbers representing the individuals as plotted in d. In d are plotted the tip angle of the shoots of the AG video analysis for each 
of the individuals in the video for the models trained on 20 user labelled frames. e Arabidopsis Phototropism setup, the blue square marks the plant 
whose shoot angles are tracked in f. f Comparison of the shoot angles for ID 2 in the AP video analysis across frames, extracted using RootStem 
Extractor (dark purple line) and using SLEAP from the of the model trained on 20 user labelled frames (green line). Please note that angles were 
calculated between point 2 and 3 for SLEAP (see Fig. 2) but were averaged along the whole upper shoot for Root Extractor. We used a rolling mean 
across 5 frames to smooth the angles calculated from SLEAP both in d and f 
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though the distance between predicted and user labelled 
points depended on the specific plant part, and for some 
video analysis also on the number of user labelled frames. 
Accuracy in our analysis seemed to depend on how well 
features could be distinguished. For instance, in the AP 
analysis where images are rather noisy, prediction accu-
racy was lower for the points along the shoot, where 
there are no obvious distinguishing features, compared to 
the branching point, the leaf tips or the base of the plant. 
Similarly, the root tip in the AG video is very faint, and 
while the prediction was still very accurate, it was less 
accurate for this plant part compared to the other parts. 
This contrasts with the SP analysis where painted dots 
along otherwise featureless stems of sunflower seedlings 
served as tracking aid, while for STL and STP, the veins 
in the leaves offered good natural distinguishing features. 
For most of our analyses, accuracy increased with the 
number of labelled training frames, indicating that more 
is better. However, for some plant parts there was no dif-
ference in accuracy based on the number of user labelled 
frames, suggesting that there is an optimal number of 
frames after which any additional labelling will not lead 
to a further increase in accuracy.

For optimal position tracking, a trained model would 
ideally be transferred from one video to another of the 
same experiment type, thus reducing labelling and train-
ing time. However, we found that our models tended to 
overfit, tracking the specific features of each individual/
plant part and thus not allowing to transfer trained mod-
els from one video to another. We note that the short 
labelling and training times still make it feasible to track 
new sessions in a reasonable amount of time, but future 
work using more and more diverse labels may improve 
the ability of models to generalize to new sessions. 
Occlusions can provide another important challenge 
when trying to track the position and movement of plant 
parts. We found that connecting all nodes to the base 
(centre of the crown) helped deal with possible occlu-
sions of the middle of a leaf. Similarly, such skeletons also 
help to track the twining tip of the bean plant in the BT 
video analysis when part of the stem was hidden behind 
the support (e.g. we added branching connections from 
point along the stem to all the following points (1–2, 1–3, 
1–4), rather than connecting these points linearly along 
the stem (1–2, 2–3, 3–4)).

Importantly, as the program was not built for plants 
whose structures change with growth, the skeleton needs 
to be carefully considered. High image quality with 
clearly separate individuals allows for high prediction 
accuracy with only 5 labelled frames per video. When 
image quality is low, additional markers on the plants can 
help to improve predictions. Top-view images are most 
challenging, since leaves change their morphology in 2D, 

and occlude each other often. Here different skeleton def-
initions help improve tracking.

Conclusion
SLEAP offers a useful tool for fast and high throughput 
tracking of plant movement in time-lapse videos. We 
were able to use SLEAP to extract information on a vari-
ety of dynamical growth-driven plant processes, includ-
ing plant tropisms, circumnutations movements and 
even interactions, such as dynamic leaf. We find that 
these results encourage the use of SLEAP, or of tools 
based on convolutional neural networks in general, on 
plants. Further development of such tools will optimize 
their success on such occluding structures of changing 
morphologies and may prove useful in other fields as 
well.
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analysis. (2) The.slp files for each video analysis, which can be loaded into 
SLEAP and contain the 5, 10 or 20 labelled training frames. From these files 
users can train the models either directly in the GUI or on Google CoLab. (3) 
The output analysis file with only the user labelled training frames [20]. These 
can be also directly generated from the .slp files. (4) The output analysis files 
with the predicted data for each video analysis.
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