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Abstract 

Background:  The estimation of total iron content at the regional scale is of much significance as iron deficiency has 
become a routine problem for many crops.

Methods:  In this study, a novel method for estimating total iron content in soil (TICS) was proposed using harmonic 
analysis (HA) and back propagation (BP) neural network model. Several data preprocessing methods of first derivative 
(FD), wavelet packet transform (WPT), and HA were conducted to improve the correlation between the soil spectra 
and TICS. The principal component analysis (PCA) was exploited to obtained three kinds of characteristic variables 
(FD, WPT-FD, and WPT-FD-HA) for TICS estimation. Furthermore, the estimated accuracy of three BP models based on 
these variables was compared.

Results:  The results showed that the BP models of different soil types based on WPT-FD-HA had better estimation 
accuracy, with the highest R2 value of 0.95, and the RMSE of 0.68 for the loessial soil. It was proved that the character-
istic variable obtained by harmonic decomposition improved the validity of the input variables and the estimation 
accuracy of the TICS models. Meanwhile, it was identified that the WPT-FD-HA-BP model can not only estimate the 
total iron content of a single soil type with high accuracy but also demonstrate a good effect on the estimation of 
TICS of mixed soil.

Conclusion:  The HA method and BP neural network combined with WPT and FD have great potential in TICS estima-
tion under the conditions of single soil and mixed soil. This method can be expected to be applied to the prediction 
of crop biochemical parameters.

Keywords:  Total iron content, Harmonic analysis, Wavelet packet transform, Principal component analysis, BP neural 
network
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Background
Iron is an indispensable trace element for plants, whose 
content in soils largely relies on the pH value and the 

water content, and is influenced by root respiration, soil 
microbial activity, leaching, and erosion [1]. Accurate 
estimation of the total iron content in soil (TICS) is help-
ful for agronomists to assess soil conditions, which is also 
the key to ensure the healthy growth of crops. Therefore, 
rapid and precise prediction of TICS has an important 
practical value for precision agriculture [2, 3].

The traditional determination methods of TICS 
include the combination of field sampling and 
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laboratory measurement, assisted by atomic absorption 
spectrometry [4] and o-phenanthroline colorimetry [5]. 
Although a high accuracy was obtained, these methods 
were time-consuming and costly on a large-area appli-
cation. In recent years, hyperspectral remote sensing 
(HRS) technology has the advantages of high resolu-
tion, fast speed, and high accuracy, which makes it pos-
sible to estimate the TICS in a large area quickly and 
efficiently [6]. HRS is one of the frontier remote sens-
ing technologies since it provides continuous spectral 
information about each feature of the research object 
[7]. Several scholars have used HRS to predict nitrogen 
content [8], water content [9], and heavy metal content 
in soils [10]. They found that spectral preprocessing 
plays an important role in quantitative inversion and 
estimation.

At present, the TICS retrieving accuracy of HRS is 
limited by using traditional preprocessing methods due 
to the low iron contents and various existing forms in 
soils. For example, Bendor and Banin established a multi-
ple linear regression model to predict the TICS by using 
1075, 1025, and 425 nm spectral bands, with the highest 
R2 of 0.76 [11]. Subsequently, a large number of research-
ers applied first and second derivative [12], reciprocal 
and logarithm [13], continuum removal methods [14] 
to expand spectral differences and reduce noise interfer-
ence, thereby increasing the correlation between spec-
tral data and TICS. This can be seen in the case that Guo 
et al. analyzed the correlation between different spectral 
forms and the content of iron oxide in soil by different 
spectral transformations, and the highest inversion accu-
racy was 0.93 [15].

The characteristic bands were used to serve as the char-
acteristic variables in many studies. However, the soil 
spectral curve is a comprehensive manifestation of the 
interaction and superposition of various substances, thus 
the determination of the characteristic bands is not only 
difficult but also highly uncertain. Due to the complex-
ity of soil compositions, the interference of other compo-
nents will lead to the signal-to-noise ratio reduced under 
the conditions of low TICS in soils. Therefore, the selec-
tion of appropriate spectral denoising methods [such as 
first derivative (FD), wavelet transform, wavelet packet 
transform (WPT), filtering, and average weighting] is of 
great importance. The wavelet transform has a strong 
ability to remove noise [16]. When it was applied to soil 
spectral data analysis, the spectral signal can be decom-
posed into sub-signals with different frequencies. It can 
effectively use the overall structural characteristics of 
spectral information, extract the weak information hid-
den in the spectral signal, and search for the best com-
bination of sub-signal components to estimate the TICS. 
Gu et  al. found that soil organic matter content can be 

retrieved using the high-frequency coefficients created 
with the wavelet transform and random forest algorithm 
[17].

