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METHODOLOGY

Leaf reflectance can surrogate foliar 
economics better than physiological traits 
across macrophyte species
Paolo Villa1*  , Rossano Bolpagni1,2, Monica Pinardi1 and Viktor R. Tóth3* 

Abstract 

Background:  Macrophytes are key players in aquatic ecosystems diversity, but knowledge on variability of their 
functional traits, among and within species, is still limited. Remote sensing is a high-throughput, feasible option for 
characterizing plant traits at different scales, provided that reliable spectroscopy models are calibrated with congru-
ous empirical data, but existing applications are biased towards terrestrial plants. We sampled leaves from six floating 
and emergent macrophyte species common in temperate areas, covering different phenological stages, seasons, and 
environmental conditions, and measured leaf reflectance (400–2500 nm) and leaf traits (dealing with photophysiol-
ogy, pigments, and structure). We explored optimal spectral band combinations and established non-parametric 
reflectance-based models for selected traits, eventually showing how airborne hyperspectral data could capture 
spatial–temporal macrophyte variability.

Results:  Our key finding is that structural—leaf dry matter content, leaf mass per area—and biochemical—chloro-
phyll-a content and chlorophylls to carotenoids ratio—traits can be surrogated by leaf reflectance with normalized 
error under 17% across macrophyte species. On the other hand, the performance of reflectance-based models for 
photophysiological traits substantively varies, depending on macrophyte species and target parameters.

Conclusions:  Our main results show the link between leaf reflectance and leaf economics (structure and biochemis-
try) for aquatic plants, thus envisioning a crucial role for remote sensing in enhancing the level of detail of macrophyte 
functional diversity analysis to intra-site and intra-species scales. At the same time, we highlighted some difficulties in 
establishing a general link between reflectance and photosynthetic performance under high environmental hetero-
geneity, potentially opening further investigation directions.

Keywords:  Aquatic plants, Functional traits, Intraspecific variability, Leaf economics spectrum (LES), Remote sensing, 
Spectroscopy
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Background
At the borders of land and water, incorporating both 
aquatic and terrestrial features, wetlands are among the 
most important [1, 2], most productive [3] and most 

diverse [4] ecosystems in temperate areas. The origin of 
this diversity is attributed both to their transitional sta-
tus [5] and to the high spatial and temporal variability of 
environmental conditions [6]. Macrovegetation of these 
areas is acclimated to the seasonal and spatial changes 
of their habitat, created along the major environmental 
gradient transition from one ecotype to another in mon-
ospecific stands, and coenoclines in mixed stands [7, 8]. 
Aquatic plants are key ecosystem players in littoral eco-
tones, as they are hotspots of biogeochemical cycling, 
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actively impact the ecosystem by regulating water flow 
and sedimentation, and promote biodiversity by attract-
ing and sheltering a large number of species ([9–12]. At 
the same time, wetlands diversity and functioning are 
dramatically impacted by alien plants invasions [13].

Environmental heterogeneity, in joint action with 
genetic variability and morpho-functional plasticity of 
macrophyte species, result in faceted phenotypic and 
phenological adaptations and/or acclimations within the 
local populations, shaping communities and even indi-
viduals [7, 14–19]. Multi-dimensional trait variability 
is a recent object of investigation in functional ecology 
[20–22]. Knowledge about ranges and interconnections 
of trait variability within aquatic plant communities 
(populations) is still relatively limited, probably due to 
the peculiar features of macrophytes and the environ-
mental patchiness of their habitat [8]. The issue of dis-
entangling the effects of inter-specific and intra-specific 
trait variability is at the centre of the current debate [23–
25], especially for key traits related to the leaf economics 
spectrum (LES, [26]). Moreover, investigating spatial pat-
terns of trait variability at local scales is a relatively recent 
topic [27–30] and some light has still to be shed on this 
level of heterogeneity in plant communities, with impli-
cations on productivity and connected processes [31].

Exploring this fine-scale variability with direct meas-
urements, usually carried out in  situ and in the labora-
tory, is very time and resource consuming, and often 
logistically constrained in aquatic systems. The level of 
maturity in platforms and techniques achieved by remote 
sensing (RS) make it a feasible and potentially very effec-
tive way forward in characterizing selected plant trait 
variability within communities at different geographic 
scales [32–34], overcoming logistic and economic 
constraints.

In particular, the last two decades have seen the devel-
opment of a range of applications for RS of plant bio-
physical and bio-chemical traits, with an intensification 
of this trend in the last decade [35–37]. RS-based works 
have by a large majority focused on terrestrial plants, 
from forest and grassland biomes (e.g. [32, 38–43], but 
some developments on wetland and aquatic vegetation 
have been recently documented [44–46]. As aquatic 
plants feature significant differences with respect to ter-
restrial ones in terms of morphology and physiology 
([47–49], the relations between leaf optical properties 
and reflectance at the basis of functional traits modelling 
of terrestrial vegetation, such as the ones embedded into 
PROSPECT models [50], cannot be taken by granted, 
and to our best knowledge, a systematic check of those 
relations in current literature is still lacking. For being 
effective, applications of RS for mapping plant functional 
traits require an analysis of which traits can be modelled 

from spectral reflectance, and this is preferably done 
using data covering natural trait heterogeneity. Empirical 
approaches for assessing reflectance spectra as a proxy 
of plant traits, at leaf or canopy level, normally employ 
spectroscopy-based methods ranging from parametric 
regression models input with spectral indices, computed 
as band combinations (e.g. [51–53]) to non-parametric 
regression models, such as partial least-square regression 
(e.g. [38, 54–56]).

Towards meaningful applications of RS for plant 
functional ecology, the fundamental question is: which 
leaf traits, within a specific plant group, can be reliably 
modelled (and which others cannot) using spectros-
copy? With this study, we aim to provide an answer to 
this question—which has been already explored over a 
range of terrestrial species—for what concerns floating 
and emergent aquatic plants common in temperate areas. 
To tackle this question, we purposely collected empirical 
data of leaf spectra and a set of leaf traits—dealing with 
photophysiology, pigments and leaf structure—from six 
macrophyte species under different times, seasons and 
environmental conditions, over three sites located in 
Europe.

