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METHODOLOGY

Application of X‑ray computed tomography 
to analyze the structure of sorghum grain
Daniel Crozier1*  , Oscar Riera‑Lizarazu2 and William L. Rooney1 

Abstract 

Background:  The structural characteristics of whole sorghum kernels are known to affect end-use quality, but 
traditional evaluation of this structure is two-dimensional (i.e., cross section of a kernel). Current technology offers the 
potential to consider three-dimensional structural characteristics of grain. X-ray computed tomography (CT) presents 
one such opportunity to nondestructively extract quantitative data from grain caryopses which can then be related 
to end-use quality.

Results:  Phenotypic measurements were extracted from CT scans of grain sorghum caryopses. Extensive phenotypic 
variation was found for embryo volume, endosperm hardness, endosperm texture, endosperm volume, pericarp 
volume, and kernel volume. CT derived estimates were strongly correlated with ground truth measurements enabling 
the identification of genotypes with superior structural characteristics.

Conclusions:  Presented herein is a phenotyping pipeline developed to quantify three-dimensional structural char‑
acteristics from grain sorghum caryopses which increases the throughput efficiency of previously difficult to measure 
traits. Adaptation of this workflow to other small-seeded crops is possible providing new and unique opportunities for 
scientists to study grain in a nondestructive manner which will ultimately lead to improvements end-use quality.
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Background
In sorghum [Sorghum bicolor (L.) Moench], breed-
ers have primarily focused on yield improvement and 
stability; grain quality has been a trait of secondary 
importance. However, the demand for cereal grains that 
increase animal feed efficiency, address global malnutri-
tion, improve food quality for human consumption, and 
meet niche-markets demands dictate the necessity for 
improvements in grain quality [1–3]. While breeders 
can select for improved grain quality, they must main-
tain grain yield and yield stability as any reduction would 
be detrimental to adoption and further reduce rates of 
genetic gain for yield. In wheat, it is possible to improve 

grain quality parameters without sacrificing agronomic 
performance, and the same may be true in sorghum [4].

A sorghum caryopsis is composed of three biological 
components: pericarp, endosperm, and embryo [5]. The 
relative size of each component varies among genotypes 
and production environment but pericarp, endosperm, 
and embryo account for around 7%, 84%, and 9% of ker-
nel weight, respectively [6]. The pericarp is the outermost 
layers of a kernel and includes the epicarp, mesocarp, and 
endocarp layers. The thickness of the pericarp is associ-
ated with multiple traits which affect sensitivity to grain 
weathering, processing qualities (i.e., decortication), and 
storage stability [7, 8]. The endosperm is composed of 
protein and starch and is subdivided into the aleurone 
layer, peripheral, hard (vitreous), and soft (floury) por-
tions [9]. Lastly, the embryo is composed of the embry-
onic axis and scutellum and contains protein and the 
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majority of lipids, vitamins, and minerals found in the 
caryopses [6].

Studies on kernel structure in sorghum have tradition-
ally involved hand dissection or sectioning of kernels fol-
lowed by observing a single longitudinal cross sections [8, 
10–13]. These methods destroy the seed, offer only one 
cross section (typically in the middle of the kernel), and 
are time consuming, which limits the number of kernels 
that can be evaluated per sample. Because kernel com-
ponents vary across cross sections [5], cutting kernels in 
half is not representative of the whole seed resulting in 
biased estimates of kernel structure.

In sorghum, grain quality often depends on matching 
the end-use with physical kernel characteristics. Physi-
cal properties that affect grain quality include seed size, 
seed weight, endosperm texture, bulk density, and grain 
hardness [14]. Endosperm texture is the relative propor-
tion of hard endosperm to soft endosperm [5]. As the 
name implies, hard (or vitreous) endosperm in sorghum 
is denser and more translucent than the soft endosperm, 
which is opaque and more porous. Endosperm texture is 
an important factor in the milling quality of grains and 
resulting flour, as well as susceptibility to grain mold 
[5, 12]. Generally, kernels with a higher portion of hard 
endosperm are preferred for milling because they are 
more resistant to breakage during decortication and yield 
cleaner endosperm of larger particle size giving a higher 
milling yield [5]. Because endosperm texture is difficult 
to measure, relatively few studies have examined the 
genetics controlling this trait [13]. Therefore, identifica-
tion of better phenotyping methods may lead to gene 
discovery, improved selection efficiency, and advances in 
grain quality.