Given the above descriptions, new methods for esti-
mating TICS still need to be explored. Harmonic analy-
sis (HA) was proposed to transform the time domain of 
the preprocessed spectral data into the frequency domain 
[18]. Harmonic decomposition can suppress or eliminate 
the background noise of ground objects and achieve the 
effect of data compression. The best harmonic compo-
nent obtained by harmonic decomposition can be used 
as the characteristic variable to construct the inversion 
model of TICS. The inversion accuracy of TICS depends 
on the selection of the inversion model and characteristic 
variables. Quantities of studies have shown that the sta-
tistical analysis methods can be applied to the hyperspec-
tral inversion of TICS, and the back propagation (BP) 
neural network can deal with the nonlinear situation well 
in the estimation of TICS as a result of its strong self-
learning ability [19]. With the denoising ability of FD and 
WPT, and the frequency domain information provided 
by HA, the variables estimated TICS with high preci-
sion can be provided. Meanwhile, the accuracy of TICS 
prediction can be expected to be improved by using the 
dimensionality reduction of principal component analy-
sis (PCA) and the ability of BP nonlinear learning. As the 
significant differences in physical and chemical prop-
erties of different types of soils, the study of soil spec-
tral characteristics is relatively complex. Therefore, it is 
meaningful to carry out the estimation of total iron con-
tent in different types of soils.

In this paper, the hyperspectra of different types of 
soils were remotely measured from ground platforms. 
Meanwhile, various preprocessing technologies (mainly 
include WPT, FD, and HA) and PCA were employed for 
dimensionality reduction and feature variable extraction. 
Then the BP neural network models for TICS estima-
tion of single soil and mixed soils were constructed. Our 
objectives are (1) to compare and evaluate several widely 
used characteristic variables for TICS estimation; (2) to 
analyze the improvement of the retrieving accuracy of 
TICS by the characteristic variables derived from HA, 
and (3) to apply the characteristic variables obtained by 
HA to three different types of soil to explore the optimal 
characteristic variables for TICS estimation of different 
soil types.

Materials and methods
Study area
The field sampling experiments were conducted 
in Hengshan County, Shaanxi Province, China 
(37°22′N–38°14′N, 108°65′E–110°02′E), which belongs 
to the hilly and gully region of the Loess Plateau in 
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the upper and middle reaches of the Yellow River with 
a total area of 4333  km2. Hengshan County was seri-
ously affected by desertification due to the proximity 
to the Mu Us Desert. It belongs to the semi-dry conti-
nental monsoon climate, with an annual average tem-
perature of 8.6 ℃ and average annual precipitation of 
399  mm. The soil of this area is mainly composed of 
loessial soil and sandy soil. The difference in TICS was 
caused by the above comprehensive factors. The study 
area (Fig. 1) is conducive to estimating TICS in the dis-
tricts with rich soil types. Taking Hengshan County as 
the study area, the occasionality and limitation caught 
by a single soil type can be avoided, which makes the 
research results more popularized and adaptable.

Measurements of total iron content in soil
The soil sampling of TICS was performed in the flat ter-
rain and bare soil areas. Two types of soil (loessial soil 
and sandy soil) were collected and four or five represent-
ative survey points in each sampling area were selected. 
At each sampling point, a sample of surface soil (about 
5 cm) was dug up and put into a plastic bag. A total of 84 
soil surface samples were collected, including 51 loessial 
soil samples and 33 sandy soil samples (Fig. 1; Table 1). 
All the collected samples were encapsulated and sent to 
be tested. The atomic absorption method was adopted to 
measure the TICS.

Measurements of soil spectral reflectance
The soils were ground and then screened by a 2  mm 
diameter sieve to obtain the samples for measuring spec-
tral reflectance. The spectral reflectance measurements 
of the preprocessed soil samples were conducted on the 
laboratory conditions in a dark room using an ASD Field 
Spec FR spectrometer (Analytical Spectral Devices, Inc., 
USA). The spectrometer collected the hyperspectral 
reflectance from 350 to 2500 nm with the spectral resolu-
tion of 3 nm during the range of 350–1000 nm and 10 nm 
during the range of 1000–2500 nm. A 50 W halogen lamp 
(0.5 m from the soil samples) was used as the only light 
source, and the vertical distance from the soil sample to 
the probe (field of view: 3°) was approximately 0.2 m. A 
whiteboard (chemical composition: BaSO4) was used for 
relative radiometric correction. Four spectra were aver-
aged into a single one for each soil sample to decrease the 
instability of the measurements.

