
Tatsumi et al. Plant Methods           (2021) 17:77  
https://doi.org/10.1186/s13007-021-00761-2

RESEARCH

Prediction of plant‑level tomato 
biomass and yield using machine learning 
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Abstract 

Background:  The objective of this study is twofold. First, ascertain the important variables that predict tomato yields 
from plant height (PH) and vegetation index (VI) maps. The maps were derived from images taken by unmanned aer-
ial vehicles (UAVs). Second, examine the accuracy of predictions of tomato fresh shoot masses (SM), fruit weights (FW), 
and the number of fruits (FN) from multiple machine learning algorithms using selected variable sets. To realize our 
objective, ultra-high-resolution RGB and multispectral images were collected by a UAV on ten days in 2020’s tomato 
growing season. From these images, 756 total variables, including first- (e.g., average, standard deviation, skewness, 
range, and maximum) and second-order (e.g., gray-level co-occurrence matrix features and growth rates of PH and 
VIs) statistics for each plant, were extracted. Several selection algorithms (i.e., Boruta, DALEX, genetic algorithm, least 
absolute shrinkage and selection operator, and recursive feature elimination) were used to select the variable sets 
useful for predicting SM, FW, and FN. Random forests, ridge regressions, and support vector machines were used to 
predict the yield using the top five selected variable sets.

Results:  First-order statistics of PH and VIs collected during the early to mid-fruit formation periods, about one 
month prior to harvest, were important variables for predicting SM. Similar to the case for SM, variables collected 
approximately one month prior to harvest were important for predicting FW and FN. Furthermore, variables related 
to PH were unimportant for prediction. Compared with predictions obtained using only first-order statistics, those 
obtained using the second-order statistics of VIs were more accurate for FW and FN. The prediction accuracy of SM, 
FW, and FN by models constructed from all variables (rRMSE = 8.8–28.1%) was better than that from first-order statis-
tics (rRMSE = 10.0–50.1%).

Conclusions:  In addition to basic statistics (e.g., average and standard deviation), we derived second-order statistics 
of PH and VIs at the plant level using the ultra-high resolution UAV images. Our findings indicated that our variable 
selection method reduced the number variables needed for tomato yield prediction, improving the efficiency of phe-
notypic data collection and assisting with the selection of high-yield lines within breeding programs.

Keywords:  Tomato yield prediction, Gray-level co-occurrence matrix, Plant-level, Machine learning, Unmanned aerial 
vehicle
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Background
Tomato (Solanum lycopersicum L.) is one of the most 
widely and globally grown vegetables in the world and 
plays an important role in human health maintenance 
[1]. In 2018, the annual production of fresh tomatoes 
was about 180 million tons globally [2]. Approximately a 
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quarter of those were cultivated for processing and were 
consumed as pastes, ketchup, salsa, and juice [3, 4]. The 
main production countries are China, India, Pakistan, 
Turkey, and the U.S., which account for approximately 
60% of the world tomato production. Tomato production 
and harvested area are increasing every year [2]. In terms 
of health, tomato is a source of vitamin C, potassium, 
folate, and vitamin K, which have been linked to many 
health benefits, such as antioxidant protection against 
cancer, strengthening the heart, and constipation preven-
tion [5].

Over the past few years, unmanned aerial vehicles 
(UAVs) have been receiving much attention as ways to 
measure secondary traits, such as plant height (PH) and 
spectral reflectance, in a wide area because of the UAV 
advantages: ease of operation, highly flexible and timely 
control, super-high spatial resolution, and quick retrieval 
of wide-area field information owing to reduced planning 
time [6, 7]. A UAV can be equipped with a wide range of 
sensors useful in agricultural applications, such as RGB 
[8] and multispectral cameras [9]. In addition, UAVs 
have attracted much attention in the field of agricul-
tural remote sensing due to the development of low-cost 
UAVs and imaging sensors. In particular, UAVs provide 
an entire new perspective to the agricultural landscape 
by collecting remote sensing data at very low altitudes. 
Regarding tomato, Senthilnath et al. [10] used a UAV to 
acquire RGB imagery of a tomato field and to classify 
tomato and non-tomato plants. However, they found that 
many fruits were pretermitted because they were visually 
obscured by leaves and stems. Johansen et al. [11] used a 
time series of RGB and multispectral datasets to deline-
ate tomato plants using an automated object-based image 
analysis and to assess phenotypic traits of tomatoes 
including plant area, growth rates, condition, and plant 
projective cover. Furthermore, they used the mapped 
traits to identify tomato plant accessions that performed 
the best in terms of yield. Johansen et al. [12] researched 
the predictability of fresh shoot mass (SM), number of 
fruits (FN), and yield mass at harvest using UAV-based 
imagery and indicated that plant area, border length, 
width, and length of plant had the highest importance in 
the random forest approach to modeling of biomass and 
yield. Candiago et al. [13] examined the vegetation vigor 
of vineyards and tomatoes using three different veg-
etation indices (VIs) based on orthoimages and demon-
strated the great potential of high-resolution UAV data. 
Enciso et  al. [14] indicated that canopy cover estimated 
using a UAV was correlated with measured leaf area 
index. In other crops, UAV imagery for plant phenotyp-
ing has been applied for plant height assessment [15–18], 
crop growth and biomass, and yield [19–23]. In addition, 
machine learning (ML) approach with UAV imagery has 

been used to estimate biomass of crops including wheat 
[24], rice [25, 26], maize [22], and barley [27]. Except for 
studies by Moeckel et al. [28] and Johansen et al. [11, 12], 
we did not identify any studies that used UAV-based time 
series to predict tomato plant biomass and yield at har-
vest at the plant level.