Computed tomography (CT) imaging technology is 
a powerful tool that can be utilized to measure com-
plex features in biological specimens. The CT technol-
ogy works by beaming x-rays through an object while 
rotating around the object in a helical path. The result-
ant x-ray signals are then processed using mathemati-
cal algorithms and stitched together into cross sectional 
images, or “slices” that are stacked together forming a 
three-dimensional image. From CT images, volumetric 
data can be analyzed for various structures with different 
densities. Until recently, the scale, resolution, through-
put, accessibility and cost of this technology limited its 
use [15]. However, recent studies have demonstrated the 
increased through put and access ability of and accessi-
bility of this technology to plant scientists [16, 17].

The advantages of CT imaging include nondestructive 
data acquisition, increased throughput and efficiency for 
gathering multiple traits, and more accurate measure-
ments [15, 18]. Plant stems, leaves and roots of numer-
ous plant species have been characterized by CT imaging 

[15–20]. In sorghum, Gomez et al. [16] developed a high 
throughput phenotyping system for morpho-anatomical 
stem properties for application in a crop improvement 
program. Therefore, it may be possible to develop similar 
methodology for analysis of grain although caryopsis pre-
sent different challenges.

CT imaging has been used to analyze caryopses in 
other cereal grain crops. In rice, CT imaging distin-
guished high-amylose from wild-type rice [21]. In wheat, 
CT imaging assessed the damage caused by sprouting 
and insect infestation [22]. Similarly in corn, CT imaging 
effectively assessed damage from insect feeding and esti-
mated kernel hardness [23, 24]. To estimate kernel hard-
ness in corn, CT imaging was used to exclude regions not 
of interest (cavities and germ) to truly determine volumes 
and densities of the endosperm [23]. If similar methodol-
ogy could be developed for quantifying traits in sorghum 
grain, it should be possible to assess sorghum endosperm 
texture on a three-dimensional basis for the first time. 
In addition, it may be possible to extract information on 
other traits such as the spatial distribution of endosperm, 
endosperm hardness, embryo size, kernel size, pericarp 
thickness, and identification of waxy endosperm.

CT scans produce a vast volume of images that requires 
efficient methods of data management and analytics. To 
extract information from CT scans, the images need to 
be simplified and partitioned into regions of interest. This 
process, segmentation, assigns a label to every pixel in an 
image based on certain common characteristics. From 
this, quantitative data can be extracted in the form of 
size and shape of objects in proportion to one another. 
The simplest approach to segmenting an image is to use 
thresholds based on pixel intensity to subdivide an image 
into different regions. However, there are limitations to 
this approach when sufficient differences in pixel inten-
sity are lacking as is common in real world applications. 
Guelpa et  al. [23] reported from CT scans of corn ker-
nels that the density of the germ and hard endosperm 
were very similar and accurate discrimination between 
the two was not possible using thresholds based on pixel 
intensity. Other methods of segmentation include look-
ing for acute changes in pixel intensity (edge detection), 
or changes in texture.

Machine learning approaches offer the potential 
to combine a collection of feature selection tools for 
improved image segmentation. There are numerous 
machine learning algorithms which have been applied 
to segment medical images and the varying strengths 
and weaknesses of many were reviewed by Seo et  al. 
[25]. Random forests are easy to use, have fewer hyper-
parameters to tune than other models, and produce 
reduce results with high accuracy and stability [25]. The 
random forest classification method combines random 
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uncorrelated decision trees into one prediction model 
where a decision tree is essentially a series of yes/no 
questions that lead to a predicted class [26]. The trees are 
trained on different sets of data and use different features 
to protect each other from their individual errors. In 
this classification scheme, some individual trees may be 
wrong, but most trees will be correct. Applying machine 
learning based approaches to segmenting CT images may 
alleviate the challenges put forth by Guelpa et al. [23] and 
prevent the use of manual image cleaning.

One of the challenges in implementing machine learn-
ing to a broader range of applications is the knowledge 
gap between scientists versed in machine learning and 
applied researchers. Trainable Weka Segmentation is a 
Fiji plugin that combines a collection of machine learn-
ing algorithms with a graphical user interface for ease 
of accessibility and functionality [27]. This software is 
freely available and can help bridge the gap between the 
machine learning and image processing fields.