Data processing and analysis
Five‑point weighted average
The five-point weighted average method was applied to 
eliminate random errors. The window with five spec-
tral data points was moved in the spectral data of each 
sample, and the values of the middle data points in the 
window were smoothed by the two adjacent data points. 
The weight of data points decreased gradually with the 
increase of the distance from the middle point, and the 
value of the middle point of the window was the weighted 
average of these five points. The calculation formula is as 
follows:Fig. 1  Study area location and sampling points distribution

Table 1  Descriptive statistics of total iron content in soil

Soil types Samples TICS (g/kg)

Min. Max. Mean SD CV (%)

Loessial soil 51 15.42 27.51 23.26 2.28 9.82

Sandy soil 33 7.20 27.18 19.20 4.60 23.98

Mixed soil 84 7.20 27.51 21.66 3.93 18.13
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where the S is the five-point weighted average value of 
the spectral data. Among the five spectral data, Sn−2, 
Sn−1, Sn+1, Sn+2 are the first, second, fourth, and fifth 
spectral data, respectively.

First derivative of spectra
The first derivative (FD) was performed after a five-point 
weighted average operation to eliminate some linear 
background and noise of original spectral data [20]. The 
formula is shown below:

where R′(λi) represents the FD spectral reflectance of 
wavelength λi. R is the original spectral reflectance.

Wavelet packet transform
Wavelet packet transform (WPT) was utilized to pre-
cisely decompose and reconstruct high-frequency infor-
mation (HFI), and to remove the noise of HFI as well. 
WPT based on the wavelet transform is superior to the 
wavelet transform in decomposing and reconstructing 
HFI [21, 22]. The results of information processing do not 
exit redundancy and omission, so it is more conducive 
to spectral denoising and original information preserva-
tion. In this study, we decomposed and reconstructed 
the spectral data according to the four steps: (1) wavelet 
packet analysis of spectra using Db10 as wavelet gener-
ating function to decomposed the multi-layer WPT of 
spectra with noise [23]. (2) calculating the optimal wave-
let packet basis of WPT decomposition according to the 
principle of minimum cost. (3) quantifying the wavelet 
packet coefficients by selecting the soft threshold with 
good continuity. (4) reconstruction of WPT spectral 
information based on the optimal wavelet packet basis 
and the quantitative optimal wavelet packet decompo-
sition coefficients to obtain the spectra of WPT noise 
reduction. Finally, WPT spectra were processed by FD 
to obtain the WPT-FD spectral data to compare with the 
FD data.

Harmonic analysis
Abundant issues of noise and redundancy still existed 
after the above operations. Harmonic analysis (HA) was 
proposed to transform the time domain into the fre-
quency domain by taking the processed spectral data 
(WPT-FD spectra) as a sequence signal. HA, firstly pro-
posed by Jakubauskas et  al. was mainly employed in 
power system harmonic monitoring [24]. In this study, 
spectral data can be decomposed into a series of har-
monic energy characteristic parameters by harmonic 

(1)
S = (Sn−2/4 + Sn−1/2+ Sn + Sn+1/2+ Sn+2/4)/2.5

(2)R′(�i) = [R(�i+1)− R(�i−1)]
/

(�i+1 − �i−1)

decomposition. The harmonic theory was used to express 
a time-series function f(t) in the form of sine or cosine 
wave (harmonic) superposition. Namely, any time-series 
f(t) about time t can be expressed by several sine or 
cosine wave superpositions. The hyperspectral reflec-
tance of each soil sample can be served as a continuous 
function (during the range of wavelength). When using 
HA to process spectral data, the spectral curve composed 
of N bands can be regarded as a function with its cycle of 
N. Spectral HA decomposition is to express the spectral 
curve of each soil sample as the sum of a series of super-
imposed sine and cosine waves composed of some energy 
characteristic components such as harmonic remain-
der (A0/2), amplitude (Ah, Bh, and Ch), and phase (φh). 
A group of spectra consisting of N bands is expressed 
as V(k)  =  (v1, v2, …, vN), and the spectral reflectance of 
each band is marked as vk (k  =  1, 2, …, N). The harmonic 
decomposition expansion formula of h-times HA is as 
follows.

