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Abstract 

Background:  Freezing injury is a devastating yet common damage that occurs to winter rapeseed during the over-
wintering period which directly reduces the yield and causes heavy economic loss. Thus, it is an important and urgent 
task for crop breeders to find the freezing-tolerant rapeseed materials in the process of breeding. Existing large-scale 
freezing-tolerant rapeseed material recognition methods mainly rely on the field investigation conducted by the 
agricultural experts using some professional equipments. These methods are time-consuming, inefficient and labori-
ous. In addition, the accuracy of these traditional methods depends heavily on the knowledge and experience of the 
experts.

Methods:  To solve these problems of existing methods, we propose a low-cost freezing-tolerant rapeseed material 
recognition approach using deep learning and unmanned aerial vehicle (UAV) images captured by a consumer UAV. 
We formulate the problem of freezing-tolerant material recognition as a binary classification problem, which can be 
solved well using deep learning. The proposed method can automatically and efficiently recognize the freezing-toler-
ant rapeseed materials from a large number of crop candidates. To train the deep learning network, we first manually 
construct the real dataset using the UAV images of rapeseed materials captured by the DJI Phantom 4 Pro V2.0. Then, 
five classic deep learning networks (AlexNet, VGGNet16, ResNet18, ResNet50 and GoogLeNet) are selected to perform 
the freezing-tolerant rapeseed material recognition.

Result and conclusion:  The accuracy of the five deep learning networks used in our work is all over 92%. Especially, 
ResNet50 provides the best accuracy (93.33% ) in this task. In addition, we also compare deep learning networks with 
traditional machine learning methods. The comparison results show that the deep learning-based methods signifi-
cantly outperform the traditional machine learning-based methods in our task. The experimental results show that it 
is feasible to recognize the freezing-tolerant rapeseed using UAV images and deep learning.
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Background
As one of the most important economic crops in the 
world, rapeseed plays an essential role in ensuring the 
supply of edible vegetable oil and nutrient-rich feed. With 

the development of the global economy and the continu-
ous improvement in the standard of living, the demand 
for rapeseed drastically increases. However, the supply 
of rapeseed in some countries is inadequate because of 
the limited arable land. For example, due to the serious 
shortage of arable land, China as the largest edible oil 
consumer in the world has to import large quantities of 
rapeseed oil to meet the increasing demand. In addition, 
farmers are reluctant to plant rapeseed in many countries 
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as the price of fertilizer, pesticide and seed increases. The 
economic benefit of planting winter rapeseed decreases 
especially when the yield of rapeseed is not satisfactory. 
In order to meet the increasing demand for rapeseed, it 
is imperative to expand the planting area and increase the 
output per unit area of as much as possible.

There are many factors that influence the yield of 
rapeseed, such as drought, freezing injury and rain-
fall, etc. Among which, freezing injury is an impor-
tant factor that affects the growth of rapeseed. Winter 
rapeseed often suffers from serious freezing injury dur-
ing the overwintering period. Low temperature will 
directly inhibit the metabolic response and prevent the 
expression of the full genetic potential of the plant [1]. 
The nutrient transport through rapeseed stems is also 
affected by freezing injury, which leads to the decrease 
of seed setting rate and yield. Thus, it is necessary for 
breeders to breed freezing-tolerant rapeseed materi-
als. By doing so, the rapeseed planting area in cold 
regions can be expanded. Rapeseed better adapted to 
cold climates can reduce the yield loss from freezing 
injury. However, in the past few years, the freezing-
tolerant rapeseed material recognition still relies on 
field investigation conducted by agricultural experts. 
Experts need to select the freezing-tolerant materials 
from a huge number of crop candidates, which is time-
consuming, error-prone, and inefficient. It is necessary 
to propose a new approach to recognize the freezing-
tolerant materials automatically and efficiently. The 
development of the remote sensing technology makes 
it possible.

In the field of remote sensing, the satellite images are 
one of the most powerful and important data. Spectral 
information of the satellite images can express the rela-
tionship between natural environmental conditions and 
vegetation disasters. In recent years, satellite images 
have been widely applied to recognition of the crop 
damage caused by drought [2, 3], flood [4, 5], hail [6, 7] 
and freezing injury [8, 9]. Because the normalized dif-
ference vegetation index (NDVI) of crop changes dra-
matically after suffering freezing injury, the NDVI is a 
prominent feature to analyze the freezing injury. Some 
studies compared and analyzed the NDVI calculated by 
satellite images before and after freezing injury to rec-
ognize the crop freezing damage [10–13]. However, the 
plant area of each candidate material is usually small 
(about 2 square meters). The satellite data with a lim-
ited spatial resolution can not recognize each material 
accurately. Thus, it is difficult to use satellite images 
to select the freezing-tolerant materials. With the 
development of unmanned aerial vehicles (UAVs), the 
images captured by UAVs provide another new source 
data to recognize the freezing-tolerant materials.