The UAV-based studies on yield prediction with 
remotely sensed phenotypic traits during the growing 
period used a variety of artificial intelligence approaches, 
such as ML techniques, and obtained useful findings [29]. 
In contrast, collecting the required datasets of multi-
temporal traits needed for large-scale application of ML 
approaches remains time-consuming and computation-
ally expensive. Currently, if a few principal UAV-derived 
phenotypic traits and growth stages for crop yield are 
usable, the data collection and processing effort can be 
efficient. Furthermore, to reduce computational com-
plexity, improve efficient analysis of data and data under-
standing, determine essential phenotypic traits or growth 
stages, variable selection methods involve evaluating 
important phenotypic traits on yield.

Therefore, although a relatively high number of inves-
tigations of optimal variable selection of UAV-derived 
phenotypic traits and ML for prediction of grain yield 
have been conducted, only few studies have addressed 
the leading variable selection on UAV-derived pheno-
typic traits for prediction of tomato yield. Furthermore, 
higher-level feature information can be extracted from 
the ultra-high spatial resolution UAV-acquired imagery 
at plant level rather than extracting only basic statistics, 
such as mean and standard deviation, at the plot level. 
ML algorithms should provide the best predictive results 
for tomato yield using the selected principal variables. 
Accurate prediction of tomato yield using sensor-derived 
secondary traits, such as PH and spectral reflectance, will 
improve the accuracy genotype selection, shorten the 
breeding cycle, and reduce the labors in field phenotyp-
ing collection and data preprocessing. The specific aims 
of this study were as follows: (1) to select optimal feature 
variables for the yield prediction from the UAV-derived 
PH and VI maps; (2) to evaluate the predictive power for 
tomato SM, defined as the aboveground biomass except 
fruit part, fruit weight (FW), and FN using multiple ML 
algorithms with the set of the selected variables.

Materials and methods
Study site and experimental design
This study was conducted in an experimental research 
field at the Field Museum Fuchu, Tokyo University of 
Agriculture and Technology (35.68°N, 139.48°E). The 
tomato variety was “Natsunoshun,” which is suitable 
for processing tomato plants in open fields. The field is 
of predominantly andosol soil type. Tomato was grown 
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during the growing season from May 13 to July 30, 2020 
with three replications and a plot size of 5 × 5 m (Fig. 1). 
The plants were sown at a greenhouse nursery a month 
before transplanting, and they were transplanted directly 
into the ground without staking or trellising tomato 
plants with bamboo poles or wood stakes. They were 
arranged in five rows of approximately 0.85  m length 
with 0.40 m spacing between hills, producing a combined 
total of 210 plants. Pre-planting N, P, and K fertilizer 
(N:P:K = 10:10:10 kg 10 a−1) was supplied in a split appli-
cation before transplanting. Drip irrigation was applied 
through tubing into each plot in the amount of 500  ml 
for 30 min in the morning and evening for one week after 
transplanting. Following the initial irrigation period, 
plots were fed only by rainfall. For each plot, plastic agri-
cultural mulch film was used and weed was periodically 
manually mowed.

Data acquisition by UAV
A gimbal-stabilized Zenmuse X5S camera (DJI Co., Ltd., 
Shenzhen, China) and multispectral image sensor cam-
era Altum (MicaSense Co., Ltd., SEA, USA) mounted on 
a DJI Matrice 210 V2 (DJI Co., Ltd., Shenzhen, China) 
were used to collect the aerial RGB imagery and multi-
spectral images using six bands (blue: 475  nm center, 
green: 560  nm center, red: 668  nm center, red edge: 
717 nm center, near infrared: 842 nm center, and thermal 
infrared: 8–14  μm). The sensor resolution of each RGB 
megapixel and individual spectral image (except ther-
mal infrared) was 5280 × 3956 and 2064 × 1554 pixels, 
respectively. The flight height was 12 m above ground to 
extract the features of each plant with ultra-high reso-
lution and without being affected by wind caused by 
the UAV, and the forward and side overlaps were set as 

90% and 70%, respectively. The RGB imagery and mul-
tispectral reflectance image data were acquired on May 
24, May 30, June 5, June 11, June 18, June 26, July 2, July 
12, July 16, and July 24. Both types of image data were 
obtained between 10:00 and 11:00 local time. Aerial mul-
tispectral images were radiometrically calibrated with a 
MicaSense’s Calibrated Reflectance Panel and MicaSense 
downwelling light sensor mounted on top of the UAV 
facing up towards the sky (Fig.  2). The reflectance val-
ues of the calibrated panel across blue, green, red, near 
infrared reflectance (nir), and red edge were 0.528, 0.531, 
0.531, 0.529, and 0.531, respectively.

