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Abstract 

Background:  Fucoidans are sulfated polysaccharides from the cell-wall of brown algae. They have a wide range 
of applications in medicine, including regenerative medicine, ophthalmology, cancer, and autoimmune disease. 
Biological activity of fucoidans directly depends on their structure, which remains poorly understood. This is primar-
ily because the polymeric nature of these molecules limits the use of nuclear magnetic resonance and mass spec-
trometry, classical tools of structural biology for their structural characterization. Raman and Infrared spectroscopies 
are non-invasive and non-destructive techniques that can be used to probe the structural organization of biological 
specimens. In this study, we investigate the potential of Raman and Infrared spectroscopy for structural analysis of 
several fucoidan extracts.

Results:  Our results show that Infrared and Raman provide different but complimentary information about the struc-
ture of crude extracts of fucoidans, revealing the presence of minor impurities from co-extractants. We also found 
that at high extraction temperatures acidic conditions limit formation of melanoidins, while also yielding relatively 
high sulfate ester fucoidan. However, at high temperatures, water extraction may potentially result in formation of 
advanced glycation end products. Their presence could be problematic for fucoidan extracts intended for medicinal 
use, as advanced glycation end products have been linked to endocrine interruption mechanisms in vivo by crosslink-
ing to and permanently altering extracellular matrix proteins.

Conclusion:  Raman and Infrared can be used as complementary tools for rapid screening of crude fucoidan extracts, 
which can be a valuable tool for assessing impurities that remain after extraction.
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Background
Sulfated polysaccharides from the cell-wall of brown 
algae (fucoidans) are a di- verse family of polydisperse 
hetero-polymers with a wide range of applications in 
medicine, including regenerative medicine, ophthalmol-
ogy, cancer [1, 2], and autoim- mune diseases [3]. Their 
structure-pharmacological activity relationship has not 

been fully elucidated due to their structural heteroge-
neity and taxonomic variability. A growing body of evi-
dence suggests that pharmacological activity of fucoidans 
also depends on the extraction methods using for their 
processing.

Fucoidan extraction typically involves soaking the 
seaweeds in aqueous or acidic solutions at ambient or 
high temperatures, while isolation is often performed 
by several recipitation steps involving calcium chloride 
and ethanol to desalt and remove low-molecular weight 
compounds. Other methods include the use of enzymes 
[4], microwave-assisted extraction [5, 6], and membrane 

Open Access

Plant Methods

*Correspondence:  dkurouski@tamu.edu
2 Department of Biochemistry and Biophysics, Texas A&M University, 
College Station, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6040-4213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-021-00830-6&domain=pdf


Page 2 of 10Ptak et al. Plant Methods          (2021) 17:130 

filtration [7, 8]. Extraction and purification are closely 
linked to the structure and bioactivity of a fucoidan. 
Fucoidan may undergo structural changes during extrac-
tion, which affects their bioactivity. Microwave-assisted 
extraction provides rapid extraction of fucoidan, gen-
erating high yields and eliminating further extraction 
steps. The drawback of this method is thermal degra-
dation of the backbone of the native fucoidan polymer: 
microwaving at temperatures below 100 °C provides high 
yields and fucoidans high in fucose, but the fucose con-
tent decreases with increasing temperature, resulting in 
fucoidans with glucuronic acid as the main monosaccha-
rides [6]. The fucoidan backbone may carry both carbo-
hydrate (mostly l-fucopyranose and d-glucuronic acid) 
and non-carbohydrate substituents (sulfate and acetyl 
groups) [9]. Other monosaccharides may also be part 
of the backbone and/or part of the polymer branches 
in some algae species. Nearly all structural studies on 
fucoidan focus on elucidation of the relationship between 
bioactivity and the degree of sulfation. At the same time, 
more complex structural analysis of these biopolymers 
is required to fully reveal their biological activity. For 
instance, structural features like branching and molecu-
lar weight reportedly also affect the bioactivity. Cho et al, 
noted that a fucoidan fraction of 5–30 kDa exhibited a 
higher inhibitory effect on tumor growth compared to a 
fraction with a molecular weight of >30 kDa, regardless 
of the higher molecular weight fucoidan having a higher 
sulfate content [2]. Sulfate esters do have a noticeable 
effect on several properties, including physicochemi-
cal ones. Wei et  al, found that decreasing the amount 
of ester sulfate groups in L. Japonica fucoidan increased 
aggregate formation, due to an abundance of inter-chain 
hydrogen bonds [10]. Such conformational changes are 
less studied, even though they may affect polymer activ-
ity in vivo. One key factor is the presence (or absence) of 
side chains throughout the polymer, as they reduce the 
flexibility of the oligosaccharide back- bone and stiffen 
the polymer. Increased stiffness may be favorable in 
some cases, as this forces the fucoidan polymer to adopt 
another conformation. One fucoidan polymer with sev-
eral side chains was reportedly adopting a conforma-
tion recognized by certain receptor proteins [11]. Highly 
flexible, linear polymers, on the other hand, can axially 
rotate each bond in the polymer chain to fit the whole 
fucoidan molecule to a certain steric arrangement. This 
structural property enables the fucoidan to interact with 
positively charged amino acid residues of receptor pro-
teins [12]. Having such massive impact on bioactivity, it is 
very important to determine the fucoidan structure after 
extraction.