Compared with satellite images, the images cap-
tured by the sensors mounted on UAVs have a higher 
spatial resolution. Multispectral or hyperspectral 
images captured by the UAVs are one of the widely 
used source images in the field of agriculture. Multi-
spectral or hyperspectral images can provide abundant 
and accurate spectral information of crops. Recently, 
many researchers proposed to use multispectral or 
hyperspectral images collected by UAVs to recognize 
the crop freezing injury  [14–16]. In general, different 
vegetation indices (VIs) are calculated using source 
images, and multiple VIs are combined to recog-
nize the freezing-injured crops. However, because the 
acquisition and processing of multispectral or hyper-
spectral data are relatively complicated, it is hard for 
non-professional users to acquire high-quality multi-
spectral images using the sensor mounted on an UAV 
platform. Nowadays, the consumer UAVs equipped 
with an RGB camera provide a new choice for recog-
nizing freezing-tolerant materials. Compared with the 
professional UAV equipped with a multispectral sensor, 
the consumer UAV has the advantage of being cheap, 
convenient and flexible.

Consumer UAVs outfitted with an RGB camera have 
been widely used to monitor the crop growth process. 
With the advancement of artificial intelligence (AI), the 
combination of UAVs and AI has been widely applied 
to different tasks in agriculture, such as disease and 
insect detection [17–19], yield prediction [20, 21], and 
crop lodging detection [22, 23]. Recently, the combina-
tion of RGB images collected by UAVs and AI also has 
been applied to detect and classify the crop stresses 
[24–26]. Su et  al. [27] developed a supervised learn-
ing system based on support vector machine (SVM) to 
recognize the crop water stress using RGB images col-
lected by an UAV. Firouz et al. [28] applied SVM to rec-
ognize the healthy and freezing damaged citrus fruits. 
However, the performance of traditional machine 
learning models depends heavily on the hand-crafted 
features designed using the image information and 
prior knowledge. It is difficult to manually design the 
optimal features for different crop stress tasks. The tra-
ditional machine learning models are difficult to meet 
the requirements for crop stress recognition. With the 
rise of deep learning technologies, many deep learning-
based solutions have been proposed for different crop 
stress recognition tasks.

Nowadays, deep learning has made great break-
throughs and has been widely used in crop stress 
recognition. The advantage of deep learning is 
that it provides powerful feature representations 
through learning, the feature of images will be 
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learned automatically by deep learning models [29]. 
In recent years, some researchers proposed to rec-
ognize the crop stresses using deep learning instead 
of traditional machine learning  [30, 31]. Yang et  al. 
[32] adopted a convolutional neural network (CNN) 
model to extract spectral features in the visible-near-
infrared range. They then used the extracted spec-
tral features to estimate the maize seedling freezing 
damage. The freezing damage detected by CNN has 
a high correlation with the ranking given by chemi-
cal methods, which proves that spectral analysis 
based on the CNN model is suitable for recogniz-
ing the freezing damage in corn seedlings. Anami 
et  al. [33] adopted a deep convolutional neural net-
work (DCNN) framework to automatically recog-
nize and classify various biotic and abiotic stresses 
of rice using the RGB images collected by an UAV. 
The accuracy of the recognition result is 92.89%, 
which proves the potential of deep learning in rec-
ognizing crop stress. The fact proves that deep learn-
ing is more suitable for recognizing crop stress than 
traditional machine learning. Deep learning provides 
an effective way to assist experts in selecting stress-
tolerant materials.

In this paper, we proposed a low-cost freezing 
injury recognition method using UAV images and 
deep learning. The main purpose of this research is 
to develop an approach that combines RGB images 
captured by a consumer UAV with deep learning 
to automatically recognize the freezing-tolerant 
rapeseed materials from a large number of breed-
ing candidates. The breeders can then quickly 
assess and select the breeding materials from the 

freezing-tolerant materials that are preliminar-
ily selected by deep learning. Preliminary selection 
among a large number of crop materials candidates 
is an important step for breeders.

Dataset and methodology
To automatically and efficiently recognize the freez-
ing-tolerant rapeseed materials from a large number 
of candidates, we propose a new deep learning-based 
freezing injury recognition approach using the RGB 
images collected by a consumer UAV. The whole work-
flow of the proposed approach is presented in Fig. 1.