Flight parameter settings, including flight path, were 
designated using the flight planning software Pix4Dcap-
ture (Pix4D S.A., Lausanne, Switzerland), and the ground 
sampling distance was 0.3 cm/pixel for RGB images and 
0.52 cm/pixel for spectral images. Each sensor acquired 
80 RGB and 400 spectral images on average per flight. 

Fig. 1  Experimental field used in this study. Field is located in Tokyo, Japan. This orthomosaic image was created using unmanned aerial vehicle 
images taken on June 18

Fig. 2  The UAV and sensor system utilized



Page 4 of 17Tatsumi et al. Plant Methods           (2021) 17:77 

Ground control points, for which we used a black and 
white cross-centered board, were placed at each of the 
four corners of the target field. Geometric calibration 
was conducted during the orthomosaic imagery process 
in Pix4Dmapper Pro version 4.6.3 (Pix4D S.A., Lausanne, 
Switzerland) using the ground control points. Digital 
surface model (DSM), which represents the elevation of 
plant structures, was created by Pix4Dmapper automati-
cally. The digital terrain model (DTM) which represents 
the elevation of the soil surface, was estimated by inter-
polating segmented soil pixels. In this study, the thresh-
old value for segmenting soil and vegetation pixels was 
set to NDVI = 0.1. For multispectral images, radiometric 
calibration was performed in Pix4Dmapper during the 
orthorectification process using the calibration data by 
panel reflectance values collected during the flight with 
the downwelling light sensor. Finally, the reflectance map 
of six-band with GeoTIFF format was obtained automati-
cally using Pix4Dmapper.

Yield survey
SM, FW, and FN of individual plants in the tomato field 
were harvested on July 29 and July 30. These yield com-
ponents were used for variable selection, prediction 
model training, and prediction accuracy analysis.

PH and VI calculation
PH maps were calculated by subtracting the DTM from 
the DSM. The three VIs typically used for measurements 
of leaf chlorophyll content, plant height, biomass, and 
crop growth indicators [9, 30–32] were calculated from 
the multispectral maps: green normalized difference 
vegetation index (GNDVI) [33], normalized difference 
vegetation index (NDVI) [34], and weighted difference 
vegetation index (WDVI) [35]. We selected these three 
VIs because (1) the use of several types of VIs is not nec-
essarily efficient as time-series analysis takes time, and 
high correlation coefficients among the VIs causes mul-
ticollinearity; (2) NDVI and GNDVI are correlated with 

Table 1  Selected gray-level co-occurrence matrix (GLCM) texture measures and their abbreviations and equations

N is the number of gray levels, Pd is the normalized symmetric GLCM dimension, Pd(i, j) is GLCM value on element (i, j). Other variables were calculated as shown in 
Additional file 1

GLCM feature Abbreviation Formula

Sum average SA 2(N−1)
∑

k=0

k Px+y(k)

Entropy Ent
−

N−1
∑

i=0

N−1
∑

j=0

Pd(i, j) log (Pd(i, j))

Difference entropy DE
−

N−1
∑

k=0

Px−y(k) log(Px−y(k))

Sum entropy SE
−

2(N−1)
∑

k=0

Px+y(k) log(Px+y(k))

Variance Var N−1
∑

i=0

N−1
∑

j=0

(i−µ)2Pd(i, j)

Difference variance DV N−1
∑

k=0

(

k −
N−1
∑

k=0

k Px−y(k)

)2

Px−y(k)

Sum variance SV
−

2(N−1)
∑

k=0

(

k −
2(N−1)
∑

k=0

k Px+y(k)

)2

Px+y(k)

Angular second moment (uniformity) ASM N−1
∑

i=0

N−1
∑

j=0

Pd(i, j)
2

Inverse difference moment IDM N−1
∑

i=0

N−1
∑

j=0

1
1+(i − j)2

Pd(i, j)

Contrast Con N−1
∑

k=0

k2Px−y(k)

Correlation Cor N−1
∑

i=0

N−1
∑

j=0

Pd(i, j)
(i − µx )(j − µy )

σxσy

Information measure of correlation-1 MOC-1 HXY − HXY1
max(HX , HY)

Information measure of correlation-2 MOC-2 [1− exp{−2(HXY2−HXY)}]1/2
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leaf chlorophyll content and are widely used for yield pre-
dictions [9, 30–32]; 3) WDVI can take into account the 
soil background influences.

(1)GNDVI = (NIR−Green)/(NIR+Green).

(2)NDVI = (NIR−Red)/(NIR+ Red).

(3)WDVI = NIR−a× Red.

Fig. 3  Spatial multitemporal plant height (m). a May 24, b May 30, c June 5, d June 11, e June 18, f June 26, g July 2, h July 12, i July 16, j July 24, 
2020
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Here, NIR is crop reflectance in the near infrared band, 
Green is crop reflectance in the green band, Red is crop 
reflectance in the red band, and a is the slope of the soil 
line.