Structural analysis of crude extracts directly after 
extraction may reveal what fucoidan features (if any) are 

altered by the extraction method. Ideally, this should be 
a rapid analysis, performed in real-time. Infrared and 
Raman are versatile, non-destructive tools for the iden-
tification of biomolecules in plant cells and tissues. These 
techniques are highly advantageous during production 
processes, as they can be used with minimal prepara-
tion for in-line analysis. Using both Raman and FT-IR 
provides structural insight that would otherwise be unat-
tainable from one technique alone. Bond vibrations with 
strong intensities in the IR spectra are typically weak 
contributors to Raman spectra and vice versa. For an IR 
transition, the vibrational motion is accompanied by a 
change in dipole moment, while it is the change in polar-
izability of the electron cloud within the molecule that 
lead to strong Raman bands [13]. This paper explores the 
complementarity of Raman and FT-IR structure analysis 
on fucoidan extracts.

Results and discussion
Size‑exclusion chromatography
Table  1 shows the proposed size distribution of each 
fucoidan extract and the two structural references. Two 
acid extracts show varying degrees of hydrolysis, with a 
main molecular weight of 1545 kDa and 961 kDa for the 
sulfuric acid and hydrochloric acid extract, respectively. 
The water extract contains the most diverse size com-
position, with a main molecular weight of 470 kDa. A 
massive poly- mer with a molecular weight above 50000 
kDa accounts for 16% of the water extracts, which greatly 
exceeds the average weight of fucoidan. This suggests 
that polymerization or the creation of another compound 
has taken place during fucoidan extraction.

Elemental analysis
Table  1 shows the sulfate ester and nitrogen content of 
each fucoidan extract and reference. The nitrogen con-
tent is typically quite low for brown algae, as they do not 
contain significant amounts of protein.

Raman and infrared on references and extracts
In the Raman and IR spectra collected from the fucoidan 
extracts (see Fig. 1, vibrational bands that can be assigned 
to carbohydrates, melanoidins and amides where 
observed. In the IR spectra, bands belonging to carbohy-
drates, melanoidins, sulfate esters, and amides (Table 2) 
were seen. The peak intensities among the extracts differ. 
This may be a result of pigmented compounds formed 
during mi- crowave extraction. The colourants may 
absorb a significant fraction of laser light.