Overview of study area and data source
Study area
The experiment was conducted at the Oil Crops 
Research Institute, Chinese Academy of Agricultural 
Sciences Wuchang, Wuhan, Hubei province, China 
( 114◦31′N, 30◦55′E, with an elevation of 20 m). The test 
site location is shown in Fig. 2. The test site is divided 
into 42 plots covering an area of about 0.45 ha. The red 
box in Fig.  2 represents a plot, and the plots range in 
length from 56 to 61 m. The width of each plot is about 
2 meters. Each plot consists of approximate 300 rows. 
The line spacing of two adjacent rows is about 16.7 
cm. There are more than 3000 pure materials. Each 
rapeseed material consists of three rows. The rape-
seed was sown on September 27th, 2020. To ensure 
that the growth of all materials before the overwin-
tering period is normal, we carried out a continuous 
observation on rapeseed and took remedial measures 
for abnormal materials. The key goal of our proposed 
approach is to automatically and effectively select these 

Fig. 1  The workflow of our proposed deep learning-based freezing-tolerant rapeseed material recognition approach
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freezing-tolerant materials from all materials using 
UAV images and deep learning.

Image acquisition
In Fig.  3, we present the part of historical temperature 
chart of Wuhan in November and December 2020. From 
the observation of temperature chart and field investiga-
tion, we find that the rapeseed materials have suffered 
from the damage of low temperature around Decem-
ber 20th, 2020. In our experiments, we collected the 
UAV images of this test site on December 23th, 2020. 
The images were acquired by a DJI Phantom 4 Pro V2.0 
(DJI, Shenzhen, China) equipped with an RGB camera 
with a spatial resolution of 5472× 3648 pixels. The flight 
campaign was conducted from 3:00 pm to 3:30 pm. The 
weather is cloudy without wind. The flight height and 
speed are about 10 m and 1.8 m/s, respectively. In order 
to generate the orthophoto map successfully, we set the 
frontal and side overlap as 75% and 75%, respectively.

Dataset generation
In this paper, we formulate the freezing-tolerant mate-
rial recognition as a classification problem, which can be 

solved well using deep learning. However, deep learning 
is a data-driven method, we need to prepare a large num-
ber of samples with ground truth to train the model. In 
this study, we directly apply the Agisoft PhotoScan soft-
ware (Agisoft LLC, St. Petersburg, Russia) to generate the 
orthophoto map of the test site. Agisoft PhotoScan is an 
excellent software, which is applied to automatically gen-
erate the high-resolution real orthophoto map and the 
DEM model. The orthophoto image is then used to create 
the rapeseed freezing injury recognition dataset.

After the orthophoto map generation, the Adobe Pho-
toshop software is used to cut out images to generate 
the experimental dataset. In the practical application of 
large-scale rapeseed fields, we can crop images in batches 
based on the geographic coordinates of the rapeseed 
fields, so as to generate large numbers of cropped images 
automatically and efficiently. As mentioned above, every 
material consists of three rows. Thus, we cut out the 
orthophoto map into 2847 samples, each sample repre-
sents a material. All samples are resized to 600× 150 pix-
els after cropping. Three experts evaluated the rapeseed 
freezing injury according to the freezing injury pheno-
type in the field. After error elimination, the evaluation 
results were then taken as the final labels of experimental 
data. There are about three symptoms of rapeseed freez-
ing injury, including the freezing injury of weak seedlings, 
leaves, and bolting. The symptoms of freezing injury to 
weak seedlings are that the roots are lifted and uprooted, 
and rapeseed will die when temperatures rise and the soil 
thaws. The symptoms of freezing injury to leaves are that 
the leaves are yellow or fuchsia and shrivelled, and the 
petioles of some rapeseed materials are water-soaked. As 

Fig. 2  Overview of the test site used in our work

Fig. 3  Temperature chart of Wuhan in November to December 2020
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temperatures rise and the soil thaws, the leaves gradually 
wilt, turn yellow, and fall off. The symptoms of freezing 
injury to the bolting are mainly manifested as the cuti-
cle of the stalk breaking, the bolting stalks being badly 
broken off, and the rapeseed dying when temperatures 
rise. The labels of freezing-injured samples and freez-
ing-tolerant samples are 1 and 0, respectively. Then, we 
divide the whole dataset into the training dataset and the 
test dataset with an 8:2 ratio randomly. As a result, 2277 
images are used to train the deep learning network and 
570 images are used to test the accuracy of the trained 
model. The detailed numbers of samples in the training 
and the test datasets are shown in Table 1.