Variable extraction from PH and VI maps
In order to extract the variables that may be related to 
the tomato biomass and yield of each plant, the following 
preprocessing was performed on the PH and VI maps.

Fig. 4  Spatial multitemporal green normalized difference vegetation index (GNDVI) (−). a May 24, b May 30, c June 6, d June 11, e June 18, f June 
26, g July 2, h July 12, i July 16, j July 24 on 2020
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(1)	 Extraction of plant part: Tomato plant parts for 
each plant were extracted from the pixels with 
NDVI > 0.5 using the orthomosaic photo image 
from May 14. Some pixels identified as weeds were 
manually removed.

(2)	 Centroid determination of each plant: Using the 
closed vector line of each plant sample obtained in 
step 1, the centroid of each plant was determined.

(3)	 Region of interest (ROI) extraction of each plant: To 
calculate the feature variables for each plant, a circle 
with a radius of 20 cm centered on the centroid of 
each plant estimated in steps 1 and 2 was extracted 
as ROI.

In the present study, pixel statistics and dynamic 
growth rate were extracted as candidates for explanatory 
variables. In the ROI of each plant, five first-order statis-
tics (average (AVE), standard deviation (SD), skewness 
(SKEW), range (RANGE), and maximum (MAX)) were 
extracted as basis statistics from PH and VI maps. Next, 
thirteen second-order statistics, which only considered 
the spatial pattern based on gray-level co-occurrence 
matrix (GLCM) [36], sum average (SA), entropy (Ent), 

different entropy (DE), sum entropy (SE), variance (Var), 
difference variance (DV), sum variance (SV), angular sec-
ond moment (ASM), inverse difference moment (IDM), 
contrast (Con), correlation (Cor), and information meas-
ures of correlation (MOC-1, MOC-2) were derived from 
PH and VIs maps as GLCM features. Table 1 shows cal-
culation formulas of the 13 extracted feature texture 
metrics. Next, dynamic average growth rates of PH and 
VIs were included as second-order statistics in this study 
and were considered as explanatory variables. In this 
study, growth rates were calculated for each plot as the 
change of PH and VIs over two consecutive measure-
ment days divided by the measurement interval. As a 
result, a total of 756 variables (18 features (first- and sec-
ond-order statistics) × 10 dates od PH (180 variables); 18 
features × 10 days of three VIs (540 variables); 9 dynamic 
growth rates from PH (9 variables); 9 dynamic growth 
rates from three VIs (27 variables)) were extracted for 
variable selection.

Variable selection for tomato yield prediction
To reduce computational complexity, promote efficient 
data analysis and data understanding, determine critical 

Fig. 5  Temporal change of (a) plant height and (b) three vegetation indices of tomato plants during the growing period. The unmanned aerial 
vehicle images collected on May 14 and May 18 are not used in the analysis
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phenotypic traits or growth stages, variable selection 
methods involve evaluating important phenotypic traits 
on yield. In addition, variable selection is a fundamental 
step in ML algorithm and regression modeling. In the 
present study, the two groups of extracted variables, a 
total of 200 (5 first-order statistics × 10 dates for PH and 
3 VI maps) and all 756 available variables, were handled 
as candidates in variable selection methods to explain 
tomato SM, FW, and FN. The reason we prepared two 
groups of variables is to determine if there is a difference 
in the prediction accuracy of tomato biomass and yield 
when using only basic statistics and all 756 variables as 
candidates. After generating first- and second-order sta-
tistics and dynamic growth rates from PH and VI maps, 
normalization was conducted before each variable 

selection procedure as preprocessing. Next, we applied 
five effective and powerful variable selection techniques 
to extract candidate variables. These were Boruta [37], 
DALEX [38], genetic algorithm (GA) [39], least abso-
lute shrinkage and selection operator (LASSO) [40], and 
recursive feature elimination (RFE) [41].

Boruta is a non-parametric feature ranking and selec-
tion algorithm based on random forest algorithms that 
can decide if a variable is important and contributes to 
selection of statistically significant confirmed variables. 
DALEX is a potent non-parametric tool that explains var-
ious attributes such as implemented loss functions about 
the variables used in a machine learning model. GA is a 
non-parametric stochastic method for function optimi-
zation based on the mechanics of natural genetics and 

Table 2  Top five variables selected from first-order statistics and all variables by Boruta, DALEX, genetic algorithm (GA), least absolute 
shrinkage and selection operator (LASSO), and recursive feature elimination (RFE) for shoot mass (SM)