The objectives of this work are: (i) to assess the variabil-
ity in leaf functional traits within and among macrophyte 
species, with attention to alien vs. native taxa dualism; 
(ii) to evaluate which functional traits—photophysiologi-
cal, biochemical and structural—can be effectively mod-
elled across macrophyte species using leaf reflectance, 
and which wavelength ranges and combinations are more 
sensitive to specific traits; and (iii) to test how spectral 
proxies for selected traits can be exploited using remote 
sensing data for the straightforward visualization of spa-
tial and temporal functional variability of macrophyte 
communities, at inter- and intra-species level.

Methods
Sampling site descriptions
Macrophyte samples were collected from three temper-
ate shallow lakes surrounded by wetlands and hosting 
abundant macrophyte communities, located in central 
and southern Europe: Lake Hídvégi (Hungary), Mantua 
lakes system (Italy), and Lake Varese (Italy).

Lake Hídvégi, located in western Hungary (46°38′ N, 
17°08′ E; 110 m a.s.l.), is an artificial lake system built in 
1985 as a part of the Kis-Balaton Water Protection Sys-
tem, that has the overall function of retaining inorganic 
nutrients and total suspended solids carried by the Zala 
River into Lake Balaton [57]. Lake Hídvégi is a shallow, 
eutrophic to hypertrophic, predominantly open-water 
habitat (area: 18  km2, average depth: 1.1  m) partly cov-
ered by floating macrophytes, with Trapa natans L. as 
dominant species and some presence of Nuphar lutea 
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(L.) Sm. and Nymphaea alba L. [46, 58]. Helophyte com-
munities in the littoral zone are composed of reed beds 
(Phragmites australis (Cav.) Trin. ex Steud.) and cattail 
beds (Typha spp.).

Mantua lakes system, located in northern Italy plain 
(45° 10′ N, 10° 47′ E; 15  m a.s.l.), is composed of three 
dimictic shallow fluvial-lakes (area: 6.1  km2; average 
depth: 3.5  m), with two connected wetlands (upstream 
and downstream of lakes). The Superior, Middle and 
Inferior lakes are characterized by high turbidity and 
eutrophic conditions, and the water level is kept fixed to 
prevent flooding the city of Mantua. Macrophyte com-
munities in the system are populated by both native (T. 
natans, N. lutea, N. alba in open water areas, and P. aus-
tralis in wetlands) and alien species [46, 59, 60]: Nelumbo 
nucifera Gaertn., introduced into the lake around a cen-
tury ago, and Ludwigia hexapetala (Hook. & Arn.) Zar-
dini, H.Y. Gu & P.H. Raven, which started spreading here 
during the last decade.

Lake Varese, located in subalpine northern Italy (45° 
49′ N, 8° 44′ E; 238 m a.s.l.), is a monomictic, eutrophic 
lake (area: 14.2  km2; average depth: 10.9  m) subject to 
high anthropic pressures and nutrient loads. The south-
ern shores of the lake host extensive stands of floating 
macrophytes, mainly T. natans and N. lutea, with some 
presence of N. alba [61]. Some tracts of the littoral zone 
have been colonized in the last couple of decades by alien 
species, N. nucifera and L. hexapetala.

Field measurements
Boat-based surveys were carried out in the three sites for 
3 years (2016–2018), covering different times within the 
macrophyte growing season, spanning from late May to 
late July. Due to logistic and technical constraints, mac-
rophyte beds sampled were not always the same ones in 
different years. During the surveys, leaf samples from six 
species (L. hexapetala, N. nucifera, N. alba, N. lutea. P. 
australis, T. natans) were measured and collected over 
various locations, to incorporate intra-site variability. 
Besides being among the most represented floating and 
emergent macrophytes in temperate Europe, the men-
tioned species show a clear dominance in the study sites, 
covering a vast majority (more than 90%) of the area 
occupied by aquatic and wetland vegetation. A sum-
mary of sampling locations for each species and date 
of survey is provided in Additional file 1: Table S1. Leaf 
samples, either floating or emergent above water, were 
collected from plants growing in dense (canopy fraction 
cover > 60%) and homogeneous stands, within 3  m of 
the water edge; from each plant sampled, the youngest, 
mature leaf, directly exposed to sunlight was taken for 
measurements.

Leaf spectral reflectance
Leaf reflectance in the visible to shortwave infrared 
range (350–2500 nm, with a spectral resolution of 3 nm 
for wavelengths under 1000 nm, and < 8 nm up to 2500) 
was measured using a portable full range spectroradiom-
eter (SR-3500, Spectral Evolution, Lawrence, USA), fol-
lowing the protocol described in Tóth et  al. [60]. After 
20-min dark adaptation, leaves were laid on a flat neo-
prene plate (reflectance factor < 5%) to minimize back-
ground reflection of light transmitted through the leaves. 
Leaf reflected radiance was measured at contact using a 
probe equipped with a 5-W internal light source under 
near-steady state conditions, i.e. 60 s after removing the 
leaf clip. Each spectrum is the result of 10 averaged scans, 
and automatic integration time optimization was used, 
with a maximum allowed of 50 ms per scan. Leaf spectra 
were eventually calibrated to reflectance using reflected 
radiance from a Spectralon panel (Labsphere, North Sut-
ton, USA; reflectance factor > 99% for wavelengths under 
1500 nm, and > 95% up to 2500 nm) as reference.

Leaf photophysiology
Photophysiological traits of macrophytes were assessed 
using chlorophyll fluorescence measured with a PAM-
2500 chlorophyll fluorometer (Heinz Walz GmbH, 
Germany) over the same leaves sampled for spectral 
reflectance measurements. Data were collected occa-
sionally between 09:00 and 15:00, standard solar time. 
Relevant fluorescence yield data (initial fluorescence 
yield—F0, maximal fluorescence yield—Fm) were meas-
ured following the protocol described in Tóth et al. [60] 
on mature, healthy-looking leaves after a dark-adapting 
period of 20 min with a pulse of a saturated light (630 nm, 
intensity 3000  μmol  m−2  s−1). Photochemical PSII effi-
ciency (Fv/Fm), coefficient of photochemical quenching 
(qP), coefficient of non-photochemical quenching (qN), 
maximum electron transport rate of the photosystem II 
(PSII) (ETRmax), theoretical saturation light intensity (Ik, 
and maximum quantum yield for whole chain electron 
transport (α were calculated using fluorescence yield 
data and a light response curve—with ETR measured as 
a function of photosynthetically active radiation (PAR; 11 
steps between 5 and 787 μmol m−2 s−1)—described by an 
exponentially saturating equation [62]. Leaf absorbance 
was set at 0.84 for the calculation of ETR for all the spe-
cies sampled.