The obvious rapeseed freezing injury symptoms are 
shown in Fig. 4. Wilson [34] pointed out that the symp-
toms of freezing-injured plants can be seen on leaves, 
including leaf wilting, leaf bleaching, or in extreme cases, 
plant death. The freezing-injured material has the follow-
ing symptoms: the leaves turn yellow (see Fig. 4a), the leaf 
colors is dark or fuchsia (see Fig.  4b), the leave is over-
turned and the petiole has wet blotch (see Fig.  4c). The 
leaf colors and petioles of the freezing-tolerant materials 
are normal, as shown in Fig. 4d.

Dataset augmentation
Deep learning is a data-driven approach, the number and 
quality of the training dataset will directly influence the 
effect of the trained model. In general, as the number of 
high-quality samples increases, the performance of the 
deep learning-based approach increases. However, in real 
applications, the number of high-quality samples is often 
insufficient. To get a high-quality trained model and 
improve its generalization ability, we need to increase 
the number of the dataset. Geometric transformation, 

brightness transformation, image stitching and fancy 
PCA (Principal Components Analysis) are used in our 
study for data augmentation. The results of these strate-
gies are shown in Fig. 5.

To make the model more robust to the brightness 
changes, we use the brightness transformation which is 
a common data augmentation strategy. We first trans-
form the images from RGB to HSV color space. Then, 
we adjust the brightness of the original image. The origi-
nal image brightness is adjusted to 80%, 90%, 110% and 
120%, respectively. The example result of brightness 
transformation is shown in Fig. 5b.

The geometric transformation is also a common image 
augmentation strategy, including rotation, flip operation, 
etc. The rotation operation and flip operation are used to 
augment the dataset in this study. The results of geomet-
ric transformation are shown in Fig. 5c–e, respectively.

As shown in Fig.  4, there are many symptoms of 
freezing-injured rapeseed. In the real environment, the 
situation of freezing injury is more complex. In order to 
improve the generalization ability of the model for case 
of freezing injury, we adopt the diagonal stitching strat-
egy. We randomly select four images with the same label 
in the dataset and stitch the four images into one new 
image. Then, we resize the stitching image to the origi-
nal image size of 600× 150 pixels. The example result of 
diagonal stitching strategy is shown in Fig. 5f.

Fancy PCA as a common data augmentation strategy is 
firstly proposed in the study of AlexNet [35]. Fancy PCA 
changes the intensities of the RGB channels along with 
the natural variation of the images and performs PCA on 
the color channels. Firstly, PCA is performed on all RGB 
pixel values to obtain the eigenvectors  (P1 , P2 , P3 ) and 
eigenvalues  (� 1 , � 2 , � 3 ), and then a set of random val-
ues (α 1 , α 2 , α 3 ) from a Gaussian distribution with mean 
= 0 and standard deviation = 0.1 times eigenvalues to get 
the  [α 1 � 1 , α 2 � 2 , α 3 � 3 ]. Finally, to each RGB image 
pixel Ixy = [IRxy, I

G
xy, I

B
xy] , the quantity [ P1 , P2 , P3 ][ α 1 � 1 , α 2 

� 2 , α 3 � 3 ]T is added. The description detail of the Fancy 
PCA is reported in [35]. Fancy PCA is used to augment 
the dataset in this study, the example result of fancy PCA 
is shown in Fig. 5g.

Table 1  The number of freezing-injured and freezing-tolerant 
samples in the training and test datasets

Dataset Freezing-tolerant Freezing-injured

Training dataset (80%) 572 1705

Test dataset (20%) 94 476

Fig. 4  The symptoms of the freezing-injured and the freezing-tolerant materials. The freezing-injured material with yellowish leaves (a), dark, 
fuchsia leaves (b), overturned leaves and water-soaked petioles. c, d are the freezing-tolerant materials with normal leaf colors and petioles
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Architectures of CNNs
To effectively distinguish between freezing-injured and 
freezing-tolerant materials, we propose to apply a convo-
lutional neural network (CNN) to classify the images of 
all materials. In Fig. 6, we present a basic CNN architec-
ture designed for the classification of rapeseed materials. 
In general, a CNN architecture consists of a set of convo-
lutional, pooling and fully connected layers. In our paper, 
we directly select several classical CNN architectures to 
complete the task for freezing-tolerant rapeseed material 
recognition.

AlexNet
AlexNet [35] is a popular CNN architecture that was the 
first to win the ImageNet contest. In addition, AlexNet 

is the first network to implement a deep convolutional 
neural network structure on a large-scale image dataset. 
AlexNet architecture consists of 5 convolutional layers, 3 
max-pooling layers, 2 normalization layers, 2 fully con-
nected layers, and 1 softmax layer. Instead of using the 
sigmoid or tanh activation functions, AlexNet uses the 
Rectified Linear Unit (ReLU) activation function. Kriz-
hevsky et al. [35] found out that using ReLU as an activa-
tion function can significantly accelerate the speed of the 
training process. AlexNet additionally employs dropout 
layers in order to avoid overfitting.