Given limitations in accurate and nondestructive 
analysis of grain samples which impede improvements 
in sorghum grain quality, a phenotyping platform for 
CT imaging sorghum grain was developed. Thereafter, a 
diversity panel of sorghum was used to validate the effec-
tiveness of CT imaging to measure structural characteris-
tics in sorghum kernels.

Materials and methods
Plant material
A panel of 19 sorghum inbred lines representing a range 
of grain composition was used (Table 1). These lines var-
ied for kernel traits including pericarp color, mesocarp 
thickness, presence or absence of the testa layer, kernel 
size, kernel hardness, and endosperm texture. Grain was 
bulk harvested from ten panicles for each line in 2019 
at physiological maturity in College Station, Texas and 
stored in a cold vault at 11–13% moisture until scans 
were conducted.

Experimental details
The experimental design was a randomized complete 
block design with three replications. An experimental 
unit, compromised of 40 sorghum kernels of a geno-
type, was placed in a single well in an expanded poly-
styrene foam microtube storage box. In total, each CT 
scan contained 21 experimental units constituted by 19 
different genotypes. One entry (RTx430) was replicated 
three times to assess the extent of spatial variation 
within a scan. Three separate CT scans were completed; 
each scan was considered a replication.

CT scanning and image processing
The CT scans were performed by a North Star Imag-
ing X50 industrial 3D X-ray inspection system. VorteX 
automated single pass computed tomography scanning 

Table 1  Plant material and phenotypic kernel characteristics of 19 sorghum inbred lines evaluated in this study

Genotype Pericarp Color Mesocarp 
Thickness

Testa Layer 
Presence

References

Ajabsido White Thick Yes [28]

BOK11 White Thick No [29]

BTx2928 White Thick No [30]

BTx378 Red Thick No [31]

BTx399 Red Thick No [31]

BTx642 Yellow Thick No [32]

BTxArg-1 White Thin No [33]

Dorado White Thin No [34]

FC6601_Spur Feterita White Thick Yes [35]

ICSV400 White Thin No [36]

ICSV745 White Thin No [37]

RTx2536 White Thin No Rosenow, unpublished data, (1964)

RTx430 White Thin No [38]

SC103-12E (IS12170C) Red Thin Yes Rosenow, unpublished data, (1970)

SC283 (IS7173C-TAM) White Thin No Rosenow, unpublished data, (1972)

Standard Early Hegari (SN106) White Thick Yes [39]

Sureno White Thin No [40]

TAM2566 Red Thin Yes [41]

Texas Blackhull Kafir (SN59) White Thick No [31]
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technique, which utilizes spiral acquisition and recon-
struction with a digital flat-panel detector, was used 
to construct images. This alleviated the use of vol-
ume stitching and provided uniform resolution in axial 
and sagittal slices across the entire volume. Scans took 
approximately 2.5  h to complete and provided a reso-
lution of 20.2  µm. After imaging, 2-dimensional slices 
from the X-axis were exported as PNG files. From each 
scan, approximately 1500 images (~ 40 GB when uncom-
pressed), were extracted. Stacks of two-dimensional 
slices were imported into Fiji [42] where they were con-
verted to 8-bit grayscale to reduce file sizes. Stacks of 
images were then processed using the enhanced contrast 
feature with saturated pixels set to 0.3% and normalized 
using the stack histogram. This processing made manual 
identification of regions easier for use in training the seg-
mentation classifier. An overview of this CT imaging and 
data acquisition pipeline can be visualized in Fig. 1, with 
further detail provided in Additional file 1.

Image data extraction
A machine learning based plugin in Fiji, Trainable 
Weka Segmentation 3D [27], was used to segment 
stacks of images into different regions. A training set 
was built that was comprised of ten sequential images 
from each of the three scans where 52,966 pixels where 
manually annotated as belonging to one of five classes: 
background, pericarp, embryo, soft endosperm, or hard 
endosperm. Manual annotations were made such that 
there was representation among all genotypes, images, 

and scans in the training set. A classifier was then built 
using a fast random forest, a multithreaded version of 
the random forest put forth by Breiman [26], with 200 
trees and two random features per node. In previous 
research it has been well documented that that classi-
fication accuracy does not increase if using more that 
100–200 trees with most data sets, while processing 
time increases linearly with the addition of more trees 
[43–45]. Within this data set, increasing tree number 
from 200 to 400 increased training time by 111% while 
only increasing pixel classification by 0.01%. Therefore, 
since random forests produce a limiting value of the 
generalization error but do not overfit as more trees are 
added, 200 trees were used as a compromise between 
computational power and the diminishing returns in 
performance gain with more trees [26].

