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METHODOLOGY

A practical guide to estimating the light 
extinction coefficient with nonlinear models—a 
case study on maize
Josefina Lacasa1,2*  , Trevor J. Hefley3, María E. Otegui2,4 and Ignacio A. Ciampitti1* 

Abstract 

Background:  The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-
linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statisti-
cal inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical 
techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty 
estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in 
reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, 
such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge 
of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern 
approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-
distributed data.

Results:  The parameter k was estimated for seven maize genotypes with five different methods: least squares estima-
tion (LSE), LogTLM, maximum likelihood estimation (MLE) assuming normal distribution, MLE assuming beta distri-
bution, and BE assuming beta distribution. Methods were compared according to the appropriateness for statistical 
inference, point estimates’ properties, and predictive performance. LogTLM produced the worst predictions for fPARi, 
whereas both LSE and MLE with normal distribution yielded unrealistic predictions (i.e. fPARi < 0 or > 1) and the great-
est coefficients for k. Models with beta-distributed fPARi (either MLE or Bayesian) were recommended to obtain point 
estimates.

Conclusion:  Each estimation technique has underlying assumptions which may yield different estimates of k and 
change inference, like the magnitude and rankings among genotypes. Thus, for reproducibility, researchers must fully 
report the statistical model, assumptions, and estimation technique. LogTLMs are most frequently implemented, but 
should be avoided to estimate k. Modeling fPARi with a beta distribution was an absent practice in the literature but 
is recommended, applying either MLE or BE. This workflow and technique comparison can be applied to other plant 
canopy models, such as the vertical distribution of nitrogen, carbohydrates, photosynthesis, etc. Users should select 
the method balancing benefits and tradeoffs matching the purpose of the study.
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Background
Crop growth models are useful tools to assist agrono-
mists and farmers on their management decisions aimed 
to improve farming systems. These models rely on the 
estimation of light interception, as it is the source of 

Open Access

Plant Methods

*Correspondence:  lacasa@ksu.edu; ciampitti@ksu.edu
1 Department of Agronomy, Kansas State University, 1712 Claflin Rd, 
Manhattan, KS 66506, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7201-7480
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-021-00753-2&domain=pdf


Page 2 of 11Lacasa et al. Plant Methods           (2021) 17:60 

energy for biomass production [1–4]. The underlying 
model for biomass production per unit land is a function 
of incident photosynthetically active radiation (PAR), the 
fraction of PAR intercepted by the canopy (fPARi), and 
the radiation use efficiency, i.e. biomass produced per 
unit of energy (RUE):

The estimation of fPARi provides insights on the energy 
available for growth. The fPARi holds a nonlinear rela-
tionship with the leaf area index (LAI—crop leaf area per 
unit of land) described with the Beer–Lambert Equation 
[5–7]:

where fPARi (a proportion) is the response variable 
and takes values between 0 and 1, k is the light extinc-
tion coefficient of the crop, LAI is the predictor vari-
able. The coefficient k partially defines the shape of the 
curve of fPARi versus LAI, i.e. the vertical light distri-
bution. Lower values of k are related to higher levels of 
RUE since the uppermost leaf layer is not light-saturated, 
and the canopy is more efficient producing biomass with 
luminic energy [8]. In maize (Zea mays L.), k takes values 
between 0.4 and 0.7 at flowering stages [9, 10]. At a given 
time of the day and without nutrient or water deficits, k 
depends primarily on canopy structure defined by the 
combination of genotype, plant density and row spacing 
[11].

To obtain inference and accurate predictions from field 
data, scientists follow a series of steps. First, a mathemat-
ical model (Eq. 2) with unknown parameters (i.e. k) and 
a statistical model are formulated. Statistical models are 
needed to make inference from field data, because (i) the 
relationship between fPARi and LAI cannot be measured 
perfectly and (ii) the Beer–Lambert model is only a sim-
plification of reality (i.e., the relationship between fPARi 
and LAI is not deterministic). As a result, statistical 

(1)Biomass = PAR · fPARi · RUE.