VGGNet
VGGNet [36], which came in the second place in the 
2014 ImageNet Challenge, explores the relation between 

Fig. 5  The example results of data augmentation strategies used in our study: a original image, b brightness transformation, c–e geometric 
transformation, f image stitching strategy and (g) fancy PCA

Fig. 6  Architecture of the classical CNN
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the depth of convolutional neural networks and the 
model performance. VGGNet has 11–19 levels of depth, 
with VGGNet16 and VGGNet19 being the common net-
works. The VGGNet16 is used in this study. VGGNet16 
has 13 convolutional layers, 5 max-pooling layers, 2 nor-
malization layers, 3 fully connected layers, and 1 softmax 
layer. The improvement of VGGNet is that consecutive 
3× 3 convolution kernels are used to replace the larger 
convolution kernels ( 11× 11 , 7× 7 and 5× 5 ). The 
main purpose of consecutive 3× 3 convolution kernels 
is to improve the effectiveness of the neural network by 
increasing the depth of the network while maintaining 
the same perceptual field. The VGGNet proves that the 
representation depth is beneficial to the classification 
accuracy.

GoogLeNet
Increasing the network depth is an effective method to 
improve the performance of the deep neural network. 
However, as the number of network layers increases, 
more parameters and processing resources would be 
required. As the champion of ILSVRC14, GoogLeNet 
[37] proposed the Inception structure which improves 
the utilization of the network computing resources. The 
Inception module is assembled in parallel by multiple 
convolutions and pooling operations. The GoogLeNet 
network consists of the Inception modules stacked upon 
each other. The detailed introduction of the Inception 
module is reported in [37]. In this study, we use a com-
mon GoogLeNet architecture that consists of multiple 
Inception modules, which assembled in parallel by 1× 1 , 
3× 3 and 5× 5 convolutional filters followed a 3× 3 max 
pooling.

ResNet
The depth of the neural network is important for the 
model performance. However, the degradation problem 
occurs when the deeper network starts converging. As 
one of the breakthroughs in the field of computer vision 
in recent years, ResNet [38] proposes a deep residual 
learning framework using shortcut connections to solve 
the degradation problem. The shortcut connection is an 
identity mapping that enables information to flow across 
layers without attenuation caused by nonlinear transfor-
mations of multiple stacks  [39]. Two types of residual 
building blocks are proposed for different depth net-
works to reduce the number of parameters. For deeper 
networks, it consists of 1× 1 , 3× 3 and 1× 1 convolu-
tions with a shortcut connection. For shallow networks, 
it consists of 3× 3 and 3× 3 convolutions with a shortcut 
connection. The depths of ResNet range from 18, 34, 50, 
101 to 152 layers. The ResNet18 and ResNet50 are used 
in our study to recognize the rapeseed freezing injury.

Experiment and analysis
In this section, to verify the effectiveness of the proposed 
method, we conducted the following experiments. To 
prove the validity of the method and illustrate the per-
formance of different networks, we trained the five CNN 
models and tested the performance of different models. 
To prove the performance of CNN models is better than 
the traditional machine learning models, we compared 
the performance of four traditional machine learning 
models and the five CNN models. To test the effective-
ness of the data augmentation strategy for CNN models, 
we compared the performance of the five models before 
and after data augmentation strategy. In addition, we 
used the new test site image collected by a consumer 
UAV to test the generalization ability of different mod-
els. All CNN model architectures are implemented in 
Python using the PyTorch on Ubuntu operating system. 
The memory of the processor is 128G, and the GPU is 
NVIDIA GTX 1080Ti. All traditional machine learning 
models are implemented in Python on Windows 10 oper-
ating system. It has a GPU of NVIDIA force RTX 3070, 
an Intel®Core

TM

 i7-10700 CPU @ 3.20 GHz with 128 GB 
RAM.

Evaluation metrics
The task of this study is to distinguish between freez-
ing-injured and freezing-tolerant materials from a large 
number of candidates. The freezing injury recognition is 
a binary classification problem. To evaluate the perfor-
mance of models used in the study, we use the common 
binary classification evaluation metrics, including accu-
racy, precision, recall and F-score. The four evaluation 
metrics are defined as:

where TP and TN denote the numbers that are cor-
rectly predicted as freezing-tolerant and freezing-injured 
materials, respectively. FN denotes the number of freez-
ing-tolerant materials that is incorrectly predicted as 
freezing-injured materials. FP denotes the number of 
freezing-injured materials that is incorrectly predicted as 
freezing-tolerant materials.