Leaf biochemical and structural traits
Leaf pigments, as biochemical traits directly connected 
with photosynthetic apparatus, and leaf structural traits 
were measured on our samples to represent foliar eco-
nomics expressing the inner trade-off between resource 
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availability and structural investments, which lies at the 
core of the LES.

Two leaf discs (0.6 cm in diameter) were cut with a cork 
borer from each fresh leaf, in the vicinity of where chlo-
rophyll fluorescence was measured. Disks were stored 
in aluminium foil at < 0 °C in a camping fridge until they 
were transferred to the laboratory, i.e. within maximum 
of 4 h.

Half of the discs sampled were stored at –  20  °C in a 
freezer, to be used for pigments extraction, following the 
protocol described in Tóth et  al. [60]. Upon extraction, 
they were homogenised in liquid N2 in a grinder, subse-
quently extracted in acetone solution (80%), and stored 
in a fridge overnight. The extracts were centrifuged and 
the supernatant collected and stored at − 20 °C. The full 
spectra of absorbance of the extracts were measured 
between 400 and 750  nm using a spectrophotometer 
(Shimadzu UV-2401PC, dual-beam), at 1 nm resolution. 
Finally, pigment concentrations, i.e. chlorophyll-a (Chl-
a), chlorophyll-b (Chl-b), and total carotenoids (Car) 
were calculated using empirical formulae [63] and 
reported on a leaf area basis (µg cm−2). Pigment ratios 
were then calculated, as Chl-a to Chl-b ratio (Ca/Cb) and 
total chlorophylls (Chl-a + Chl-b) to total carotenoids 
ratio (Chl/Car).

The other half of leaf discs were weighted with a preci-
sion balance (Mettler Toledo AB104, 0.0001 g accuracy) 
to measure their fresh weight, and were then dried in 
a ventilated oven at 70  °C for 48  h, after which the dry 
weight was measured using the same balance. From these 
data, dry matter content (DMC) and leaf mass per area 
(LMA) of each disc were calculated as the ratio of dry 
weight to fresh weight (g g−1), and the ratio of dry weight 
to disc area (g m−2) respectively.

Interspecific and intraspecific variability
Due to the non-normality of samples for some traits (and 
species) in our dataset, the variability of leaf traits across 
species was tested using non-parametric Kruskal–Wallis 
One Way ANOVA, and pairwise comparisons were per-
formed using post-hoc Dunn’s test, with p-value adjust-
ment computed according to Benjamini–Hochberg 
method. Intraspecific variability of selected traits was 
assessed by calculating the coefficient of variation (CV) 
of each trait for every species, using only leaf samples 
collected at peak of growth (mid-late July) to reduce dif-
ferences due to phenology.

Spectral indices and leaf traits
For each possible combination of two spectral reflec-
tance bands measured as described in “Leaf spectral 
reflectance” section within the range 400–2500 nm (987 
bands), the normalized difference spectral index (NDSI) 

was calculated using a custom-made R script [45]. NDSIs 
are frequently used in RS because they offer the advan-
tage of summarizing spectra information, while reducing 
uncertainty due to sensor differences and atmospheric 
effects and bias due to differences in vegetation back-
ground [64–66], and are defined as:

where ρ is leaf reflectance measured at spectral bands i 
or j.

Using the same R script, the correlation (Pearson’s r) 
between each leaf parameter, i.e. photophysiology, pig-
ments and structural trait, and every calculated NDSIs 
was calculated together with the corresponding p-value 
(p), accounting for multiple comparisons using p-adjust-
ment based on Bonferroni method. Even if deviations 
from normality were observed for some traits in our 
dataset (see Additional file  1: Fig. S9), we opted for the 
use of squared Pearson’s r as a measure of effect in assess-
ing the strength of NSDI-trait relations commonly found 
in related literature for the easy interpretability (starting 
from [67]), after some tests comparing this approach with 
alternative ones, i.e. traits transformation or non-para-
metric correlations, that showed its conservativeness in 
assessing the strength of NDSI-trait relations, while not 
changing substantially the selection of the optimal band 
combinations (Additional file 1: Figs. S2, S3). Correlation 
plots featuring the coefficient of determination (Rcal

2), 
calculated as the square of r, between each leaf param-
eter and the complete combinations of NDSIs derived 
from leaf reflectance were drawn for significant relations 
(padj < 0.01), in order to highlight optimal two-band com-
binations proxies of investigated leaf photophysiology (α, 
ETRmax, Ik, Fv/Fm, qN, qP), pigments pool (Chl-a, Chl-b, 
Car, Ca/Cb, Chl/Car), and structural traits (DMC, LMA).

Hyperspectral modelling of leaf traits
Partial least-square regression (PLSR) modelling [68] was 
used to further explore the relations between leaf reflec-
tance and selected leaf traits across floating and emergent 
macrophyte species, using package pls 2.7, implemented 
in R ([69, 70]. PLSR is a powerful tool for modelling veg-
etation parameters using spectral datasets because it is 
suitable for cases when the number of predictors is larger 
than that of observations and can handle multi-colline-
arity in predictor variables, as frequently happens with 
narrow-band hyperspectral data [55, 71].