(2)fPARi = 1− e−kLAI,

techniques must be used to estimate k from field data 
and there are many options with different assumptions 
and varying levels of inference (Table  1). Historically, 
the most common techniques to perform such a nonlin-
ear regression were the least squares estimation (LSE), 
later replaced by maximum likelihood estimation (MLE) 
[12]. Bayesian estimation (BE) has not been applied yet 
to k estimation, but this method has demonstrated to 
be advantageous in other cases [13] and thus, it will be 
considered in the present study. For both MLE and BE, 
fPARi in Eq. (2) represents the expected value of a sta-
tistical distribution of the data (i.e. likelihood function). 
This distribution must be selected during model design 
and could be normal or beta, among others. Ideally, the 
model (i.e. the combination of the deterministic equation 
and the chosen likelihood functions) should be consistent 
with the underpinning plant process. For example, fPARi 
takes values between 0 and 1, thus a model that is used 
for prediction should predict values of fPARi between 
0 and 1. Unfortunately, as we will discuss, models com-
monly used to estimate k do not always adhere to this and 
other important principals.

Alternatively, the response variable in Eq. (2) can be 
log-transformed to obtain a linear equation:

It is important to note that such a transformation 
changes the assumptions and hence, the model and the 
results (e.g. values of k and predictions of fPARi). For 
example, if we assumed a normal distribution for both 
models, Eq. (2) would have an additive, normally distrib-
uted error ε of fPARi. In contrast, re-transforming the 
response to the observation-level in Eq. (3) (i.e. fPARi 
and not the logarithm), the error would act multiplica-
tively (i.e. eε ) and have a log-normal distribution. A com-
mon practice in the literature (review analysis, Additional 
file 1: Table S1, [14–42]) is to estimate k with a log-trans-
formed linear model (LogTLM, Eq. 3) but then, use that 

(3)log(1− fPARi) = −k · LAI.

Table 1  Summary of the proposed techniques (LSE: least squares estimation, MLE: maximum likelihood estimation, LogTLM: log-
transformed linear model using maximum likelihood estimation, and Bayesian) for the estimation of k, regarding their assumption 
level, availability of uncertainty estimates (e.g., standard errors, prediction intervals), tools for statistical inference (e.g., p-values, 
confidence intervals) and their estimate’s asymptotic properties

Technique Response 
variable

Level of 
assumptions

Uncertainty 
estimates

Statistical 
inference

Unbiased 
estimates

Requires priors Uses 
information 
from previous 
studies

Can be used 
to propagate 
uncertainty

LSE fPARi Minimum No No Not applicable No No No

MLE fPARi Intermediate Yes Yes Yes No No Yes

LogTLM log(1-fPARi) Intermediate Yes Yes Yes No No No

Bayesian fPARi Maximum Yes Yes Depends Yes Depends Yes
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estimate for predictions in models like Eq. (2). In other 
words, the coefficient k of a LogTLM is optimal for that 
model (Eq. 3) that uses log(1-fPARi) but not for the pre-
diction model (Eq. 2), that uses fPARi (i.e. there is a better 
estimate for k at the observation level). These practices 
lack consistency because they combine different models 
in the estimation and prediction and should be avoided.

It is important to choose an appropriate statistical esti-
mation technique that matches the goals of the study 
because each approach will produce different results due 
to different underlying assumptions. Thus, knowing the 
benefits and tradeoffs of the alternatives is crucial. Cur-
rently, studies in the literature mostly report (i) LogTLM 
or (ii) perform nonlinear regressions assuming normal-
ity of the data (Fig. 2). Moreover, we suspect that models 
are sometimes reported incorrectly because the differ-
ences between models are overlooked (Additional file 1: 
Table  S1). The objective of this study was to (i) review 
and contrast these statistical techniques and (ii) apply the 
techniques to field data with different models as to dem-
onstrate the strengths and weaknesses of each method. In 
this sense, this can help as a guide for researchers who 
aim to estimate a non-linear parameter like the coeffi-
cient k and are not certain about which technique to use.

Statistical methods
The parameters involved in a deterministic relation-
ship may be estimated using a set of alternative meth-
ods. Their levels of assumptions will be directly related 
to the possible level of inference. In the current study, 
we focused on the most relevant statistical methods to 
evaluate this practical issue. Firstly, we applied LSE due 
to its frequent implementation and relevance before the 
introduction of MLE in the early 20th century [12]. Sec-
ondly, we presented the Frequentist approach, and lastly, 
we introduced the Bayesian methods due to the great rate 
of growth and potential there is among the applications 
of this statistical framework.