The accuracy is the most intuitive evaluation metric for 
the overall performance of the model. However, it may 
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fail when the number of samples from different catego-
ries is unbalanced. Thus, we further use the recall, preci-
sion and F-score to compare the performance of models. 
The precision measures the percentage of the correctly 
predicted freezing-tolerant materials over all predicted 
freezing-tolerant materials in the dataset. The recall 
measures the percentage of the correctly predicted freez-
ing-tolerant materials over all the freezing-tolerant mate-
rials in the dataset. The F-score is the harmonic mean of 
precision and recall.

Comparison of different CNNs
In this section, five common CNN models (AlexNet, 
VGGNet16, ResNet18, ResNet50 and GoogLeNet) were 
used to classify the freezing-injured and the freezing-
tolerant materials. In all experiments, we used the cross-
entropy loss function and the SGD optimizer with a 
learning rate of 0.01, and the batch size of each model is 
16.

Table  2 shows the comparison results of classification 
performance of different CNN models. Firstly, it can be 
seen that the accuracy of the five models is all over 92%, 
which indicates that CNN algorithms show promise in 
the freezing injury recognition of rapeseed. Next, we 
can see that the ResNet50 achieves the highest accuracy 
(93.33%) among the five models. However, the accuracy 
can be affected by unbalanced samples, it cannot fully 
reflect the performance of the CNN models. For exam-
ple, in this study, the category we are interested in is 
freezing-tolerant materials. However, when the number 
of two categories is unbalanced that the number of freez-
ing-tolerant materials is far less than the freezing-injured 
materials, freezing-tolerant materials that are misclas-
sified as freezing-injured materials can still make the 
model achieve high accuracy. Thus, we further use the 
recall, precision and F-score to evaluate the performance 
of CNN models.

The model with a high recall (low FN) means that the 
model can correctly identify a large number of freezing-
tolerant materials. The value of recall will be consid-
ered if the breeders want to find the maximum number 
of possible freezing-tolerant materials. The model with 
high precision (low FP) means that a small number of 

freezing-injured materials are recognized as freezing-tol-
erant materials. Breeders can quickly pick out the small 
amounts of freezing-injured materials from the results 
generated by deep networks. If we only consider the 
labor cost savings of selecting freezing-tolerant materials, 
ResNet18 will be recommended due to its highest preci-
sion (85.53%). Because the aim of breeding is to select as 
many freezing-tolerant materials as possible. If only recall 
and precision are considered as evaluation metrics, recall 
is a more important evaluation metric for the recognition 
of the materials. Thus, ResNet50 will be recommended 
because of the highest recall (79.79%) while achieving the 
highest accuracy of 93.33%.

In the real situation, the breeders hope that they can 
quickly select more freezing-tolerant materials from 
candidates, the values of precision and recall should all 
be high. However, precision and recall are often conflict-
ing. Hence, we need to balance two metrics. F-score is a 
weighted average of precision and recall. If the difference 
between the values of FP and FN is large, then the F-score 
should be considered firstly [40]. Among the five CNN 
models, ResNet50 obtains the highest F-score of 79.79%. 
Overall, ResNet50 outperforms other CNN models for 
the freezing-tolerant rapeseed material recognition.

From the above analysis, we can conclude that it is fea-
sible to recognize the freezing-tolerant rapeseed material 
using UAV images and deep learning. In addition, the 
ResNet50 performs best among all selected networks. 
The ResNet50 offers the best scores of accuracy (93.33%), 
recall (79.79%) and F-score (79.79%).

Comparison of traditional machine learning models 
and CNN models
In this section, we compared the performance of four tra-
ditional machine learning models and five CNN models. 
In the traditional machine learning models, the SIFT [41] 
and SURF [42] are selected as the hand-crafted features. 
SIFT and SURF are the two most widely used features 
and have been applied in many fields of agriculture, such 
as crop disease [40, 43], crop/weed classification [44], 
etc. In addition, the SVM and artificial neural network 
(ANN) are selected as the classifier.

The comparison results of four traditional machine 
learning models and five CNN models are shown in 
Table 3. As can be observed from the table, the evaluation 
metrics of the five CNN models are greater than those of 
the traditional machine learning models. The CNN net-
works significantly outperform the traditional machine 
learning models in our task because of the strong fea-
ture representation ability. To support real-time process-
ing, computation time is also an important component 
to consider  [40]. The single image testing times of the 
nine models are shown in Table  3. The CNN models 

Table 2  Quantitative evaluation results of five CNNs

Models Accuracy (%) Recall (%) Precision (%) F-score (%)

AlexNet 92.63 73.40 80.23 76.67

VGGNet16 93.16 73.40 83.13 77.97

GoogLeNet 92.45 67.02 84.00 74.56

ResNet18 92.98 69.15 85.53 76.47

ResNet50 93.33 79.79 79.79 79.79
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take longer than traditional machine learning models 
for computation time of a single image due to the model 
complexity. The ResNet50 has the longest single image 
testing time compared to all other algorithms. Compared 
with AlexNet, which takes the least time, ResNet50 takes 
nearly 5 times to test a single image. However, in practi-
cal application, the time of 47 ms is much less than man-
ual selection.