Three training features were used: Hessian, mean, 
and variance with a minimum sigma of one and a maxi-
mum sigma of eight. Mean and variance are texture-
based filters useful in differentiating between areas that 
do not have distinct boundaries but contain patterns of 
homogenous variation. In the present study, this was 
selected because it was useful in delimiting between the 
regions of sorghum kernels where there was a gradation 
in pixel values as opposed to distinct boundaries. Hes-
sian is an edge detection filter useful in discriminating 
the borders of objects defined by clear boundaries such 
as that between the caryopsis and background. The ran-
dom forest model described above was evaluated within 
the training set using ten iterations of fivefold cross 

Fig. 1  Overview of the CT imaging and data acquisition pipeline
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validation and compared against three other models to 
determine relative accuracy and computational efficiency 
(Table 2). Hyperparameter tuning was done to optimize 
performance while keeping training times similar to the 
random forest model. A support vector classifier (SMO) 
was fit using a logistic calibrator, a polynomial kernel, 
a complexity of six and an epsilon value of 1.0E−12. The 
Naive Bayes model was fit using default parameters as 
few tuning options were available. A neural network 
(MultilayerPerceptron) model was fit with ten hidden 
layers, a learning rate of 0.3 with momentum 0.2, and a 
training time of 20. More information on these models 
can be found within the Weka user manual [27].

Within the training set, the random forest model was 
not the fastest; however, it had the highest pixel classifi-
cation accuracy of 99.9%, and lowest root mean squared 
error (Table 2). Although in depth follow up studies are 
necessary for optimization of classifier models to pro-
duce the best results and fairly compare between clas-
sifiers, the random forest classifier was deemed good 
enough and used for subsequent analysis.

File sizes in excess of 9 GB after initial processing were 
too large to segment at once. Thus, stacks of images were 
subdivided into 21 smaller tiles of more manageable size 
(~ 250  MB). Every genotype was allocated to an indi-
vidual tile and segmented separately using the common 
classifier. Pixel counts for each of the five classes were 
obtained for every experimental unit and retained for 
further use.

Total pixel number of kernels for each experimental 
unit was calculated by adding the number of pixels con-
taining hard endosperm, soft endosperm, pericarp and 
embryo. A reference point in the image was measured 
to find pixels per mm2. Average single kernel volume 
was then calculated by converting total pixel number to 
mm3 and dividing that by 40 (the numbers of kernels/
per entry). Average embryo, endosperm, and pericarp 
volume were calculated similarly to average kernel vol-
ume using the pixel number for each respective region. 
Endosperm texture was calculated by dividing the total 
number of pixels containing hard endosperm, by the total 
number of pixels containing soft endosperm for each 
experimental unit.

Not using the segmentation classifier, average 
endosperm intensity of each experimental unit was cal-
culated by averaging the range of pixel values in all 40 
kernels across all slices. Pixel values range in brightness 
from 1 to 255, where higher pixel values are brighter and 
represent denser objects in a CT scan. Pixel values below 
70 were ignored as background, and pixel values above 
248 were ignored as embryo. This was done to achieve an 
approximation of endosperm hardness based on density, 
hence exclusion of background noise and regions con-
taining pericarp or embryo.

Ground‑truth data collection for validation
Reference grain quality parameters for each genotype 
were established using both quantitative and visual sub-
jective tests. First, the Single Kernel Characterization 
System (SKCS) (SKCS 4100, Perten Instruments North 
America Inc., Springfield, IL) was used to measure diam-
eter, weight, and hardness of 300 individual kernels. 
This method is widely used in the wheat industry and 
accepted by the sorghum industry as a tool for measuring 
grain characteristics [46].

Visual assessment of endosperm texture was esti-
mated by cutting three kernels from each genotype lon-
gitudinally along the embryo to bisect the caryopsis, and 
visually scoring them based on the ratio of hard to soft 
endosperm. Genotypes were placed into categories from 
one to five where one is greater than 80% soft endosperm, 
two is 80% to 60% soft endosperm, three is 60% to 40% 
soft endosperm, four is 40% to 20% soft endosperm, and 
five is less than 20% soft endosperm. This was done anal-
ogous to traditional phenotyping methods in which the 
reliability of data is subject to the skill and expertise of 
the scorer [47].