After the h-th harmonic decomposition of V(k), the 
harmonic characteristic components are calculated.

where h (h  = 1, 2, 3, …) is the number of harmonic 
decomposition. When h  = 1, it is the component of the 
fundamental wave. A0/2 is the harmonic remainder and 
Chsin(2πhk/N  +  φh) is the harmonic component of h 
times. Ah, Bh, Ch, and φh are the cosine amplitude, sine 
amplitude, harmonic component amplitude, and the 
phase of harmonic component of h-th harmonic decom-
position, respectively. A0/2, Ch, and φh reflect the mean 

(3)

V (k) =
A0

2
+

∞
∑

h=1

[Ah cos(2πhk/N )+ Bh sin(2πhk/N )]

=
A0

2
+

∞
∑

h=1

Ch sin(2πhk/N + ϕh)

(4)A0/2 =
1

N

N
∑

k=1

vk

(5)Ah =
2

N

N
∑

k=1

vk cos(2πhk/N )

(6)Bh =
2

N

N
∑

k=1

vk sin(2πhk/N )

(7)Ch =

√

(A2
h + B2

h)

(8)ϕh = tan−1(Ah/Bh)
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energy of each band, the energy change of different 
bands, and the band position where the energy appears 
amplitude.

The low order harmonics contain the main energy 
characteristics of the spectra, and the high order har-
monics are generally mixed with noise information. The 
amplitude and phase, carrying objects band energy and 
radiation peak position information, reflect the local fea-
ture information of spectra. Therefore, harmonic decom-
position can not only suppress or eliminate background 
noise but also highlight the spectral characteristics of 
objects with low-order harmonic components to achieve 
the effect of data compression. In this study, the total 
number of bands in harmonic decomposition is 150. The 
WPT-FD spectra were used to obtain the WPT-FD-HA 
spectral data by the HA method.

Principal component analysis
Principal component analysis (PCA) was widely used in 
data feature extraction, compression, and dimensionality 
reduction [25]. The PCA method was used to transform 
the extracted data (including FD, WPT-FD, and WPT-
FD-HA data). On the premise of retaining as much infor-
mation as possible, the correlation between the data was 
eliminated and the characteristic variables were obtained. 
In a principal component inversion, the principal com-
ponents whose cumulative variance contribution rate 
more than 90% after PCA were selected as the inversion 
parameters [26].

Back propagation model and accuracy evaluation
In spectral analysis, the back propagation (BP) neural 
network is an important pattern recognition method, 
which is suitable for solving some complex mapping 
problems and has a good effect on complex non-linear 
prediction and inversion. In this study, the BP model was 
used to estimate the TICS. The BP neural network con-
sists of three layers: input layer, hidden layer, and output 
layer [27]. When it talks to the BP neural network estima-
tion, the retrieving speed will increase and the amount 
of calculation will be decreased by reducing the number 
of characteristic variables. Therefore, the PCA method 
was used as the input layer of the BP neural network to 
improve inversion efficiency.

The topological structure of the BP model used in this 
study was 5—3—1. The number of nodes of the input 
layer, hidden layer, and output result layer was set as 5, 
3, and 1, respectively. The number of network training 
iterations was 2000, the learning rate was 0.01, the addi-
tional momentum factor was 0.9, and the learning error 
was 0.001. The above operation was realized based on the 
software of MATLAB 2018a (MathWorks, Inc., Natick, 
MA, USA).

In the process of BP model establishment, 35 and 20 
groups from 51 groups of loessial soil and 33 groups of 
sandy soil samples were selected as training samples 
and the remaining 16 and 13 groups of samples as test-
ing samples. Then we randomly selected 45 groups of 
samples from 84 groups of mixed soils as the training 
samples and the remaining 39 groups of sample data as 
testing samples.

Prior to the PCA operation, a preliminary selection of 
characteristic bands was made. To retain enough use-
ful information and avoid redundancy, 150 bands with 
a correlation coefficient greater than 0.55 with TICS 
were selected as characteristic bands in this paper. These 
bands will then be further screened using PCA.

The prediction accuracy of the models was determined 
by the parameters of the coefficient of determination 
(R2), the root mean square error (RMSE), and the mean 
absolute error (MAE). The high R2, low RMSE and MAE 
values indicate good estimation effects.

where yi is the measured value, ŷi is the estimated value, 
n is the number of samples.

To eliminate the spectral noise of the instrument, and 
process the HFI, the original spectral data were preproc-
essed by five-point weighted average, FD, WPT, and HA. 
The workflow is shown in Fig. 2.