Rank From first-order statistics From first- and second-order statistics

Map Variable Date Map Variable Date

Boruta

 1 Plant height AVE 0626 Plant height MOC-1 0712

 2 GNDVI RANGE 0716 NDVI SV 0712

 3 Plant height MAX 0720 NDVI DV 0712

 4 GNDVI AVE 0712 Plant height AVE 0702

 5 NDVI SD 0712 GNDVI DV 0724

DALEX

 1 Plant height AVE 0626 NDVI SV 0712

 2 Plant height MAX 0702 Plant height SE 0712

 3 Plant height AVE 0702 NDVI SE 0712

 4 GNDVI MAX 0530 NDVI DV 0712

 5 GNDVI RANGE 0530 Plant height Ent 0626

GA

 1 Plant height RANGE 0618 Plant height RANGE 0712

 2 Plant height AVE 0626 NDVI SV 0712

 3 GNDVI RANGE 0716 NDVI IDM 0702

 4 WDVI MAX 0724 NDVI DV 0712

 5 NDVI SD 0712 GNDVI MOC-2 0724

LASSO

 1 Plant height AVE 0626 Plant height AVE 0626

 2 GNDVI RANGE 0716 GNDVI DV 0724

 3 NDVI MAX 0716 NDVI SV 0716

 4 Plant height MAX 0702 GNDVI Con 0618

 5 Plant height SKEW 0605 Plant height MAX 0702

RFE

 1 Plant height AVE 0626 NDVI SV 0712

 2 NDVI MAX 0716 Plant height MOC-1 0712

 3 Plant height MAX 0702 NDVI DV 0712

 4 Plant height AVE 0702 NDVI MAX 0716

 5 NDVI SD 0712 GNDVI DV 0724
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biological evolution. LASSO is a method of automatic 
parametric variable selection that eventually reduces the 
coefficients of certain unwanted features to zero due to 
penalization with L1-norm and minimizes the predic-
tion error. RFE is a non-parametric feature selection that 
fits a model and removes the weakest feature until the 
specified number of features is reached. Furthermore, it 
attempts to eliminate dependencies and collinearity that 
may exist in the model. All variable selection processes 
were conducted using R (Version 3.6.3).

In this study, top five variables with the highest impor-
tance scores were selected as useful in predicting tomato 
SM, FW, and FN by five variable selection methods. Each 
of the variable groups selected from 200 and 756 vari-
ables were used as input for random forest (RF), ridge 

regression (RI), and support vector machine (SVM) in 
R to predict SM, FW, and FN. RF model is a machine 
learning method that can be used for a variety of tasks 
including classification and regression. It consists of a 
large number of decision trees and combines the predic-
tors of the estimators to produce a more accurate predic-
tion [42]. RI model is a technique for analyzing multiple 
regression data that suffer from multicollinearity, and 
it performs L2 regularization [43–45]. SVM model is 
a supervised machine learning algorithm that is used 
for classification, regression, and detection of outliers 
and is capable of addressing the collinearity issue [46]. 
Hyperparameters for RF, RI, and SVM were optimized 
using “tuneRF” function in randomForest package, ten-
fold cross validation, and “tune svm” functions in e1071 

Table 3  Top five variables selected from first-order statistics and all variables by Boruta, DALEX, genetic algorithm (GA), least absolute 
shrinkage and selection operator (LASSO), and recursive feature elimination (RFE) for fruit weight (FW)

Rank From first-order statistics From first- and second-order statistics

Map Variable Date Map Variable Date

Boruta

 1 WDVI RANGE 0618 WDVI RANGE 0618

 2 NDVI AVE 0618 NDVI AVE 0618

 3 WDVI AVE 0618 WDVI AVE 0618

 4 NDVI AVE 0626 WDVI SA 0618

 5 GNDVI AVE 0626 NDVI AVE 0626

DALEX

 1 WDVI AVE 0618 WDVI SA 0618

 2 NDVI AVE 0724 NDVI AVE 0626

 3 WDVI RANGE 0618 NDVI AVE 0618

 4 Plant height RANGE 0618 WDVI RANGE 0618

 5 NDVI AVE 0618 GNDVI IDM 0712

GA

 1 WDVI RANGE 0618 NDVI IDM 0716

 2 NDVI MAX 0606 WDVI RANGE 0618

 3 NDVI AVE 0618 GNDVI SE 0724

 4 NDVI SD 0716 Plant height Growth Rate 0530–0605

 5 NDVI SD 0524 WDVI MAX 0606

LASSO

 1 NDVI AVE 0618 GNDVI Con 0618

 2 Plant height MAX 0724 Plant height MAX 0724

 3 NDVI RANGE 0724 WDVI SA 0626

 4 NDVI RANGE 0524 NDVI AVE 0626

 5 Plant height SKEW 0712 NDVI Cor 0712

RFE RFE

 1 NDVI AVE 0618 NDVI AVE 0618

 2 WDVI RANGE 0618 WDVI RANGE 0618

 3 WDVI AVE 0618 WDVI AVE 0618

 4 – – – NDVI AVE 0626

 5 – – – WDVI SA 0618
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package, respectively. To evaluate the model perfor-
mance, 80% of all observation data were used as train-
ing data and the remaining 20% was used for the model 
evaluation. The prediction performance of each model 
was evaluated using coefficient of determination (R2) and 
relative root mean square error (rRMSE).