Statistical analysis
Restricted maximum likelihood (REML) analysis was 
conducted in JMP (Version  15.0.0. SAS Institute Inc., 
Cary, NC) using the model:

where Yij is the trait of interest, u is the mean effect, Genj 
is the effect of the jth genotype, Repi is the effect of the 
ith replicate, Colk is the effect of the kth column, Rowl is 
the effect of the lth row, and Eij is the random error term. 
Inclusion of spatial corrections, row and column, was 
done to assess and account for variance within CT scans. 
It was hypothesized that objects in the center of a CT 
scan may appear denser possibly due to changes in atten-
uation from the x-ray passing through more material, 
or if the imaging gantry does not travel far enough past 
the ends of the sample to record an accurate image. Fac-
tors with negative variance components were removed 

Yij = u + Genj + Repi + Colk + Rowl + Eij

Table 2  Performance of machine learning classifiers in segmenting 
CT scans of sorghum grain

Classifier Training 
time (s)

Root mean 
squared error

Percent Correct

Random Forest 3.5 0.03 99.9

SMO 3.4 0.32 98.1

Naive Bayes 0.2 0.15 93.7

Multilayer perceptron 3.6 0.07 98.2
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from the model. Normality of residuals from the models 
were checked using the Anderson–Darling test, and log 
base ten transformations were used to normalize non-
normal traits. All random models were used to generate 
estimated best linear unbiased predictors (EBLUPs) for 
each genotype, variance components, and repeatability 
estimates. Repeatability (R) on an entry-mean basis was 
calculated using the equation:

where R = the repeatability, σ2
g = the genotypic variance, 

σ2
e = the error variance, and r = the number of replica-

tions. Repeatability, calculated similar to heritability, indi-
cates the consistency of data and is used in the absence of 
family structure. Pearson correlation coefficients (r) were 
computed to assess the relationship between EBLUPs of 
CT-derived traits and validate against ground-truth data. 
Best linear unbiased estimators (BLUEs) were estimated 
using the aforementioned models with genotype being 
considered as a fixed effect and all other factors random 
effects. The Tukey – Kramer honestly significance differ-
ence (HSD) test was used to determine if genotypes were 
significantly different from one another using BLUEs.

R =

(

σ
2

g

)/(

σ
2

g +

(

σ
2

e

/

r
))

Results and discussion
Phenotypic variation
Significant (p < 0.01) variation among genotypes was 
detected for embryo volume, endosperm intensity, 
endosperm texture, endosperm volume, pericarp volume, 
and kernel volume using CT imaging. Variance compo-
nent decomposition shows genotype and rep were the 
largest sources of variation across traits (Fig. 2). Residual 
errors were small which resulted in high R2 values and 
repeatability (R) estimates for all traits (Table 3).

The variation associated with replication was variable 
(Fig.  2). Some traits, such as CT Endosperm Intensity, 
had a large replication effect which is likely due to sub-
tle differences in average intensity values between scans 
(e.g., some scans were brighter than others). Therefore, if 
data is extracted from multiple CT scans, control geno-
types or reference objects of known density are necessary 
to normalize all scans to the same range of intensity val-
ues. Traits derived using the machine learning classifier 
were less affected than endosperm intensity by replica-
tion effects because a combination of features (e.g., mean, 
variance and Hessian) was used as opposed to pixel 
intensity alone (Fig. 2).

Spatial variation, accounted for in the model by row 
and column position in CT scans, were not significant 

Fig. 2  Percent variance associated with factors in CT-derived estimates of sorghum kernel structure for 19 genotypes. Replication refers to 
independent CT scans while row and column refer to the spatial position within the CT machine
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sources of variation for any traits but a small amount of 
variance was partitioned to spatial effects. Given the con-
servative approach used to assess significance of effects, 
spatial variation may still be present within scans and 
when so, it is likely due to changes in attenuation from 
the x-ray passing through more material, or if the imag-
ing gantry did not travel far enough past the ends of the 
sample to record an accurate image.