In order to focus on meaningful relations, PLSR mod-
els were calibrated only for leaf traits that showed a mini-
mum sensitivity to spectral reflectance, that is scoring a 
Rcal

2 against all combinations of NDSIs higher than 0.15 
(padj < 0.01), while simultaneously excluding mutually 

(1)NDSIi,j =
ρi − ρj

ρi + ρj
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correlated traits (i.e. scoring Pearson’s r vs. any other 
trait < − 0.5, or > 0.5). The number of PLSR components 
used for each calibrated model (with 30 components set 
as maximum, following preliminary tests) was optimized 
through minimization of the root mean square error of 
prediction (RMSEP) via leave-one-out cross-validation 
(LooCV). The best model for each trait was eventually 
selected by setting the number of PLSR components 
corresponding to minimum cross-validation RMSEP, 
and model performance was assessed comparing meas-
ured with PLSR predicted trait values through the coef-
ficient of determination of measured vs. predicted traits 
via LooCV (RCV

2) and the RMSE normalized based on 
the range of values for each trait (nRMSE). The relative 
importance of different wavelengths and spectral ranges 
to PLSR models calibrated for each variable was assessed 
by computing the Variable Importance of Projection 
(VIP; [42]).

Airborne hyperspectral images
Airborne hyperspectral images of Lake Hídvégi and Man-
tua lakes system were acquired from the APEX imaging 
spectrometer [72] on 19 July 2014 (around 12:00 local 
time) and 27 September 2014 (around 13:45 local time), 
respectively. Visible to near-infrared range APEX data 
were processed, resulting in hyperspectral images com-
posed of 98 spectral bands (425–905 nm), with 3–10 nm 
spectral resolution.

APEX data were calibrated to at-sensor radiance units 
and georeferenced based on the sensor’s GPS/IMU at 5 m 
spatial resolution on the ground. Surface reflectance was 
finally derived by applying atmospheric correction based 
on MODTRAN-4 code and optimized for water targets 
[73]. To diminish distortions due to canopy structure 
effects and the influence of mixture with canopy back-
ground in APEX-derived spectra, we used the vector nor-
malization method developed by Feilhauer et al. [55] and 
we filtered results using previously derived spatialized 
information about LAI of macrophyte communities in 
the same sites [46], by excluding all pixels with LAI < 0.67 
m2 m−2.

As a proof of concept for demonstrating the potential 
of hyperspectral remote sensing data in highlighting spa-
tial patterns of macrophyte traits at fine scale, we have 
produced bio-visualisation maps as RGB composites of 
spectral proxies derived from APEX normalized surface 
reflectance bands, by calculating the NDSIs recognized 
as linked to selected traits from leaf spectroscopy-based 
analysis whose NDSI-trait relation scored an Rcal

2 > 0.4 
within the spectral range covered by APEX.

Results
Variability of macrophyte leaf traits
Regarding traits related to photosynthetic performance, 
alien species showed significant differences with native 
ones, i.e. N. nucifera scored high α (adjusted p < 0.01 
from all pairwise post-hoc Dunn’s tests; Additional file 1: 
Fig. S1), and L. hexapetala scored high ETRmax, Ik and 
qP (adjusted p < 0.001 from all pairwise post-hoc Dunn’s 
tests; Additional file 1: Fig. S1). Moreover, regulated ther-
mal dissipation of excess absorbed light (qN) was found 
to be slightly lower in N. nucifera and L. hexapetala, as 
well as in T. natans, compared to nymphaeids (N. lutea 
and N. alba) and P. australis (Fig.  1; Additional file  1: 
Fig. S1). P. australis showed quantum efficiency of pho-
tosystem II (Fv/Fm) slightly higher than all other species, 
except N. alba (p < 0.05 from pairwise post-hoc Dunn’s 
tests; Additional file 1: Fig. S1).

Ludwigia hexapetala displayed Chl-a values slightly 
higher than native species (p < 0.05 from all pairwise 
post-hoc Dunn’s tests; Additional file  1: Fig. S1), while 
no significant difference across species was observed for 
Chl-b, and the lowest carotenoid content was found in 
N. nucifera and T. natans (p < 0.05 from all pairwise post-
hoc Dunn’s tests; Additional file 1: Fig. S1). Nymphaeids 
got the lowest Ca/Cb ratio among species (p < 0.05 from 
pairwise post-hoc Dunn’s tests), with L. hexapetala and 
T. natans occupying the high band of scores (Additional 
file 1: Fig. S1). A strong level of segmentation at species 
level was shown for Chl/Car ratio (p < 0.001, Kruskal–
Wallis One Way ANOVA): N. nucifera and T. natans 
exhibited the highest scores (p < 0.001 from pairwise 
post-hoc Dunn’s tests) and L. hexapetala, N. lutea, N. 
alba followed in decreasing Chl/Car (Additional file  1: 
Fig. S1).

Compared to native species, leaf DMC was higher 
(p < 0.001 from all pairwise post-hoc Dunn’s tests) and 
LMA lower (p < 0.001 from all pairwise post-hoc Dunn’s 
tests) for both L. hexapetala and N. nucifera (Fig.  1; 
Additional file  1: Fig. S1). Inter-species DMC patterns 
tend to be similar to those of Chl/Car, with the excep-
tion of T. natans, and strong differentiation in LMA was 
observed among species, with nymphaeids scoring the 
highest values and T. natans spanning the widest range 
(Fig. 1; Additional file 1: Fig. S1).

Leaf data collected at peak of growth (i.e. samples col-
lected in July) exhibited a notable degree of intraspecific 
variability for most of the traits (Fig.  1), as maximum 
scores of CV across all species was larger than 0.29, with 
the only exceptions of α and Fv/Fm (Table  1). P. austra-
lis presented the lowest variable set of photophysiology 
traits except for qP (CV < 0.19), while nymphaeids had 
the most variable traits (α, qP, Ca/Cb and Chl/Car for N. 
alba; Chl-a, Chl-b and Car for N. lutea). L. hexapetala 
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showed very high plasticity in photophysiology param-
eters ETRmax, Ik, and qN (CV > 0.32), and T. natans 
scored highest intraspecific ranges of DMC and LMA 
(CV > 0.29).

Spectral indices as proxies for macrophyte leaf traits
The correlations of every two-band combination NDSI 
correlations with investigated leaf traits measured on all 
macrophyte species sampled are highlighted in Figs.  2, 
3, 4 showing the optimal spectral proxies for each trait 
in the visible to near-infrared (VNIR) spectral range 

(400–1000 nm) and in full spectral range (400–2500 nm), 
i.e. extending to shortwave infrared (SWIR) wavelengths.