Results
Spectral comparisons of different types of soil
The hyperspectral curves of different types of soil were 
shown in Fig. 3. It can be seen that the waveform of dif-
ferent types of soil and soil with different iron content is 
generally similar. With the increase of TICS, reflectance 
did not show a significant increase or decrease trend, 
but the overall trend did not change (including the posi-
tion of the absorption band). It indicates that the spec-
tral reflectance cannot directly reflect the change of TICS 
and the new information needs to be mined.

Characteristic bands selection
Four kinds of data, including original spectral data (OS), 
first derivative data (FD), wavelet packet transform data 
(WPT), and reconstructed first derivative data based 
WPT (WPT-FD) were used to analyze the correlation 
with the TICS. The results are shown in Fig. 4.

(9)RMSE =

√

√

√

√

n
∑

i=1

(yi − ŷi)2
/

n

(10)MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣



Page 6 of 12Jiang et al. Plant Methods          (2021) 17:116 

The OS and WPT data were negatively correlated with 
TICS as a whole (except 350–500 nm) with the absolute 
value of the correlation coefficient (|r|) less than 0.2 (P  
< 0.01). The correlation with FD, WPT-FD, and TICS was 
obviously increased, with the positive and negative val-
ues alternated. We calculated the correlation coefficients 
between FD, WPT-FD data, and their corresponding 

TICS at different bands to reduce the total number of 
bands for estimating TICS. The selection principles of 
characteristic bands were |r| > 0.55 and the number of 
selected bands kept moderate. Finally, 150 characteristic 
bands were selected from FD and WPT-FD data of all soil 
types. The number of bands remained the same as that of 
the single soil type to control the variables.

Harmonic decomposition
The WPT-FD data of loessial, sandy and mixed soils were 
decomposed by using eqs. (4)–(8) to obtain the charac-
teristic components of harmonic energy spectra (A0/2, 
Ah, Bh, Ch, and φh). The correlation coefficients between 
the harmonic components and TICS were calculated. 
The total number of bands of harmonic decomposition 
was 150. Considering the periodicity of sine and cosine 
functions, the times of harmonic decomposition were 
150. Figure 5 shows the correlation coefficients between 
the characteristic components of different harmonic 
energy spectra and TICS of loessial soil, sandy soil, and 
mixed soil.

The results showed that there is a high correlation 
between harmonic components of first and latter sev-
eral times and TICS, and the correlation shape of char-
acteristic components (Ah, Bh, Ch, and φh of harmonic 
energy spectra) were roughly axisymmetric (Fig.  5). At 
the beginning and end, the correlation between the HA 
components and TICS is more than 0.6 (P  < 0.01), and 
the other components show a weak correlation with 
TICS. Furthermore, there is the same performance in 
different types of soil, partly showing the robustness of 
HA parameters to TICS prediction. Therefore, the rela-
tionship between HA components and TICS can be well 

Fig. 2  The flow chart of this study

Fig. 3  Primary spectral reflectance of different TICS: a loessial soil; b sandy soil
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described by using half the parameters of an asymmetric 
graph. Another characteristic is periodicity: the correla-
tion between HA components and TICS shows positive 
and negative alternation. Considering the periodicity and 
symmetry of the correlation between harmonic param-
eters and TICS, 12 harmonic characteristic parameters 
(A0/2, A1, A2, A3, B1, B2, B3, C1, C2, C3, φ1, and φ2) were 
selected combined with the correlation coefficients.

Selection of characteristic variables for BP model
The spectral parameters and 12 harmonic characteristic 
parameters were analyzed by PCA to reduce the num-
ber of input layer neural networks and improve the net-
work topology and estimation effect. For loessial soil, 
sandy soil, and mixed soil, the first five components were 
selected as input variables of BP models. The eigenvalue 
and variance contribution rate of PCA are shown in 
Table 2.

For three types of soil (mixed soil, loessial soil, and 
sandy soil), the accumulative contribution rates of the 

Fig. 4  The correlation between original spectral data (OS), first 
derivative data (FD), wavelet packet transform data (WPT) and 
reconstructed first derivative data based WPT (WPT-FD) of two types 
of soils, and the TICS

Fig. 5  The correlation between the characteristic components of different harmonic energy spectra and TICS: a mixed soil; b loessial soil; c sandy 
soil



Page 8 of 12Jiang et al. Plant Methods          (2021) 17:116 

first five principal components of WPT-FD data reached 
95.56%, 98.50%, and 99.64%, respectively, which fully 
met the requirements of input variables of BP models 
(Table 2). The PCA results of WPT-FD data were better 
than those of FD data. The accumulative contribution 
rates of the first five principal components of WPT-FD-
HA were 98.98%, 99.57%, and 99.90%, respectively, which 
basically contained the characteristic components of 
original harmonic energy spectra. Moreover, the results 
of WPT-FD-HA were better than those of WPT-FD, and 
the effects of data dimensionality reduction were also 
prior. Based on the above PCA results, three input vari-
ables of BP models (FD, WPT-FD, and WPT-FD-HA) 
were constructed. The PCA results of the WPT-FD-HA 
were the best, followed by WPT-FD, and the FD was the 
worst.