Infrared analysis of fucoidan extracts
A vibrational band at 830 cm-1 was observed in the IR 
spectrum of all fucoidan extracts and in the fucoidan 
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standard. This vibrational band can be assigned to α- 
pyranose [17]. Since only one band is present in this 
linkage region, it is highly likely that this fucoidan has 
a simple, linear structure. It has been shown that Fucus 
vesiculosus fucoidan contains alternating α(1 → 3) and 
α(1 → 4) linkages of L- fucopyranose units [29]. This 
indeed confirms that the polymer has a simple, linear 
structure. Laminarin functions as a beta-glucan storage 
polymer in brown algae, which explains why the 830 cm-1 
band for α-pyranose is absent in the laminarin spectra. 
This region (the pyranose region) has previously been 
used to assign the positions of the sulfate ester groups 
(-OSO3-) on the monosaccharide units [30]. Extracting 
such structural information from the IR alone can be a 
powerful tool when characterizing the structure and 
potential function of a fucoidan extract. The -OSO3- 
position influence polymer properties, and axial posi-
tions greatly determine the conformational flexibility of 
the fucoidan polymer [31]. Two bands in the pyranose 

region can be used to uncover the -OSO3- substitution 
pattern; a strong band at 844 cm−1 denotes axial posi-
tion, while a shoulder band at 820 cm-1 shows an equa-
torial substitution [30]. These bands can also be assigned 
to the C–O–S, C–O, C–C and S–O vibrations [32], 
which makes unambiguous assignment of these bands 
challenging.

From the recorded infrared spectra, vibrational bands 
for sulphated polysaccha- rides were observed at 830 
cm-1, 893 cm-1, 1014 cm-1, and 1129 cm-1. Although the 
bands seem to shift somewhat depending on the extrac-
tion method, they can be assigned to the C–O–S vibra-
tion of a -OSO3-. The 830 cm-1 band was found to be a 
distinguishing feature of fucoidan in the spectra as it 
shows (1) the molecule is sulfated, as given by the C–O–S 
vibration from -OSO3- (possibly on C-235) and (2) the 
joined monosaccharides have α-conformation. Although 
we did not observe a band for an equatorial substitution 
pattern at 820 cm-1, we observed a band at 893 cm-1 in IR, 

Table 1  Chemical characterization of fucoidan samples and references

Size distribution and the intensity of each polymer weight in RID, and the results of the elemental analysis on the sulfate ester content (calculated from S%) and the 
nitrogen content of each extract and reference

Sample Mw [kDa] Mw Relative intensity [%] Sulfate ester content [%] Nitrogen content

Fucoidan reference 1884 91.15 31.56 ± 2.44 0.02 ± 0.02

809 2.8

611 4.93

4 1.12

Laminarin reference 5400 3.29 10.92 ± 2.44 0.16 ± 0.02

3155 2.4

1010 9.8

598 0.62

12 1.21

7 82.68

H2O extract 52,658 16.12 16.2 ± 2.44 0.23 ± 0.02

3260 26.66

470 34.58

340 8.78

9 3.34

7 5.84

5 3.42

4 1.27

H2SO4 extract 1545 88.48 17.85 ± 2.44 0.12 ± 0.22

611 5.34

8 2.31

7 3.15

5 0.72

HCl extract 961 84.67 20.93 ± 2.44 0.16 ± 0.02

547 7.34

8 4.31

7 3.09

5 0.59
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which can be assigned to the general C–O–S stretching of 
an equatorial-OSO3- of a pyranoid sugar [18]. A C–O–S 
band at 893 cm-1 was also observed for laminarin and 

the elemental analysis confirms that the laminarin stand-
ard is in- deed sulfated, albeit to a lesser degree than the 
fucoidan extracts and the fucoidan standard in this study. 

Fig. 1  Raman (A) and infrared (B and C) spectra of fucoidan extracts. The purple spectrum indicates fucoidan extraction with 10 mM H2SO4, while 
green and blue is 100 mM HCl and pure water, respectively. Red shows the reference fucoidan and yellow the laminarin reference sample. The 
intensity of Raman spectrum is shown in counts (cts) divided over mW of the 830 nm laser power multiplied by spectral acquisition time
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Table 2  Vibrational bands in fucoidan and laminarin

RS IR Vibrational Mode Assignment

428 C–O–C + C–C–C ring deformation Carbohydrate [14]

486

571 δ(C–C–O) + τ (C–O) Carbohydrate [14]

592

608 δ(C–C–O) Carbohydrate [14]