Results and discussion
Temporal change of PH and VIs
Multitemporal UAV-derived data allow the quantitative 
evaluation of tomato growth with PH and VIs using DSM, 
DTM, and multispectral reflectance images. Figures  3 
and 4 show the multitemporal growth change of PH and 
GNDVI, respectively, during the growing period in the 

entire field. Additional file 2: Figures S1 and S2 indicate 
the multitemporal maps of NDVI and WDVI, respec-
tively. Yellower and greener pixels in Figs. 3 and 4, Addi-
tional file 2: Figures S1 and S2 mean taller PH and tomato 
vigor, respectively. PH increased linearly until flowering 
[around 160 DOY (day of year)]; after that, although the 
leaves spread horizontally, PH grew at a very small rate 
and remained almost unchanged during mature fruiting. 
In contrast, NDVI and GNDVI peaked on 184 DOY, and 
WDVI peaked on 194 DOY (Fig.  5). The growth trend 
of PH, which is a sigmoid curve, was also found in other 
research [47]. In addition, the phenomenon that VIs 
begin to decline at the end of the growing period is due 
to the leaf aging and yellowing. In summary, relatively 
large growth rate of PH and small growth rate of VIs were 

Table 4  Top five variables selected from first-order statistics and all variables by Boruta, DALEX, genetic algorithm (GA), least absolute 
shrinkage and selection operator (LASSO), and recursive feature elimination (RFE) for number of fruit (FN)

Rank From first-order statistics From first- and second-order statistics

Map Variable Date Map Variable Date

Boruta

 1 NDVI AVE 0626 WDVI RANGE 0618

 2 GNDVI AVE 0626 NDVI AVE 0618

 3 NDVI MAX 0618 WDVI AVE 0618

 4 GNDVI MAX 0611 WDVI SA 0618

 5 GNDVI SD 0626 NDVI AVE 0626

DALEX

 1 NDVI RANGE 0606 WDVI IDM 0618

 2 NDVI AVE 0626 NDVI RANGE 0626

 3 NDVI AVE 0524 NDVI AVE 0618

 4 NDVI MAX 0618 WDVI AVE 0618

 5 NDVI MAX 0618 GNDVI SA 0712

GA

 1 WDVI SD 0712 NDVI IDM 0716

 2 NDVI SD 0524 WDVI RANGE 0618

 3 WDVI MAX 0606 GNDVI AVE 0724

 4 GNDVI AVE 0626 Plant height Growth rate 0530–0605

 5 GNDVI RANGE 0524 WDVI MAX 0606

LASSO

 1 GNDVI MAX 0611 GNDVI Con 0618

 2 GNDVI AVE 0626 Plant height MAX 0724

 3 WDVI SD 0606 WDVI SA 0626

 4 GNDVI AVE 0712 NDVI AVE 0626

 5 NDVI MAX 0606 NDVI Cor 0712

RFE

 1 GNDVI AVE 0626 NDVI AVE 0618

 2 NDVI AVE 0626 WDVI RANGE 0618

 3 NDVI MAX 0618 WDVI AVE 0618

 4 NDVI MAX 0606 NDVI AVE 0626

 5 NDVI SD 0626 WDVI SA 0618
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found until flowering date (mid-June); subsequently, the 
growth rate of PH slowed down and the growth rates of 
VIs increased. The ripening stage was characterized by a 
decrease in the VIs.  

Variable selection
Tables  2, 3, and 4 show the selected top five variables 
according to averaged importance score estimated by 
Boruta, DALEX, GA, LASSO, and RFE for SM, FW, 
and FN, respectively. As for SM, first- and second-order 

Fig. 6  Correlations between observed and simulated plant weight: a random forest (RF) with selected variables from first-order statistics. b RF with 
selected variables from first- and second-order statistics. c ridge regression (RI) with selected variables from first-order statistics. d RI with selected 
variables from first- and second-order statistics. e support vector machine (SVM) with selected variables from first-order statistics. f SVM with 
selected variables from first- and second-order statistics
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statistics related to PH and VIs during mid-fruit forma-
tion stage (from late-June to mid-July) were selected by 
all variable selection methods. AVE and MAX of PH and 
RANGE of GNDVI selected from extracted first-order 

statistics, and SV and DV of NDVI selected from all sta-
tistics were ranked in top five by all variable selection 
methods (Table 2). Moreover, other second-order statis-
tics features such as MOC-1, DV, SE, Entr, IDM, MOC-2, 

Fig. 7  Correlations between observed and simulated fruit weight. a Random forest (RF) with selected variables from first-order statistics. b RF with 
selected variables from first- and second-order statistics. c Ridge regression (RI) with selected variables from first-order statistics. d RI with selected 
variables from first- and second-order statistics. e Support vector machine (SVM) with selected variables from first-order statistics. f SVM with 
selected variables from first- and second-order statistics
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and Con were also ranked as selected variables. Selected 
first- and second-order statistics of VIs and PH from 
extracted basic and all variables describe homogeneity 
and heterogeneity in the entire field. Although basic sta-
tistics and GLCM features of PH and VIs are important 

for SM estimation, all variable selection methods selected 
more PH-related variables after flowering compared with 
results of FW and FN. Although these results may vary 
depending on the employed explanatory variables and the 
variable selection method, in this study, the importance 

Fig. 8  Correlations between observed and simulated number of fruits. a Random forest (RF) with selected variables from first-order statistics. b 
RF with selected variables from first- and second-order statistics. c Ridge regression (RI) with selected variables from first-order statistics. d RI with 
selected variables from first- and second-order statistics. e support vector machine (SVM) with selected variables from first-order statistics. f SVM 
with selected variables from first- and second-order statistics
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of PH in SM estimation was confirmed. Prediction of SM 
is important for estimating the assimilation potential by 
leaf photosynthesis. Therefore, the relationship of PH 
and SM has been an interesting issue for researchers and 
breeders. It was potentially shown that the variables of 
PH and VIs in the later growth period were significant for 
the final SM estimation.