Across all genotypes, sorghum kernel composition 
measured using CT imaging averaged 9% pericarp, 76% 
endosperm, and 14% embryo by volume (Table  3). Pre-
vious literature reported kernel composition ranges as 
4.3–8.7% for pericarp, 81.7- 86.5% for endosperm, and 
8–10.9% for embryo by weight [6], so CT-estimates are 
slightly higher for pericarp and embryo with a concomi-
tant reduction in endosperm proportion. These dif-
ferences could be due to several factors including the 
different densities of tissues, genotypes sampled, envi-
ronmental effects, and measuring methodology. Average 
kernel volume determined by CT imaging was 19.9 mm3; 
the most recent U.S. Grains Council survey reported 
similar sorghum kernel volumes of 19.3 mm3 in 2015 and 
20.6 mm3 in 2016 in the United States [48].

Correlations and validation
Strong correlations were observed between many CT-
derived trait measurements (Fig.  3). As expected, CT 
kernel volume was correlated (p < 0.01) with CT embryo 
volume, CT endosperm volume, and CT pericarp vol-
ume because larger grains are naturally comprised of 
greater volumes of embryo, endosperm, and pericarp. CT 
endosperm intensity was correlated (p < 0.01) with CT 
endosperm texture, which is logical given the differences 
in density between soft and hard endosperm [5].

Estimates of CT-derived traits were also correlated 
with ground-truth measurements from SKCS and visual 
scoring. Visual scoring for endosperm texture was highly 
correlated (p < 0.01) with both CT endosperm intensity 
and CT endosperm texture (Fig.  3). SKCS kernel hard-
ness was also strongly correlated (p < 0.01) with both CT 
endosperm intensity and CT endosperm texture (Fig. 3). 
SKCS kernel diameter and SKCS kernel weight were both 
correlated (p < 0.01) with CT kernel volume (Fig. 3). The 
strong correlations reported herein suggest that CT-
derived trait measures are reliable.

Table 3  Best linear unbiased estimators for CT-derived measures of sorghum grain structure for 19 sorghum genotypes

HSD honestly significant difference from Tukey-Kramers test, R2 = total variation explained by the model, R = repeatability

Genotype CT seed size 
(mm3)

CT pericarp 
volume (mm3)

CT embryo 
volume (mm3)

CT endosperm 
volume (mm3)

CT endosperm 
texture

CT 
Endosperm 
Intensity

Ajabsido 29.12 2.21 4.05 22.77 1.79 181.59

BOK11 14.30 1.54 2.03 10.77 1.43 178.68

BTx2928 16.94 1.76 2.53 12.68 2.19 181.27

BTx378 20.56 2.03 2.81 15.56 1.69 179.17

BTx399 24.13 2.02 3.33 18.79 2.69 185.63

BTxArg-1 12.55 1.30 1.82 9.24 2.98 183.87

BTx642 18.13 1.76 2.46 13.65 3.51 186.49

Dorado 20.86 1.93 2.62 16.20 2.54 184.34

ICSV400 24.79 2.10 3.74 18.84 2.97 187.32

ICSV745 11.82 1.24 1.73 8.82 3.96 184.98

Tx2536 22.54 2.05 3.07 17.25 2.29 182.79

RTx430 27.00 2.26 4.14 20.46 2.31 182.86

SC103-12E 20.19 2.00 2.72 15.10 1.08 174.55

SC283 15.83 1.51 2.91 11.40 3.99 188.32

Spur Feterita (FC6601) 26.91 2.24 3.68 21.06 1.48 178.72

Standard Early Hegari (SN106) 19.40 1.70 2.54 14.91 1.41 176.68

Sureno 14.68 1.49 2.38 10.97 5.11 187.8

TAM2566 20.22 1.82 2.70 15.71 1.43 179.46

Texas Blackhull Kafir (SN59) 17.66 1.70 2.06 13.74 1.35 175.29

Average 19.87 1.82 2.81 15.15 2.43 182.10

HSD 2.15 0.49 1.36 2.39 1.53 6.14

R2 0.92 0.97 0.95 0.98 0.88 0.99

R 0.97 0.94 0.97 0.99 0.91 0.99
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CT imaging challenges
CT images were segmented into regions containing back-
ground, embryo, soft endosperm, hard endosperm, and 
pericarp (Fig.  4). In addition, other phenotypic kernel 
characteristics, such as the presence of cracks and voids, 
were observed within some genotypes (Fig. 4). Since the 
segmentation classifier used herein detected these large 
hollow voids and removed them from kernels, the esti-
mates of sorghum kernel structure remained unbiased.