668

726 δ(C–C–O) Carbohydrate [14]

826 C–O–S stretching, α-1.3 bond Fucoidan

830 C–O–S stretching α-pyranose [15], C–O–S of

eq. sulfate ester on C-2 [16]

888 δ(C–C–H) + δ(C–O–C) Carbohydrate [17]

893 C–O–S stretching equatorial sulfate ester of a

pyranoid sugar [18, 19]

965 ν(C–O) in C–O–C linkage, β(C–O–H) Carbohydrate [13]

1004 Aromatic ring breathing Aromatic compound from

Maillard reaction

1014 β(C–O–H) + ν(C–C), C–O–S Stretching Trisaccharide [13], fucoidan

1054 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrate [14]

1080 1080 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrate [13, 14]

1119 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrate [14]

1129 C–O–C + C–O–S stretching hfill Fucoidan

1148 ν(C–O–C) + ν(C–C) in glycosidic linkages, Carbohydrate [13]

asymmetric ring breathing

1165 ν(C–O) Glucose [13]

1203 ν(C–C) + ν(C–O) Carbohydrate [14]

1224 S–O stretching Sulfate ester [17]

1250 S–O stretching Sulfate ester shoulder

1262 δ(C–C–H) + δ(C–C–H) + δ(C–O–H) Carbohydrate [14]

1335 ν(C–O) + δ(C–O–H), δ(C–H) Carbohydrate [14],

Alginate [20]

1366 δ(C–H) stretch MG alginate  [20]

1384 CH3 bending, symmetric Carbohydrate [18]

1420 C–H deformation Melanoidin

1437 O–H rocking Monosaccharide

1456 δ(C–H) + δ(CH2) + δ(C–O–H), CH, CH2
(in plane) + C–O–H deformations + asymm

Carbohydrate [14],
Alginate [20]

COO-

1529 –C=C– (in plane) + vasym COO- Carotenoids [21],

Alginate [20]

1538 ν(O–C–N) Amide II [22]

1600 δ(C–C–H) + v(C=C) Amide [23], Melanoidin [24]

1614 ν asym COO- Alginate  [20]

1627 ν(C–C) + v(C=O) Amide [25], Melanoidin

1634 ν(C=O) + ν(C=C) + ν(C=N) Amide I [23], Melanoidin [24],

unhydrated β-sheets [26, 27]

1664 ν(C=O) stretching Acetylamide [28]

2853 ν(CH3) stretch, symmetric

2925 v(CH2) stretch, symmetric Carbohydrate [22]

2999 C-H stretching Carbohydrate [18]

3400 O–H stretching Carbohydrate [15]
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The band at 1224 cm-1 and the shoulder at 1250 cm-1 is 
often used for detection of sulfated polysaccharides and 
they can be assigned to S–O stretches from sulfate esters. 
These bands are seen in all the IR spectra collected from 
fucoidan, while they are absent in the spectra collected 
from laminarin. These bands are stronger in the spec-
tra of acid extracts and in the Sigma standard, suggest-
ing that at high extraction temperatures, the amount of 
sulphated fucoidan is larger in acid-based extracts. The 
peak intensities and shape of the 1014 cm-1 and the 1224 
cm-1 in the water extracts also suggests that some of the 
fucose has been lost during extraction. Lowering the pH 
may preserve the sulfate ester groups at elevated extrac-
tion temperatures. This preserving effect may be due to 
the mitigation of the Maillard reaction (reaction between 
a reducing sugar, such as glucose, and the carbonyl group 
of free amino acid), as lowering the pH reduces the reac-
tion rate. Although the calculated sulfate ester content 
in laminarin may be from not dialyzing the extract after 
extraction, the absence of the 1224 cm-1 and the 1250 
cm-1 shoulder bands from the laminarin spectra may sug-
gest that, as the degree of sulfation increases, not only 
does the intensity of the sulfation bands increase, more 
sulfation bands can be seen in the IR spectra.