The heterogeneity of measured samples not only in 
terms of species but also in terms of location (three study 
sites) and time of sampling (3 years, different months)—
which implies that our dataset includes a high variabil-
ity in genetic features, seasonal cycles, stage of growths, 
plant conditions and environmental settings (N = 324)—
overall resulted in relatively low correlation patterns 
(Rcal

2 < 0.26) between leaf reflectance derived NDSI and 
measured photophysiological traits (Fig. 2). In particular, 
across all species, negligible correlations with any NDSI 

Fig. 1  Bi-plots of the first two Principal Components of leaf photophysiological parameters (a) and foliar economics (b) expressed as pigments 
content and leaf structural traits, measured over all macrophyte species sampled. As visual guidance for data interpretation, minimum convex 
polygons grouping all points of a species are overlaid on both plots. alpha: maximum quantum yield for whole chain electron transport; ETRmax: 
maximum electron transport rate for PSII; Ik: theoretical saturation light intensity for PSII; Fv_Fm: PSII photochemical efficiency; qP: coefficient of 
photochemical quenching; qN: coefficient of non-photochemical quenching; CaS: chlorophyll a content; CbS: chlorophyll b content; Cxc: total 
carotenoids content; Ca_Cb: chlorophyll a to chlorophyll b ratio; Cab_Cxc: chlorophylls to carotenoids ratio; DMC: leaf dry matter content; LMA: leaf 
mass per area

Table 1  Coefficient of variation (CV) of all leaf traits measured over macrophytes species sampled (highest scores across species for 
each trait are in bold, lowest in italic) at peak of growth conditions (July)

Species Photophysiology parameters Leaf pigments Leaf structure

α ETRmax Ik Fv/Fm qN qP Chl-a Chl-b Car Ca/Cb Chl/Car DMC LMA

L. hexapetala 0.134 0.886 0.695 0.060 0.325 0.111 0.303 0.295 0.243 0.098 0.123 0.160 0.163

N. nucifera 0.139 0.277 0.205 0.046 0.263 0.194 0.286 0.266 0.299 0.089 0.093 0.203 0.216

N. lutea 0.149 0.279 0.255 0.064 0.133 0.242 0.313 0.434 0.307 0.186 0.302 0.086 0.171

N. alba 0.202 0.396 0.244 0.029 0.183 0.378 0.190 0.368 0.293 0.293 0.363 0.136 0.217

P. australis 0.074 0.172 0.187 0.044 0.072 0.156

T. natans 0.150 0.318 0.389 0.099 0.302 0.214 0.196 0.185 0.258 0.098 0.162 0.292 0.433
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combinations were shown for α and qN (overall maxi-
mum Rcal

2 = 0.10, even if padj < 0.01), while results were 
not statistically significant (padj ≥ 0.01) for ETRmax and 
Ik. Slightly higher correlations, but still moderately weak, 
are shown for Fv/Fm and qP, with Rcal

2 peaking at 0.19 and 
0.25 (padj < 0.01), respectively (Fig. 2). The optimal NDSI 
for Fv/Fm combined reflectance in the range of green vis-
ible light (524 nm, 581 nm), while for qP the best spec-
tral combinations lay in the SWIR range, roughly around 
1400–1500 nm.

Notwithstanding the abovementioned heterogeneity 
that biases the reflectance-photophysiology relations, 
correlations between pigments and NDSI computed 
from leaf reflectance across species are tangible, as peak 
Rcal

2 found was always higher than 0.3 (Fig. 3, padj < 0.01). 
In particular, NDSIs and Chl-a were found to be mutually 
correlated, particularly in the red-edge range (maximum 
Rcal

2 = 0.43 for NDSI775,740, N = 150). As Chl-b is highly 
correlated with Chl-a in our dataset (r = + 0.80), opti-
mal band combinations are found around the same range 
highlighted for Chl-a (795 nm, 740 nm), yet with slightly 
weaker correlation (maximum Rcal

2 = 0.37, N = 150). 

Among pigments, Car (N = 150) showed the strongest 
correlations, peaking for NDSIs featuring band combi-
nations in the SWIR range (maximum Rcal

2 = 0.57 for 
NDSI1644,1720), while correlations decreased if the spectral 
range was limited to VNIR (maximum Rcal

2 = 0.37). Ca/
Cb ratio (N = 151) showed the weakest correlations of all 
pigment traits, with a peak Rcal

2 = 0.31 in the SWIR range 
(for NDSI2181,2241). Chl/Car ratio (N = 151) is instead very 
well surrogated by NDSIs combining visible to SWIR 
reflectance (maximum Rcal

2 = 0.60 for NDSI611,1892); 
slightly lower correlations, yet still the highest among 
all pigments traits measured (maximum Rcal

2 = 0.55), 
were scored restricting the spectral range to VNIR range, 
where optimal NDSI for Chl/Car combined reflectance in 
433 nm and 665 nm, which indeed roughly correspond to 
absorption peaks of chlorophyll-a [66].

Relatively stronger correlations were scored between 
NDSIs derived and leaf structural traits measured, con-
nected to leaf economics, DMC and LMA (Fig. 4). DMC 
(N = 153) demonstrated a good sensitivity to leaf reflec-
tance in the NIR to SWIR ranges (padj < 0.01), with Rcal

2 
up to 0.47 (for NDSI1196,1308), and slightly weaker scores 

Fig. 2  Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on all macrophyte 
species sampled (N = 324), over the full spectral range covered (400–2500 nm)
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in the shorter VNIR wavelengths (maximum Rcal
2 = 0.35 

for NDSI929,941). Among all leaf traits, LMA (N = 152) 
scored the highest correlations with NDISs, with a large 
subset of band combinations showing Rcal

2 > 0.6 in the 

NIR to SWIR ranges, and a peak Rcal
2 = 0.77 (padj < 0.01) 

when two bands centred at 1415 and 2305 nm were used 
(Fig. 4).

Fig. 3  Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf pigments content (on leaf area basis, N = 150) and their 
balance (N = 151) measured on all macrophyte species sampled, over the full spectral range covered (400–2500 nm)

Fig. 4  Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf structure straits measured on all macrophyte species 
sampled, over the full spectral range covered (400–2500 nm): leaf dry matter content (DMC, N = 153) and leaf mass per area (LMA, N = 152)
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Leaf reflectance‑traits relations
After having assessed mutual correlations of measured 
leaf traits, excluding the ones with |r|> 0.5 (Additional 
file  1: Fig. S9), PLSR models were calibrated for traits 
scoring non-negligible correlations with best performing 
NDSIs presented in the previous section (Rcal

2 > 0.15): Fv/
Fm, qP, Chl-a, Ca/Cb, Chl/Car, DMC, LMA.