Establishment of BP models and accuracy evaluation
BP estimation models of the TICS were constructed 
based on three types of variables (FD, WPT-FD, and 
WPT-FD-HA). Finally, three inversion models were 
established for three soil types: FD-BP, WPT-FD-BP, and 
WPT-FD-HA-BP. The inversion accuracy of different 
models for three soil types is shown in Table  3. Fitting 
results between estimated values and measured values of 
TICS of three types of soil are shown in Fig. 6.

For the three types of soil, the estimation result of the 
WPT-FD-BP model was evidently better than that of the 
FD-BP model (Table  3). The R2 of WPT-FD-BP models 
of different soils was 0.79 (mixed soil), 0.92 (loessial soil), 
and 0.93 (sandy soil), and RMSE was 1.57, 1.16, and 0.88, 

respectively. The R2 of the WPT-FD-HA-BP model was 
0.87 (mixed soil), 0.95 (loessial soil), and 0.94 (sandy soil), 
which were higher than those of the WPT-FD-BP model. 
Moreover, the inversion accuracy of the WPT-FD-HA-
BP model of a single soil type was higher than that of 
mixed soil.

Figure 6 showed the comparison between the retrieved 
and measured values of TICS of different types of soil. 
The performance of BP models under the conditions of 
single soil (loessial soil and sandy soil) type was better 
than that of the mixed soil, which indicated that there 
existed some differences in spectral characteristics and 
spectral characteristic bands of various soils. There-
fore, the soil property information must be considered 
in the study of TICS estimation. In terms of the model 
structure, it can be seen that the best effects belong to 
the WPT-FD-HA-BP model, with the closest estimated 

Table 2  Eigenvalue and variance contribution rate of different types of soil data

PCA Soil types Eigenvalue Variance contribution (%) Accumulative contribution (%)

FD WPT-FD WPT-FD-HA FD WPT-FD WPT-FD-HA FD WPT-FD WPT-FD-HA

PCA1 Mixed soil 6.91 × 10–6 3.62 × 10–5 1.46 74.82 84.01 90.00 74.82 84.01 90.00

PCA2 9.76 × 10–7 1.55 × 10–6 0.18 10.56 6.02 5.00 85.38 90.03 95.00

PCA3 4.36 × 10–7 4.26 × 10–7 1.64 × 10–7 4.72 4.11 2.00 90.10 94.14 97.00

PCA4 2.72 × 10–7 1.16 × 10–7 1.04 × 10–7 2.95 1.30 0.75 93.04 95.42 97.75

PCA5 1.26 × 10–7 4.55 × 10–8 6.93 × 10–7 1.36 0.12 0.23 94.41 95.56 98.99

PCA1 Loessial soil 3.39 × 10–6 1.56 2.82 × 10–5 77.00 88.81 95.88 77.00 88.71 95.88