Vibrational bands at 1600 cm-1 and 1634 cm-1 can be 
assigned to melanoidins. In IR, this region may denote 
C=C, C=O, and α,β-diketones [24]. We propose that 
melanoidins were formed during extraction as a result 
from the Maillard reaction. The intensity of the 1600 
cm−1 and 1634 cm−1 bands are higher in the water 
extracts, which we attribute to the pH of the extraction 
solvent. The acid extracts had lower pH during extrac-
tion, which may mitigate the Maillard reaction and result 
in less Maillard reaction products.

The vibrations 1420 cm cm-1 and 1634 cm-1 are also 
highly solvent (or pH) dependent, as the intensity is 
much higher in the water extracts. The 1420 cm-1 band 
can be assigned to –C–H deformation, while the unam-
biguous assignment of the 1634 cm-1 band is more chal-
lenging. This band is often assigned to the amide I, but 
it may also denote a β-sheet structure for protein and to 
C=C stretching and even to C=N stretching vibrations 
for melanoidins [33, 34]. Based on the IR spectra and 
the elemental analysis, we propose that the acid extracts 
contain low amounts of protein, while the water extracts 
likely contains both a small amount of protein and the 
brown, nitrogenous, high molecular weight polymers, 
melanoidins. Structural information on melanoidins 
is limited due to their high structural complexity and 
diversity, but they are widely found in processed foods. 
Two minor peaks at 2925 cm-1 and 2994 cm-1 were also 
observed. These peaks are likely δ(CH2) deformations, 
al-though these peaks are normally more prominent in 

carbohydrates. This peak is more pronounced in the lam-
inarin spectra. This intensity difference is related to the 
monosaccharide composition of the laminarin and the 
fucoidan polymer. Unlike glucose, fucose does not con-
tain a hydroymethyl group (–CH2–OH), only a methyl 
group (–CH3). The small, shifted peaks observed in the 
fucoidan extracts could po- tentially be from laminarin 
contamination in the fucoidan extracts. The presence 
of laminarin was confirmed for all extracts by the 1165 
cm-1 band, which we assign to the ν(C–O) stretch from 
glucose.

Raman analysis of fucoidan extracts Raman spectrum 
of the water extracts exhibits poor signal to noise ratio, 
likely as a result of melanoidins and potentially other 
Maillard reaction products. At the first stage of the Mail-
lard reaction, Amadori products are formed. As the Mail-
lard reaction advances, these products may cross-link 
with adjacent proteins (or other amino groups), creating 
fluorescent polymeric aggregates, also called advanced 
glycation end products [35, 36] and simultaneously pro-
ducing melanoidins.

Prolonged heating of the extracts is undesirable, as it 
may result in samples that are unsuitable for Raman spec-
troscopy. Melanoidins can be converted into fluorescent 
nanoparticles during heating, which could negatively 
affect the Raman  Scattering [37]. Two wavebands, 1004 
cm-1 and 1627 cm-1, were very distinct and could hint at 
the presence of advanced glycation end products in the 
water extracts. It has been reported that the 1004 cm 
cm-1 band is ring breathing of the amino acid phenyla-
lanine [25, 38], however, glutamic acid (present as gluta-
mate) and aspartic acid make up a noteworthy portion of 
the total amino acid content in brown algae [39]. One can 
expect that this peak is due to the ring breathing of an 
advanced glycation end products. The band at 1627 cm−1 
can be assigned to v(C=O), which is characteristic for 
amides, and to v(C=C). We hypothesized that this band 
can be assigned to melanoidins. Based on the Raman 
spectra and the size-exclusion chromatography results, it 
is highly likely that melanoidins are present, however, the 
presence of advanced glycation end products could not 
be definitively confirmed based on the collected data.