The best fit PLSR models for Fv/Fm and qP (N = 324) 
require 11 components, with RMSEP of 0.053 and 
0.125 respectively (Additional file  1: Fig. S10). Match-
ing between measured and predicted photophysiol-
ogy traits was quite low for Fv/Fm (RCV

2 = 0.21) and 
qP (RCV

2 = 0.33), even if estimation error seems to be 
reducing when extreme values—probably due to stress 
conditions non visibly detected when leaves were cho-
sen for sampling—are excluded, i.e. for Fv/Fm > 0.65, and 
0.4 < qP < 0.8 (Fig. 5).

PLSR models based on leaf reflectance are quite effec-
tive in predicting macrophyte Chl-a content (N = 150) 
and Chl/Car ratio (N = 151) across species, with best fit 
models requiring 11 and 13 components (Fig.  5, Addi-
tional file  1: Fig. S10) respectively, achieving RMSEP of 
7.52  µg  cm−2 (RCV

2 = 0.46, nRMSE = 16.6%) and 0.393 
(RCV

2 = 0.65, nRMSE = 12.7%). Figure  6 shows that VIP 
scores are high around 550–560  nm and 705–710  nm 
for Chl-a model and around 705–710  nm and 1400  nm 
for Chl/Car model. Conversely, modelling performance 

for Ca/Cb is the lowest among traits considered here 
(RCV

2 = 0.20), suggesting that spectral reflectance might 
not be a good proxy for this trait, at least for macrophyte 
species.

DMC (N = 153) and LMA (N = 152) are the leaf 
traits better surrogated by reflectance-based mod-
els (Fig.  5, Additional file  1: Fig. S10), with match-
ing between measured and PLSR predicted scores 
up to RMSEP = 0.026  g  g−1 (nRMSE = 12.1%) for 
DMC (RCV

2 = 0.68, with 15 components) and up to 
RMSEP = 18.6  g  m−2 (nRMSE = 11.7%) for LMA 
(RCV

2 = 0.76, with 11 components), across the whole 
range of measures in our dataset. VIP scores for DMC 
model are high around 400–410 nm and 1390–1400 nm, 
while for LMA model the wavelengths in VNIR range do 
not contribute much to prediction and peak VIP scores 
are found between 1400 and 1850 nm, as well as between 
2120 and 2300 nm (Fig. 6).

Mapping spectral functional proxies from hyperspectral 
images
The potential for application of the main findings 
described in previous sections was tested by producing 
spatial variability maps for selected spectral proxies of 
macrophyte traits deriving specific NDSIs from airborne 
hyperspectral data (APEX) collected over Lake Híd-
végi and Mantua lakes system during different times of 

Fig. 5  Comparison of leaf traits measured and predicted by best fit PLSR models of selected traits for all macrophyte species sampled (N = 150–
324), computed via leave-one-out cross-validation
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summer in 2014. Maps are derived only for those spec-
tral indices showing best matching with in situ measured 
data in the spectral range of APEX data (425–905  nm): 
i.e. NDSI775,740 as a proxy of Chl-a content (Rcal

2 = 0.43), 
NDSI433,665 as a proxy of Chl/Car ratio (Rcal

2 = 0.55), and 
NDSI690,500 as a proxy of LMA (Rcal

2 = 0.44).
The application of NDSI proxies using RS data inevita-

bly bring to more or less significant biases, reflecting into 
the reliability of plant functional traits retrieved, which 
are due to complex combinations of factors, including: 
vegetation fractional cover and mixture with canopy 
background, density and structure effects (e.g. leaf orien-
tation), reflectance anisotropy, and atmospheric effects 
[32]. All the more so, spectral data measured from APEX 
airborne imager, with pixel size in this case of 5  m, are 
inherently measuring the response of macrophyte beds 
at canopy scale, and application of proxies derived and 
assessed at leaf scale to some extent hampers the absolute 
matching of observation scales for spectral reflectance 
and plant traits. In deriving the maps of selected spec-
tral proxies in Lake Hídvégi and Mantua lakes system 
(Fig.  7), we have partly tackled these distortion factors 
using reflectance normalization and masking our pixels 
with low canopy density (LAI < 0.67 m2 m−2). As a proof 
of concept of the usefulness of our findings to investigate 
spatial patterns of macrophyte functional diversity, maps 
shown in Fig.  7 are clearly capturing visible patterns of 
relative variability in macrophyte communities at within-
system scale that can inform about specific features of 

macrophytes growing in Lake Hídvégi and Mantua lakes 
system.

Discussion
Due to their sedentary nature, plant survival depends on 
the possibility to acclimate or adapt to the given envi-
ronmental conditions and biogeochemical processes of 
the area. The persistence of a species or a population is 
shaped by complex interactions of ecological and evo-
lutionary attributes, and their changes during the grow-
ing season [74, 75]. Within the large variability typical 
of their habitat, macrophytes can establish and persist 
either by tolerating substantial environmental changes 
through their phenotypic plasticity or by shifting com-
munity composition when approaching a peripheral 
situation [76]. Macrophyte leaf trait data collected—cov-
ering different sites (three shallow lakes and wetlands 
in Europe), times (late May to late July), and seasons 
(3 years)— showed a high degree of heterogeneity, both 
within and among species sampled.