Histograms of pixel values for scanned grain lacked 
distinct peaks and valleys corresponding to individual 
regions of the caryopsis like that reported by Guelpa 

et  al. [23] in corn. This made segmentation more dif-
ficult and necessitated the use of a more complex 
approach than relying singularly on intensity value of 
regions. Some errors in classification were present, 
likely due to the lack of marked differences between 
regions of the kernel. For example, regions of hard 
endosperm were occasionally misclassified as embryo 
and regions of the embryo were occasionally misclas-
sified as soft endosperm (Fig. 4). This is because even 
within regions, pixel intensity and texture are not 
homogenous. For instance, within the embryo, the 
scutellum is denser and therefore brighter than the 

Fig. 3  Correlations among different sorghum structural characteristics as measured by CT imaging, SKCS, and visual scoring. Pearson’s correlation 
coefficients significant at p < 0.01 are colored green and shown in the top right. Graphic depictions of the correlation scatterplot matrices are 
presented in the lower left
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embryonic axis. This could lead to higher residual 
errors in models and either over or underestimation of 
some regions of the kernel. Potential ways of account-
ing for this in future analysis would involve thorough 
testing and optimization of training set size, number 
of trees in random forest models, features, sigma val-
ues, and other machine learning approaches. However, 
future evaluations should balance model accuracy with 
computational efficiency as to not slow throughput 
efficiency of subsequent phenotypic analysis. Overall, 
misclassifications were minimal and did not negatively 
impact data quality, but they may explain why embryo 
and pericarp volume estimates were slightly higher 
than previously reported.

Genotypic differences
With the methodology presented herein, structural char-
acteristics of sorghum caryopsis can be quantified. This 
serves many potential applications to plant breeders and 
cereal chemists alike for use in gene discovery, physiolog-
ical studies, and other research. One such application is 
to discriminate between genotypes. Significant genotypic 
differences were detected between genotypes for all traits 
using CT imaging (Table  3). For a trait like endosperm 
texture, CT imaging detected quantitative genotypic 
differences with more statistical differences between 
genotypes than categorical visual scoring (Table  3). In 
addition, genotypes can be selected for different end-use 
purposes based on structural characteristics. For milling, 

Fig. 4  Images of sorghum kernels before and after segmentation. A background, B embryo, C soft endosperm, D hard endosperm, E pericarp, F 
hollow void in kernel, G hard endosperm misclassified as embryo, H less dense embryonic axis region of embryo misclassified as soft endosperm



Page 10 of 11Crozier et al. Plant Methods            (2022) 18:3 

a genotype (such as BTx399) which has larger kernels, 
higher percent endosperm, and harder endosperm is 
preferred (Table  3). Also, cracks and voids which were 
observed in some genotypes (Ajabsido) are undesirable 
for milling as kernels would be more prone to breakage 
during harvest and decortication.

Among the 19 sorghum lines evaluated herein was one 
with waxy endosperm (BTxARG-1). Waxy endosperm is 
caused by a genetic mutation that inhibits the synthesis 
amylose resulting in a glossy endosperm phenotype that 
is slightly less dense and phenotypically distinct from 
normal endosperm [5, 49]. Efforts to discern between 
waxy and regular endosperm using CT imaging were not 
successful. Consequently, the approaches used to meas-
ure endosperm properties characterized material simi-
larly regardless of endosperm type. BTxARG-1 (waxy), 
was classified as around the same relative ranking for 
hardness and texture by SKCS, visual, and CT scanning. 
Therefore, there is no evidence to suggest separate phe-
notyping methods are needed for waxy and non-waxy 
genotypes using the phenotyping pipeline provided.

Conclusions
The phenotyping pipeline presented herein can be auto-
mated using the source code in Fiji and did not require 
manual input past training the initial classifier; thus, 
increasing throughput efficiency of previously difficult 
to measure traits. This allowed accurate classification of 
endosperm texture as well other sorghum kernel struc-
tural characteristics. Based on the results presented 
herein, CT imaging presents new and unique opportuni-
ties for scientists to study sorghum grain in a nondestruc-
tive manner. With the capability to three-dimensionally 
segment sorghum kernels into regions, future studies can 
assess the spatial distribution and relationship structural 
characteristics have on other grain quality traits.
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