PCA2 6.21 × 10–7 0.20 8.54 × 10–7 10.41 6.19 2.90 87.41 94.90 98.79

PCA3 4.85 × 10–7 0.07 1.28 × 10–7 6.15 2.09 0.43 93.56 96.99 99.22

PCA4 1.92 × 10–7 6.56 × 10–4 5.79 × 10–8 3.23 0.73 0.20 96.79 97.99 99.42

PCA5 1.70 × 10–8 3.64 × 10–4 4.56 × 10–8 0.86 0.51 0.16 97.65 98.50 99.57

PCA1 Sandy soil 9.11 × 10–6 4.71 × 10–5 1.34 86.94 89.27 90.75 86.94 89.27 90.75

PCA2 6.36 × 10–7 2.77 × 10–6 0.15 6.07 5.26 8.75 93.01 94.53 99.50

PCA3 2.12 × 10–7 1.86 × 10–6 6.65 × 10–7 2.02 3.51 0.26 95.03 98.04 99.76

PCA4 1.45 × 10–7 7.57 × 10–7 2.41 × 10–7 1.39 1.43 0.10 96.41 99.48 99.86

PCA5 1.01 × 10–8 8.32 × 10–8 1.61 × 10–7 1.05 0.16 0.05 97.46 99.64 99.90

Table 3  TICS estimation models of different types of soil

Soil types BP models R2 RMSE

Loessial soil FD-BP 0.86 1.29

WPT-FD-BP 0.92 1.16

WPT-FD-HA-BP 0.95 0.68

Sandy soil FD-BP 0.89 1.09

WPT-FD-BP 0.93 0.88

WPT-FD-HA-BP 0.94 0.71

Mixed soil FD-BP 0.71 1.83

WPT-FD-BP 0.79 1.57

WPT-FD-HA-BP 0.87 1.11
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values to the measured values. The artificial and param-
eter calculation errors in the process of selecting charac-
teristic bands were reduced to some extent, making the 
newly constructed inversion factors more suitable for 
TICS estimation.

Discussion
Superiority analysis of harmonic analysis in parameters 
selection for TICS estimation
Soil spectrum is a comprehensive reflection of various 
soil properties, affecting by the factors of soil organic 
matter, soil color, soil texture, soil moisture, and mineral 
composition [28, 29]. For the complexity of the composi-
tion of soil spectrum, the performance of TICS estima-
tion of characteristic variables obtained by traditional 
spectral transformation (first and second derivative, 
reciprocal, logarithm, and continuum removal meth-
ods) was often limited [30]. Moreover, compared with 

the organic matter, water content, and other constant 
elements, total iron content are obviously different. The 
main reason is that the low TICS results in a weak spec-
tral signal, and the performance of the inversion models 
using variables obtained by conventional methods is poor 
[31].

Through the correlation analysis, it is found that the 
first derivative spectra tend to have a higher correlation 
with TICS than the original spectra (Fig. 4). The reason is 
that the spectral differentiation technology can partially 
eliminate the effects of atmospheric effects, environ-
mental background, and shadows [32]. The bands with 
high correlation with TICS are mainly concentrated in 
the range of 1800–1900 nm (Fig. 4), consistent with the 
characteristic absorption bands of different types of soils 
(Fig. 3).

After WPT reconstruction, the WPT-FD data tend to 
perform better than the FD data on the correlation with 

Fig. 6  Validation models of TICS estimation of different types of soil: a FD-BP model of loessial soil; b WPT-FD-BP model of loessial soil; c 
WPT-FD-HA-BP model of loessial soil; d FD-BP model of sandy soil; e WPT-FD-BP model of sandy soil; f WPT-FD-HA-BP model of sandy soil; g FD-BP 
model of mixed soil; h WPT-FD-BP model of mixed soil; i WPT-FD-HA-BP model of mixed soil
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TICS (Fig.  4). Many scholars also used the principle of 
WPT to denoise the original spectra in the process of 
spectral data processing for the estimation of soil water 
content and organic matter [33]. However, given the 
complex situation of TICS estimation, the correlation 
between the WPT-FD data with TICS needs to improve.

The HA method proposed in this paper can improve 
the correlation with TICS by using the harmonic com-
ponents of harmonic decomposition (Fig.  5). Harmonic 
decomposition can transform spectral information into 
signal molecules, which is more stable than spectral 
parameters and can effectively improve the inversion 
accuracy of trace elements in the soil. Finally, 12 har-
monic components whose |r| > 0.6 were determined. 
Based on the above spectral data preprocessing, we car-
ried out the PCA method to eliminate the correlation 
between characteristic bands (characteristic parameters).

In general, the spectral preprocessing methods used 
in this paper may be suitable for other studies as well. 
The different types of these methods were combined 
and optimized to improve the feasibility of hyperspec-
tral inversion. It provides technical support for the rapid 
estimation of TICS. According to the characteristics of 
different physical and chemical soil properties, selecting 
different methods to improve the accuracy of the model 
may be an important research direction for quantitative 
inversion of soil hyperspectral in the future.