Some of the studied traits have evolutionary relevance: 
our data show that species with remarkable photochemi-
cal properties—N. nucifera with a higher maximum 
quantum yield of photosynthetic electron transport 
(α), L. hexapetala with the highest maximum electron 
transport rate, saturation irradiance and photochemical 
quenching, and T. natans with the highest range of varia-
bility in quantum yield of PSII—correspond to those with 
a prominent presence in terms of stands area and spread 

Fig. 6  Variable Importance of Projection (VIP) scores of PLSR models of selected leaf traits for all macrophyte species sampled, computed for each 
wavelength, over the full spectral range covered (400–2500 nm)
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Fig. 7  Maps of spectral proxies (linked to selected traits from leaf spectroscopy) derived from airborne hyperspectral (APEX) data, showing 
RGB combinations of best two-band combined indices (NDSI) in the range covered by APEX data for Chl-a content (NDSI740,775), Chl/Car ratio 
(NDSI433,665), and LMA (NDSI690,500): a macrophyte stands in Lake Hídvégi; b macrophyte stands in Mantua lakes system; c box plots of spectral 
proxies for individual mono-specific stands in both sites (indicated in panels a, b). LH: Ludwigia hexapetala; NN: Nelumbo nucifera; NL: Nuphar lutea; 
NA: Nymphaea alba; TA: Trapa natans 
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in the study sites. Leaf pigments content and leaf struc-
tural traits rather showed ecological relevance, as truly 
floating-leaved species (N. lutea and N. alba) had lower 
Chl/Car ratio to make better use of underwater diffused 
light, while species with some leaves emerging above 
the water (L. hexapetala, N. nucifera) showed higher dry 
matter content and lower LMA.

Alien, invasive species tend to be photochemically 
more efficient (higher α, ETRmax, or Ik) and to have lower 
LMA compared to native species growing in the same 
sites, which is in accordance with published findings 
on terrestrial plants [77, 78]. Differently from what was 
found on a mass basis in previous works [60], foliar pig-
ment content on an area basis did not separate alien and 
native plants, implying that interspecific differentiation 
in studied macrophytes is driven more by pigment pro-
portions, and therefore by the ability of species to adapt 
to a given environment and maximise both light absorp-
tion and photoprotection [79, 80]. These show the wide 
spectrum of macrophyte functional plasticity, but also 
hints at the individualistic responses of macrophytes to 
physical, chemical and anthropogenic characteristics of 
their environment.

Remote sensing spectroscopy is nearly the perfect tool 
to quantitatively assess the variability and specific trait 
distributions over large areas both within monospecific 
stands or mixed communities [46, 81], thus promoting 
functional studies focusing on inland water systems and 
connected ecotones and adding to literature that is con-
siderably biased toward terrestrial ecosystems [82]. For 
this to work, a robust link between selected traits and 
spectral reflectance needs to be established starting from 
the fundamental leaf scale. Our results show that a suite 
of leaf functional traits, connected with light absorption 
and scattering mechanisms and representative of foliar 
economics trade-off, can be effectively modelled across 
floating and emergent macrophyte species based on leaf 
reflectance, thus complementing works performed in ter-
restrial ecosystems [32, 35, 39, 83], even under moderate 
to strong environmental heterogeneity, while photophys-
iology traits based on chlorophyll fluorescence measures 
could not be surrogated by leaf spectra with the same 
performance.

Best results were obtained via reflectance-based PLSR 
models for structural traits (leaf DMC and LMA), which 
constitute synthetic descriptors of leaf morphology, in 
particular the inner structure, mediating the effects of 
scattering mechanisms with water absorption [84]. These 
patterns generally confirm what has been documented 
from previous works on terrestrial plants at macro spec-
tral ranges, i.e. in the SWIR [51, 52, 85–87], but with 
specific differences in optimal wavelengths to be used, 
possibly because of leaf structural peculiarities of aquatic 

plants [47]. Notably, in aquatic plants the accuracy of 
spectrally modelled LMA does not seem to depend on 
the magnitude of water content, deviating from the 
results of Riaño et al. [84], based on terrestrial species.

Complementing leaf structural traits in describing the 
trade-off at the core of the LES concept, leaf reflectance 
proved to be a good predictor of biochemistry-related 
traits in macrophytes, represented here by pigments 
pools and ratios. Chl-a content and Chl/Car ratio were 
modelled with good reliability based on leaf spectroscopy 
and PLSR. Pigments are more directly related to spectral 
reflectance because of their primary function of inter-
acting with light and their location within the leaf struc-
ture—i.e. in the first, adaxial strata aquatic plant leaves, 
as shown by Borsuk and Brodersen [88] for chlorophylls 
in the case of Eichornia crassipes (Mart.) Solms. Optimal 
wavelengths for Chl-a predictions were found in the red-
edge range (i.e. 700–800 nm), similar to what extensively 
documented for terrestrial plants [52, 85, 87, 89], with 
VIP of PLSR model peaking around 705–710  nm. Best 
performing spectral combinations for Ca/Cb ratio found 
around 2200  nm is possibly driven by the link between 
Ca/Cb and N content [90], which we did not measure and 
it is known to show absorption features around 2180 nm 
from previous works [91, 92].

Contrary to what was highlighted for leaf economics 
traits, reflectance-based PLSR models for photophysi-
ological parameters were found to be under-performing 
across the species sampled. Best results were scored for 
Fv/Fm (RCV

2 = 0.21), with optimal spectral range very 
similar to photochemical reflectance index (PRI) [93], 
and qP (RCV

2 = 0.33) roughly around 1400–1500  nm. 
These figures contrast some recent findings of site-spe-
cific studies in crops and tree species [56, 94, 95], and 
suggest specificities in aquatic plants, possibly connected 
to high heterogeneity in studied macrophytes, that ham-
pers the generality of photophysiology-reflectance link 
across species (Additional file 1: Figs. S4–S8). Our results 
demonstrate that spectral reflectance, relatively straight-
forward to measure quantity at ecosystem scale even in 
aquatic environments, can be used via normalized indi-
ces or PLSR modelling for reliably estimating specific 
macrophyte leaf traits (Chl-a, Chl/Car, DMC and LMA), 
strongly connected to variability expressed within the 
LES in terms of trade-offs between structural investment 
and photosynthetic efficiency [96, 97]. This complements 
previous works based on terrestrial plants (e.g. [32, 38–
42]) through new empirical data spanning over different 
species, seasonal, environmental conditions (sites) and 
phenological stages.