The differences between the two acid-based extracts is 
most apparent in the Ra- man spectra. These two extracts 
differ in the wavebands 1054 cm-1, 1148 cm-1, 1335 cm-1, 
1366 cm-1, and 1627 cm-1. These bands are related to car-
bohydrate stretches. The band at 1054 cm-1 originates 
from ν(C–O), ν(C–C) and δ(C–O–H), while the band at 
1148 cm-1 is from the stretching of ν(C–O–C) and ν(C–
C) in glycosidic linkages and asymmetric ring breathing. 
The band 1335 cm-1 is from the stretching and bend-
ing of ν(C–O) and δ(C–O–H). The band intensities for 
these stretches are higher for the extract prepared from 
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hydrochloric acid, which indicates that this extract con-
tains more free sugars than the other acid-based extract. 
The polysaccharides are hydrolyzed to a greater extend 
when extracted using a traditional extraction solvent. 
We found four bands that may be indicative of alginate 
and the intensity of these bands are higher in the hydro-
chloric acid extract. During extraction, the alginate was 
likely hydrolyzed and released into the extraction solvent. 
Gelling of the alginate by addition of calcium chloride 
solution was insufficient in its removal from the extract, 
possibly because the alginate fragments in solution had 
varying gelling properties and could not gel effectively.

We did not find any wavebands related to the S=O 
stretch in Raman, but we assigned the 826 cm-1 band to a 
C–O–S stretch. This peak, along with the 1224 cm-1 peak 
in infrared, is distorted in the water extracts. This could 
indicate that the water extract has less sulfate esters. This 
was also confirmed by the elemental analysis, although 
the difference in sulfate ester content is relatively small. 
The Sigma standard has a higher sulfate ester content, 
likely because some of the ester bonds were cleaved dur-
ing microwaving. Shorter extraction times and lower 
temperatures conserve the sulfate esters more. The heat 
stability of the esters is quite high, how- ever, as evi-
denced in their high occurrence within the acid-based 
extracts. Sulfation is often reported as a main factor in 
bioactivity of fucoidans and rapid screening for determi-
nation of sulfate esters is highly needed. Raman and IR 
may provide more rapid screening than elemental anal-
ysis, as it measures the S=O stretch directly, but since 
these stretches are also within the region of carbohydrate 
stretches, it is difficult to make the analysis quantitative. 
It can be expected that polymer size also affects the posi-
tion of the S=O peaks somewhat. The vibrations of the 
polymer be- low 1000 cm-1 depend on all monomeric 

units, as such, chain length may influence the spectra and 
may cause the S=O peaks to shift.

The question to ask is whether the structure and com-
position of fucoidans can be probed directly in algae 
without their extraction. To answer this question, we 
used atomic force microscopy Infrared (AFM-IR) spec-
troscopy. In AFM-IR, the sample surface is illuminated 
by pulsed tunable IR light that causes thermal expansions 
of the sample. These thermal expansions are recorded by 
a metalized AFM tip and converted to IR spectra. The 
probing depth of AFM-IR is within 100–300 nm, which 
allows for probing chemical composition of deeper laying 
material in the sample.

We used AFM-IR to probe distribution of fucoidan 
in the intact algae (Fucus vesiculosus) frond (Fig. 2). For 
this, we measured change in intensity of the 1170 cm-1 
band, which can be assigned to sulfate esters [17, 40], the 
C–O–C asym- metric stretch of polysaccharides [41], 
the C–C–O asymmetric stretch for phenols [42], C—O 
stretching of sodium alginate [43], and the polysaccha-
ride backbone [44]. Our results show uneven distribution 
of fucoidan in the frond with clearly localized island-
structures. These findings suggest that AFM-IR may be 
used for non-invasive screening of potential seaweed 
candidates for polysaccharide extraction.

Conclusion
In this paper we investigated the complementarity of 
Raman and IR spectroscopy to determine the effect 
of extraction solvents on fucoidan polymer structure. 
Our results show that Raman and IR provide different 
but complimentary information about crude extracts, 
particularly revealing how minor impurities from co- 
extractants can be detected without needing destructive 
and time-consuming analytical techniques. From the 

Fig. 2  AFM (left) and corresponding AFM-IR (right) maps of the algae (Fucus vesiculosus) frond surface showing topology of the frond (AFM) and 
distribution of fucoidan (1170 cm−1) in the frond Nanoscale analysis of fucoidans directly in algae
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IR and Raman spectra, we found that, at high extrac-
tion temperatures, acidic conditions limit the formation 
of melanoidins while also yielding relatively high sulfate 
ester fucoidan. However, at high temperatures, water 
extraction may potentially result in the formation of 
advanced glycation end products, which could be prob-
lematic for fucoidan extracts intended for medicinal use, 
as they have been linked to endocrine interruption mech-
anisms in vivo by crosslinking to and permanently alter-
ing extracellular matrix proteins [39].