Illustration of data augmentation strategies
In this section, we compared the performances of five 
CNN models before and after data augmentation. We 
augmented the dataset (2847 images) following the data 
augmentation strategy described above. The number of 
final dataset was expanded by 10 times, reaching 28470 
images in total. The comparison results of the five CNN 
models before and after data augmentation are shown 
in Table 4. From the table, we can see that the accuracy 
of five models is improved using the data augmenta-
tion strategy. However, the maximum improvement of 
the model accuracy is 0.53%, which is relatively small. 
In addition, the other three evaluation metrics (recall, 

precision and F-score) do not improve significantly after 
using the data augmentation, and some of the models 
even show a decrease in the scores of evaluation met-
rics. It is shown that the data augmentation methods 
mentioned above have little effect on the accuracy of the 
freezing-tolerant rapeseed material recognition. The rea-
son is that the boundary of the division between rapeseed 
freezing-injured and freezing-tolerant samples is not 
clear enough. The increase of fuzzy data will affect the 
performance of the CNN models. We also observed that 
the ResNet50 outperforms the other CNN models after 
the data augmentation. It is consistent with the observa-
tion presented above.

Experiment on the new test site (Wuchang) in 2020
In this section, we used the images collected from a new 
site (Wuchang) to test the generalization ability of the 
trained models. Generalization ability refers to the abil-
ity of a trained model that can make accurate predictions 
for the new data. We selected 175 materials including 
80 freezing-tolerant materials and 95 freezing-injured 
materials from the new test site. In Fig. 7, we presented 

Table 3  Comparison results between traditional machine learning and CNNs

Type Models Accuracy (%) Recall (%) Precision (%) F-score (%) Testing 
times 
(ms)

Traditional machine 
learning

SIFT+SVM 67.72 30.85 19.59 23.97 2.66

SURF+SVM 61.05 36.17 17.35 23.45 0.59
SIFT+ANN 76.32 15.96 21.43 18.2 9 7.84

SURF+ANN 72.98 12.77 18.46 15.09 4.41

CNNs AlexNet 92.63 73.40 80.23 76.67 10.16
VGGNet16 93.16 73.40 83.13 77.97 10.88

GoogLeNet 92.45 67.02 84.00 74.56 22.32

ResNet18 92.98 69.15 85.53 76.47 36.54

ResNet50 93.33 79.79 79.79 79.79 47.25

Table 4  Comparison results before and after data augmentation of five CNNs

Dataset Models Accurac y (%) Recall (%) Precision (%) F-score (%)

Original dataset AlexNet 92.63 73.40 80.23 76.67

VGGNet16 93.16 73.40 83.13 77.97

GoogLeNet 92.45 67.02 84.00 74.56

ResNet18 92.98 69.15 85.53 76.47

ResNet50 93.33 79.79 79.79 79.79
Augmented dataset AlexNet 92.98 69.15 85.53 76.47

VGGNet16 93.68 76.60 83.72 80.00

GoogLeNet 92.80 71.28 82.72 76.57

ResNet18 93.33 70.21 86.84 77.65

ResNet50 93.68 79.79 81.52 80.65
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several images selected from the training dataset and the 
new test site. There is a large difference in the leaf shape 
between the training and test images in the percentage 
of leaf area and the degree of leaf loss. The different leaf 
shapes are designed to make the light transmittance of 
rapeseed leaves different. Part of the rapeseed materials 
at the new test site are shown in Fig. 8a. The green boxes 
represent the freezing-tolerant materials and the blue 
boxes represent the freezing-injured materials. 

In the above experiments, the ResNet50 outperforms 
other CNN models, SIFT+ANN has the highest accuracy 
and SIFT+SVM has the highest F-score among the four 
traditional machine learning methods. Thus, we used 
the ResNet50, SIFT+ANN and SIFT+SVM to test the 
images collected from the new test site. The comparison 
results are shown in Table 5. Although there is a large dif-
ference in the training dataset and the test dataset, the 
recognition performance of the CNN models outper-
forms traditional machine learning models on the new 
dataset. The generalization ability of the ResNet50 can 

basically meet the requirement of freezing-tolerant rape-
seed material recognition.