Improvement of model accuracy and universality 
by harmonic analysis
In similar studies, the estimation accuracy of the BP 
model in this paper (Table 3) is higher than the result of 
Xie et al. [34]. They used RBF neural network to estimate 
the TICS with the R2 of 0.70. It showed that the HA has a 
certain contribution to the optimization of BP input vari-
ables. For the three types of soils, the characteristic vari-
ables from WPT-FD-HA helped to significantly improve 
the estimation accuracy of TICS. It was more signifi-
cant in the mixed soil, the TICS estimation accuracy of 
the WPT-FD-HA-BP model increased about 12%, but 
only 8% in loessial soil and 4% in sandy soil (compared 
with the WPT-FD-PCA-BP model), which indicated that 
the characteristic variables obtained by HA can effec-
tively improve the inversion accuracy of total iron con-
tent in mixed soil. Furthermore, the BP model based on 
HA shows better performance than the model of con-
ventional characteristic bands. Its advantage is that the 
harmonic parameters were obtained by the Fourier trans-
form of the first derivative spectral data reconstructed by 
wavelet transform. The harmonic parameters replaced 
the conventional spectral characteristic parameters as 
the new model input variables to avoid the uncertainty 
of spectral parameters calculation. It concluded that the 

HA plays a decisive and stable role in the process of TICS 
estimation.

The BP estimation model based on HA can not only 
adapt to the inversion of total iron content in a single 
soil type but also has good performance for mixed soil 
(R2  = 0.87, RMSE  = 1.11), which reflects the effective-
ness and feasibility of the TICS estimation using HA. For 
loessial soil and sandy soil, the WPT-FD-HA-BP model 
shows higher accuracy than the other two models (FD-
BP and WPT-FD-BP), indicating that the WPT-FD-HA-
BP model has better adaptability for single soil type of 
total iron content inversion (Table 3). For mixed soil, the 
inversion and validation accuracy of the WPT-FD-HA-
BP model is much higher than that of the WPT-FD-BP 
model (Table 3; Fig. 6), which indicates that the harmonic 
parameters obtained by harmonic decomposition can 
effectively improve the TICS estimation, and the inver-
sion variables can be well applied to the soil with rich 
types. The relationship between TICS and spectral reflec-
tance is not a simple linear relationship [35], and a large 
number of studies have proved that the BP model is good 
in dealing with nonlinear problems [36]. Combined with 
the results of this experiment, the feasibility and supe-
riority of the BP model in retrieving TICS were verified 
again.

As shown in Fig.  6, the WPT-FD-HA-BP validation 
models show the best performance (the highest R2, the 
lowest RMSE and MAE of different types of soil). Com-
pared with the results of TICS estimation, the inversion 
accuracy in this paper is obviously improved. The results 
show that the new factors proposed in this present have 
some improvements compared with the traditional 
inversion parameters, which mainly act on the following 
aspects: (1) the spectral denoising effect of WPT is effec-
tive, which contributes to the optimization of BP inver-
sion factors. (2) among the TICS estimation models of 
different types of soil, HA-based models were the best. 
This highlights the determinacy and stability of HA in 
the inversion process of total iron content. (3) the TICS 
estimation models based on HA can be well adapted to 
single soil and mixed soil types. (4) there is no single lin-
ear relationship between TICS and spectral reflectance, 
which verifies the feasibility and superiority of the BP 
model in the TICS estimation.

Limitations and future work
Different types of soils were selected to monitor the com-
plex soil environment. Although the preparation of arti-
ficial soil samples can help to obtain stable soil spectral 
data, it destroys the physical structure of soil and changes 
the optical characteristics of soil to a certain extent. 
Therefore, in the next study, we will focus on measuring 
more realistic soil spectral information to further verify 
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the robustness and reliability of the method proposed in 
this paper. Remote sensing, as a non-destructive method, 
is promising in TICS estimation. A few studies show 
that hyperspectral data can accurately predict minerals. 
For example, multiple spectral bands were used to pre-
dict TICS by multiple linear regression, with R2 of 0.76 
[11]. Combined with BP neural network, Shen et al. uti-
lized some spectral transformation methods including 
FD, second-order differential, and continuum removal 
to retrieve the concentrations of iron and copper, with 
accuracy needing to be further improved [37]. With that, 
WPT and HA were employed to obtain the high preci-
sion inversion model of TICS. In the future, soil spectral 
data from more areas will be used to verify the usefulness 
of the proposed method.

Conclusions
In this study, we proposed a kind of characteristic vari-
able to estimate TICS using harmonic decomposition 
parameters. It is observed that the traditional spectral 
parameters are unstable and subject to noise in the TICS 
estimation. The HA transforms the spectra data from 
spectral-domain to frequency domain, which avoids the 
uncertainty and reduces the error of spectral param-
eter calculation. The HA-BP inversion models have a 
good performance in the application of estimating TICS 
for different types of soils. The WPT-FD-HA-BP model 
which is suitable for different soil types is a good inver-
sion method of TICS and has certain universality. There 
is an important reference value for determining the best 
characteristic variable for the TICS estimation.
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