These findings provide the basis for using leaf spectra 
as a surrogate for high-throughput assessment of vari-
ability in macrophyte traits over scales and gradients and 
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support the extension of the reflectance-based trait mod-
elling to RS spectroscopic data for enhancing the level of 
detail of functional diversity analysis. In particular, the 
possibility of using spectral proxies for modelling mac-
rophyte LMA opens intriguing perspectives for future 
research in aquatic species diversity and functioning and 
ecological applications of RS, aiming at investigating spa-
tial and temporal gradients, helping to fill some of the 
gaps recently identified by Pan et al. [98]. The approach 
could be even extended to plant science in general, when 
paired with works already performed on terrestrial spe-
cies [41]. Integrating high-resolution leaf reflectance 
spectroscopy with techniques based on Raman spectros-
copy could potentially be highly profitable for further 
enhancing the study of processes and functioning of veg-
etation, including macrophytes [99].

Spatial-wise information derived from airborne hyper-
spectral data for spectral proxies connected to macro-
phyte traits can provide intuitive, realistic and detailed 
bio-visualisation of vegetation diversity and connected 
processes. Spatial patterns of variability in spectral prox-
ies highlighted in Fig. 7 show differences at the site scale, 
due to both inter- and intra-species differentiation (e.g. 
T. natans in Lake Inferior, N. nucifera in Lake Superior 
within Mantua lakes system, Fig. 7b), as well as consider-
able variability at the community scale, indicating intra-
specific trait plasticity (e.g. NDSI775,740 and NDSI690,500 
of T. natans in Lake Hídvégi, as well as NDSI433,665 for N. 
nucifera in Mantua lakes system, Fig.  7c). Part of these 
differences are not only due to species composition but 
also to seasonal differences: APEX data collected over 
Lake Hídvégi in the middle of July represent macrophyte 
conditions at peak of growth, similar to most of the data 
we sampled in  situ, while data for Mantua lakes sys-
tem, acquired in late September, provide a static image 
of macrophyte communities in early to late senescence 
phase, depending on species, hence the high heterogene-
ity in NDSI433,665, linked to Chl/Car ratio (Fig. 7c).

Indeed, the heterogeneity highlighted for macrophyte 
communities of Mantua lakes system and Lake Hídvégi 
could be hardly seen with punctual measurements of 
macrophyte traits, and yet it is captured in a systematic, 
synoptic and quantitative way by testing leaf reflectance-
traits relations we found on remotely sensed imaging 
spectroscopy data, informing us on spatial and tempo-
ral functional variability. Although some interesting case 
studies in this respect have been recently documented 
(e.g. [81, 100, 101]), they were limited to one or few sys-
tems and few aquatic vegetation characteristics (func-
tional types, phenology metrics) and wider applications 
are needed.
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Additional file 1: Table S1. Summary of in situ samples collected for 
this study. Figure S1. Violin plots (with encompassed box plots) showing 
range and distribution of all leaf traits—photophysiological parameters, 
biochemistry (pigments) and leaf structure traits—measured over 6 
macrophyte species (LH = Ludwigia hexapetala; NN = Nelumbo nucif-
era; NL = Nuphar lutea; NA = Nymphaea alba; PA = Phragmites australis; 
TN = Trapa natans). Plots show significant differences (p < 0.05) in pairwise 
comparison performed via Dunn’s post-hoc test with Benjamini–Hoch-
berg adjustment. Figure S2. Comparison of NDSI correlations (p < 0.01, 
Bonferroni adjusted) with ETRmax for all samples (N = 324), in the visible to 
near-infrared spectral range (400–1000 nm): computed using Pearson’s r 
and Spearman’s ρ on raw data (top row), or Pearson’s r based on raw and 
transformed ( 1/

√
ETRmax  ) data (bottom row). Figure S3. Comparison 

of NDSI correlations (p < 0.01, Bonferroni adjusted) with LMA for all sam-
ples (N = 152), in the full spectral range (400–2500 nm): computed using 
Pearson’s r and Spearman’s ρ on raw data (top row), or Pearson’s r based 
on raw and transformed ( 

√
LMA ) data (bottom row). Figure S4. Statis-

tically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf 
photophysiology parameters measured on all macrophyte species sam-
pled (N = 324) in the visible to near-infrared spectral range (400–1000 nm). 
Figure S5. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI 
correlations with leaf photophysiology parameters measured on Ludwigia 
hexapetala samples (N = 53) in the visible to near-infrared spectral range 
(400–1000 nm). Figure S6. Statistically significant (p < 0.01, Bonferroni 
adjusted) NDSI correlations with leaf photophysiology parameters meas-
ured on Nelumbo nucifera samples (N = 55) in the visible to near-infrared 
spectral range (400–1000 nm). Figure S7. Statistically significant (p < 0.01, 
Bonferroni adjusted) NDSI correlations with leaf photophysiology param-
eters measured on Nuphar lutea and Nymphaea alba samples (N = 57) 
in the visible to near-infrared spectral range (400–1000 nm). Figure S8. 
Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations 
with leaf photophysiology parameters measured on Trapa natans samples 
(N = 154) in the visible to near-infrared spectral range (400–1000 nm). 
Figure S9. Correlation matrix of leaf traits measured over 6 species. 
Pairwise scatter plots are shown in the lower left half, histograms are 
shown on the diagonal, and the coefficient of correlation (Pearson’s r) of 
each pair of traits is shown in the upper right half, including info about 
its significance level (*p < 0.05, **p < 0.01, ***p < 0.001). Figure S10. Vari-
ation of root mean square error of prediction (RMSEP) with PLSR model 
components, computed against the full dataset (training or leave-one-
out cross-validation) for selected leaf traits estimated from leaf spectral 
reflectance for all macrophyte species sampled. Figure S11. Comparison 
of distribution of selected spectral proxies (NDSI) derived from APEX 
data at Lake Hídvégi and Mantua lakes system for mono-specific stands 
and connected leaf traits measured in our dataset (at peak of growth 
conditions). Data points represent median scores and whiskers delimit the 
extremes of values observed. Linear regression lines and their coefficient 
of determination (R2) separating stands in senescence phase at the time 
of overflight over Mantua site (27 September 2014) are superimposed on 
the graphs. LH_yel: Ludwigia hexapetala (with signs of chlorotic condi-
tions); NN_sen: Nelumbo nucifera (in early senescence phase); NL: Nuphar 
lutea; NA: Nymphaea alba; TN: Trapa natans; TN_sen: Trapa natans (around 
senescence conditions).
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