The visualization result of ResNet50 is shown in 
Fig. 8b. The red boxes and white boxes represent mate-
rials that are recognized incorrectly by the ResNet50. By 
visualizing the experimental result of the model, we can 
visually observe that the freezing injury of rapeseed in 
large fields. Breeders can quickly assess and select freez-
ing-tolerant materials based on the visualization result. 
In addition, breeders can take remedial action for early 
freezing-injured materials and reduce the loss of rape-
seed freezing injury. The visualization of the rapeseed 
field can help managers for accurate management in 
complex and large-scale fields.

Experiment on the new test site (Xinzhou) in 2021
To further verify the generalization performance of the 
model in other regions, we collected the rapeseed images 
at the Oil Crops Research Institute, Chinese Academy 
of Agricultural Sciences, Xinzhou, Wuhan, Hubei prov-
ince, China. The planting environment at this test site is 

Fig. 7  Comparision of sample data between training dataset (a) and test dataset (b)
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Fig. 8  Visualization for recognition result of ResNet50 at new test site of Wuchang

Table 5  Experimental results of three models at the new test site (Wuchang). (T-FT and T-FI denote that the true labels of rapeseed 
materials are freezing-tolerant and freezing-injured, respectively. P-FT and P-FI denote that the predicted labels of rapeseed materials 
are freezing-tolerant and freezing-injured, respectively)

Models T-FT T-FI Accuracy (%) Recall (%) Precision (%) F-score (%)

ResNet50 P-FT 63 17 85.71 88.73 78.75 83.44
P-FI 8 87

SIFT+ANN P-FT 63 17 46.29 45.00 78.75 57.27

P-FI 77 18

SIFT+SVM P-FT 37 43 55.43 46.25 51.39 48.68

P-FI 35 60

Fig. 9  Comparision of sample data between the freezing-injured (a) and the freezing-tolerant materials (b) at Xinzhou
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consistent with that in Wuchang. The rapeseed was sown 
on September 27th, 2021. We collected the UAV images 
of this test site on December 7th, 2021. We selected 204 
materials including 91 freezing-tolerant materials and 
113 freezing-injured materials from the test site. The 
materials we selected included two kinds of leaf-shaped 
materials. The part of the test image is shown in Fig. 9.

Table 6 shows the test result of ResNet50. Overall, it 
achieves the accuracy of 84.80%. The recall, precision 
and F-score are 81.25%, 85.71% and 83.42%, respec-
tively. Next, we will train the model using more over-
wintering rapeseed images collected in multiple regions 
and on multiple dates to further improve the recogni-
tion performance of the model.

Conclusion
This study combines deep learning and UAV images to 
build an AI-assisted freezing-tolerant rapeseed mate-
rial recognition model. This method can recognize 
freezing-tolerant materials from a large number of 
materials and further assist breeders in selecting breed-
ing materials. In this study, the accuracy of the five 
CNN models was all over 92%. In addition, ResNet50 
achieves the highest accuracy of 93.33%, while achiev-
ing the highest F-score of 79.79% and the highest recall 
of 79.79% among the other models. It proves the feasi-
bility of freezing-tolerant rapeseed material recognition 
using UAV images and deep learning.

The freezing-tolerant rapeseed material recognition 
method established in this study has the advantages of 
economy, convenience, automation, and high precision. 
Breeders can not only quickly assess and select freez-
ing-tolerant materials but also take remedial action for 
early freezing-injured materials to reduce the losses. This 
method can provide strong support for the scientific 
research work of rapeseed breeding and the study of the 
mechanism of freezing tolerance in rapeseed. Visualiza-
tion of the recognition result will further help breeders 
to achieve accurate management of rapeseed freezing 
injury.

Although some fine results have been obtained, there 
are still some improvements that may be taken into 
consideration in future work. We will collect rapeseed 

images during the overwintering period on multiple 
dates and in multiple regions to increase the diversity of 
data. In addition, we will divide the materials into more 
refined categories according to the freezing resistance 
of the materials to further help the breeders select the 
required materials more efficiently. We will also apply 
this method to other adversity monitoring and evalu-
ation of rapeseed to promote accurate and intelligent 
development in the rapeseed field.
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Table 6  Experimental results of ResNet50 at Xinzhou. (T-FT and T-FI denote that the true labels of rapeseed materials are freezing-
tolerant and freezing-injured, respectively. P-FT and P-FI denote that the predicted labels of rapeseed materials are freezing-tolerant 
and freezing-injured, respectively)

Model T-FT T-FI Accuracy (%) Recall (%) Precision (%) F-score (%)

ResNet50 P-FT 78 13 84.80 81.25 85.71 83.42
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