In contrast, most selected variables by all variable 
selection models for FW were VI-related variables. 
RANGE of WDVI on June 18 selected by Boruta, 
DALEX, GA, and RFE from basic and all variables was 
ranked in top five variables (Table  3). Moreover, AVE 
of NDVI was also ranked in top five variables by all 
variable selection models except for GA from all avail-
able variables. Interestingly, the results show that VI 
variables about one month prior to harvest are criti-
cal for estimating FW. The finding that the VIs at the 
onset of fruiting are determinants of the final FW can 

be relevant for field management. Similar to FW, FN 
is an important factor for determining yield. Tech-
nology to estimate the FN on each plant, which is not 
visible in aerial images, can contribute to cultivation 
management. Although the selected variables by vari-
able selection methods are different, AVE of NDVI or 
WDVI was selected in top five variables from both 
basic and all available variables (Table 4). In addition, 
it can be seen that the first- and second-order statis-
tics of VIs on early to mid-fruit formation period are 
useful for estimating FN. However, unlike with SM, 
PH-related variables were found to be unnecessary 
variables for estimating FN.

Tomato yield prediction by models using selected 
variables
RF, RI, and SVM were built by using 80% (n = 120) of 
the data for training with a total of five sets of selected 

Table 5  relative Root mean square error (rRMSE) value of tomato shoot mass (SM), fruit weight (FW), and number of fruits (FN) using 
random forest (RF), ridge regression (RI), and support vector machine (SVM) models with selected variables set from first-order statistics 
and all variables

Model From first-order statistics

Boruta DALEX GA LASSO RFE

SM [kg plant−1]

 RF 17.8 22.2 16.9 22.5 22.9

 RI 26.4 26.7 24.9 30.6 26.7

 SVM 17.6 18.9 16.7 21.4 21.8

FW [kg plant−1]

 RF 14.0 13.9 13.2 15.7 24.1

 RI 49.6 48.5 48.5 50.1 48.0

 SVM 14.3 14.5 14.6 18.7 15.9

FN [piece plant−1]

 RF 12.6 14.2 10.0 12.4 14.2

 RI 30.4 25.5 30.3 18.1 21.2

 SVM 13.1 14.2 13.5 13.0 13.6

Model From first- and second-order statistics

Boruta DALEX Genetic LASSO RFE

SM [kg plant−1]

 RF 18.7 16.5 15.0 13.6 13.4

 RI 22.7 20.5 11.0 25.8 17.6

 SVM 21.4 18.7 11.2 21.6 20.5

FW [kg plant−1]

 RF 18.0 15.6 12.5 13.8 15.6

 RI 11.5 20.6 12.8 22.1 16.7

 SVM 14.7 15.4 14.6 15.9 14.5

FN [piece plant−1]

 RF 14.9 13.5 11.2 11.5 13.5

 RI 15.5 17.7 12.7 28.1 13.4

 SVM 12.8 10.9 8.8 10.6 14.1
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important variables. The performance of constructed 
models was evaluated using the remaining 20% for test-
ing by tenfold cross validation. Figures 6, 7, and 8 show 
the relationship between observed and simulated SM, 
FW, and FN using RF, RI, and SVM models with the 
selected variables set, respectively. Table  5 indicates 
rRMSE between the observed and simulated values by 
RF, RI, and SVM models with the five sets of selected var-
iables, reflecting the prediction accuracy of the validated 
model with test data.

Comparing among the five different variable sets for 
SM prediction, variable sets from first-order statistics 
selected by Boruta and DALEX had better goodness 
of fit with RF model (R2 = 0.41 for Boruta; R2 = 0.45 for 
DALEX) (Fig.  6a) than the other combinations of vari-
able selection method and prediction model. In the 
rRMSE, GA-selected variable set from all variables 
with RI and SVM had smaller absolute error of a model 
(rRMSE = 11.0% for RI; rRMSE = 11.2% for SVM). For 
SM prediction, RF with selected variable sets from first-
order basic statistics had better performance in R2; 
whereas second-order statistics decreased the rRMSE 
value for many combinations of prediction models and 
variable selection methods (Table  5). For the compari-
son with R2, it was an interesting result that prediction of 
SM does not require the GLCM texture information, and 
only the first-order statistics are sufficient to obtain the 
certain prediction accuracy.