Materials and methods
Extraction of fucoidan from Fucus vesiculosus
For this study, three fucoidan polymers were extracted 
from Fucus vesiculosus (Bio- cean, Roscoff, France) using 
microwave-assisted extraction. The extraction proce- 
dure was adapted and modified for microwave-assisted 
extraction from the method provided by Fletcher et  al. 
[45]. Extraction was carried out by microwaving at 120 °C 
for 30 min, using demineralized water, 10 mM H2SO4, 
and 100 mM HCl. Once cooled, the extracts were neu-
tralized with 1 M NaOH. For alginate pre- cipitation, a 
solution of 35% calcium chloride was added to each 
extract for a total concentration of 1%. The extracts were 
then centrifuged (4 °C, 30 min) and the supernatant was 
recovered. Ethanol was added for a concentration of 40% 
v/v ethanol to precipitate laminarin. The extracts were 
centrifuged, and the supernatant was recovered. Ethanol 
was added to give a final concentration of 70% v/v etha-
nol to precipitate crude fucoidan. The extracts were cen-
trifuged and the crude fucoidan pellet was washed with 
ethanol and acetone and left to dry to a constant weight. 
The crude Fucoidan extracts were solubilized in water, 
dialyzed and lyophilized prior to Raman and IR analy-
sis. For more details, see reference [46]. A fucoidan and 
a laminarin standard (Sigma Aldrich) were solubilized in 
demineralized water and used as structural references.

Size‑exclusion chromatography
A standard curve for determination of the molecular 
weight was prepared by solubilizing pullulan stand-
ards (Shodex, Japan) with varying molecular weights 
(5, 10, 20, 50, 100, 200, 400, 800 kDa). The pullulan was 
then filtered and placed into HPLC vials. Size exclusion 
chromatography was performed on an Ultimate 3000 
(Thermofisher, USA) with a refractive index detector. 
Separation of the standards and samples was achieved on 
an Agilent BioSEC 3 column (4.5 x 300 mm, 300 ˚A, 3 µm 
dp).

Elemental analysis
5 mg of sample was placed into a tin capsule using a 
pair of tweezers. Using a flat-tipped tweezer, the tin 

capsule was carefully folded into an airtight, flat square, 
which was transferred to the sample carrousel of a vario 
MACRO CUBE (Elementar, Germany) for combustion. 
The S% results from the elemental analysis was used to 
calculate the sulfate ester content via Eq. 1

Raman and Infrared spectroscopy
Raman spectra of the extracts were collected using a 
hand-held Resolve Agilent spectrometer equipped with 
831 nm laser source. The following experimental param-
eters were used for all collected spectra: 1s acquisition 
time, 495 mW power. Spectral background was cor-
rected using iterative polynomial smoothing method. 
FT-IR spectra were acquired on Perkin Elmer 100 spec-
trometer equipped with attenuated total reflectance 
(ATR) module. For each reported spectrum, 15 spectra 
were recorded with a resolution of 4 cm-1 in the range 
of 4000–560 cm cm-1. A background spectrum was 
acquired immediately before the measurement. Both IR 
and Rama n spectra shown in the manuscript are raw 
spectra without any smoothing or pre-processing.

Screening of seaweed surface by AFM‑IR
AFM-IR imaging was conducted using a Nano-IR3 sys-
tem (Bruker, Santa Barbara, USA). The IR source was a 
QCL laser. Contact mode AFM tips (Anasys Instruments 
Inc., Santa Barbara, USA) with a resonance frequency of 
13 ± 4 kHz and a spring constant of 0.007–0.4 N/m were 
used to obtain all spectra and maps.
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