Regarding FW, the following combinations had supe-
rior performance among the variable sets and pre-
diction models combinations: Boruta-, DALEX-, and 
GA-selected variable sets from all variables with RI 
(R2 = 0.73, 0.76, and 0.70, respectively) (Fig. 7d), LASSO-
selected variable set from all variables with SVM 
(R2 = 0.75) (Fig.  7f ), and RFE-selected variable set from 
first-order statistics variables with RI (R2 = 0.55) (Fig. 7c). 
In particular, focusing on the RI, the prediction accuracy 
of the models, except RFE, with the selected variables 
using all variables was greatly improved compared with 
that using selected variable set from first-order statistics 
only. For example, GA-selected variable set from first-
order statistics with RI model had lower R2 value (0.45), 
whereas that from all variables had higher R2 value (0.70). 
IDM of NDVI from all variables was ranked as top one 
variable by GA (Table  3). IDM feature relates inversely 
to the contrast measure and is a direct measure of the 
local homogeneity of a digital image. Therefore, this 
result shows the importance of second-order statistics for 
predicting FW. For FN prediction, simulated value with 
selected variable sets from all variables by all prediction 
models had significantly higher goodness of fit compared 
with selected variable sets from first-order statistics. In 
particular, Boruta-, DALEX-, GA-, and RFE-selected 

important variable sets with RF (Fig.  8b), and LASSO-
selected feature variable sets with SVM (Fig. 8f ) achieved 
higher prediction performances compared with the other 
combinations of selected feature variable sets and predic-
tion models (R2 = 0.81 for Boruta; R2 = 0.83 for DALEX; 
R2 = 0.82 for RFE; R2 = 0.77 for GA; R2 = 0.82 for RFE; 
R2 = 0.90 for LASSO).

In the present study, RF with Boruta-selected variable 
set from first-order statistics, RI with DALEX-selected 
variable set from all variables, and SVM with LASSO-
selected variable set from all variables had best predic-
tion performance R2 with the observed SM, FW, and 
FN, respectively. Although it is difficult to make simple 
comparisons due to the differences of cultivation envi-
ronments, varieties, and extracted variables, Li et  al. 
[48] suggested that non-parametric (parametric) pre-
diction model is adopted to match the non-parametric 
(parametric) variable selection. In this study, there were 
no clear effect relationships between parametric (non-
parametric) variable selection method and parametric 
(non-parametric) model on tomato yield prediction 
accuracy. Furthermore, prediction accuracy of FW and 
FN using the selected variable set from all variables was 
significantly better compared with that using selected 
variable set from first-order statistics. Moreover, statis-
tic variables of the VIs about one month before harvest 
were found to be important in predicting tomato yield.

Narrowing the focus to secondary traits and growth 
stages that affect tomato yield will contribute to more 
effective phenotypic data collection. In addition, the 
super-high-resolution field images obtained from the 
UAV provided helpful traits, such as temporal change 
of plant height and vegetation indices including sec-
ondary-order statistics of the field. Although we only 
used these three VIs in this study, we intend to use 
more VIs, including blue, red edge, and thermal bands, 
to predict the yield in the near future. Our next goal 
is to extract the features necessary to build a robust 
prediction model by testing the proposed variable 
selection with more data collected in multipoint and 
multiple years and thus contribute to the efficient selec-
tion of high-yield lines in breeding process.

Conclusion
In this study, we sought to examine the prediction 
accuracy of SM, FW, and FN using RF, RI, and SVM 
using variable sets selected by Boruta, DALEX, GA, 
LASSO, and RFE. PH and VIs (NDVI, GNDVI, and 
WDVI) from UAV-derived imagery were used for 
extraction of first-order basic statistics and second-
order statistics (GLCM features and dynamic growth 
rate). First-order statistics of PH and VIs at early to 
mid-fruit formation period were ranked as important 
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variables for prediction of SM by all feature selection 
methods. GLCM features of NDVI and WDVI from 
June 18 were significantly important for prediction 
of FW. Similar to FW prediction, GLCM features of 
VIs one month before harvest were significant to pre-
dict FN. Furthermore, all prediction models with the 
selected variable sets from all variables achieved good 
performance for FW and FN prediction compared with 
selected variable sets using basic statistics only. In par-
ticular, RF with Boruta-selected variable set from the 
basic statistics, RI with DALEX-selected variable set 
from all variables, and SVM with LASSO-selected vari-
able set from all variables were best combinations for 
predicting SM, FW, and FN, respectively. These results 
indicate that filtering secondary traits and growth 
stages that contribute to the prediction of tomato yield 
can contribute to saving of time and labor required for 
phenotypic data collection and processing. In addi-
tion, it is possible to obtain useful features for breeding, 
other than first-order basic statistics, such as second-
order statistics in PH and VIs for each plant, from the 
ultra-high-resolution image obtained by UAV. Overall, 
our findings indicate that reduced features needed for 
tomato yield prediction by variable selection method 
will help improve the efficiency of phenotypic data col-
lection and assist with the selection of high-yield lines 
in breeding programs.

In traditional machine learning techniques, it is diffi-
cult to apply a trained model to other tomato cultivars 
or other crop species. In a future study, we will apply 
transfer learning techniques to extract the phenotype 
of different domains quantitatively using an expanded 
UAV dataset, and we will compare the results with 
those of the process in this study.
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