Least‑squares estimation
The LSE is considered a proper method to estimate 
parameters ‘objectively’ [43] but yields a single number, 
known as a point estimate, with no measures of uncer-
tainty (Fig. 1). The LSE is considered “objective” because 
assumptions are minimal: the sum of squared errors (i.e. 
the loss function) is minimized and that is the only cri-
terion to determine the best value for the estimate. A 
least squares estimate cannot have standard errors or 
confidence intervals because there is no statistical model 
associated with this technique, i.e. no assumptions about 
the data (e.g. normal distribution) are made. Conse-
quently, point estimates may differ among genotypes, but 
with LSE one cannot obtain standard errors, confidence 

intervals or p-values to compare them, because that 
needs additional assumptions. This method alone would 
not be able to evaluate statistically significant differences 
between two canopy structures. The main inconvenience 
regarding choosing LSE is the lack of uncertainty esti-
mates, which makes inference very limited.

Differences among canopy structures can only be 
inferred by assuming a likelihood function (e.g. assum-
ing a normal distribution and applying MLE). Within 
the plant sciences literature, we have found examples 
of researchers reporting standard errors (or p-values) 
and claiming to use LSE [44, 45]. We suspect that those 

Fig. 1  Technique comparisons. Points indicate point estimates or 
posterior means for the different implemented statistical techniques: 
Least squares estimation (LSE), maximum likelihood estimation (MLE) 
normal or beta distributions, log-transformed linear model and 
Bayesian (Bayes). Error bars indicate standard error

Fig. 2  Summary of the values reported in the literature for the light 
extinction coefficient k in maize and their corresponding statistical 
method used in the estimation of this coefficient: maximum 
likelihood estimation for a log-transformed linear model [LogTLM], 
and maximum likelihood estimation with the assumption of 
normality [MLE (normal)]. Further details for the screening method 
can be found in Additional file 1: Table S1
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researchers were using MLE, a technique implemented 
in commonly used software (e.g., using the nls function 
in R [46] or similar nonlinear LSE along with the R func-
tion confint). However, the validity of additional assump-
tions (like the normal distribution of the data) should be 
tested. Other researchers have fit non-linear models to 
each replicate to estimate k and then performed ANOVA 
and post hoc tests, using those estimates as observations 
[47]. Nonetheless, this practice should be avoided since 
it does not account for estimation uncertainty and thus 
is more likely to find significant differences (p < 0.05) 
when none exist. In summary, using LSE cannot offer 
confidence intervals of the estimates; methods that do so 
might be using MLE and should assess whether the extra 
assumptions are valid.

Maximum likelihood estimation
The MLE is one of the most widely used statistical esti-
mation techniques [48]. It treats the parameters as fixed 
variables, which may then be estimated using the data. 
The MLEs are expected to get very close to the ‘true 
value’ when sample size is large, (i.e. they are asymptoti-
cally unbiased), which is a desirable characteristic for sci-
entists. Unbiasedness is an absent concept in LSE.

When assuming a normal distribution of the data and 
applying MLE, estimates are the same as LSE—but that 
does not hold for other distributions in MLE. First, LSE 
and MLE are sometimes used as synonyms because the 
point estimates are exactly the same if a normal distri-
bution is assumed together with MLE. Hence, using a 
nonlinear mathematical model and obtaining confidence 
intervals is done by assuming a normal distribution of 
the data. However, this would require assessing the valid-
ity of the additional assumption. In fact, normality is 
not always the case: for variables with a limited range of 
values (e.g. proportions between 0 and 1), a normal dis-
tribution could produce unreasonable predictions or pre-
diction intervals (i.e. < 0 or > 1). The likelihood function in 
MLE is selected during model design and can be differ-
ent than normal [e.g. beta (continuous between 0 and 1), 
gamma (positive continuous), etc.]. In those cases, MLE 
and LSE will no longer be equal (Fig. 1).

Bayesian estimation
Bayesian statistics’ main difference to MLE is that it treats 
all unobserved quantities as random variables, according 
to Bayes’ Theorem:

where P(y|θ) (likelihood) is the probability of observ-
ing the data given a deterministic model – it is the same 

(4)P
(

θ |y
)

=
P
(

y|θ
)

P(θ)

P(y)
,

likelihood used in MLE; P(θ) (prior) reflects the knowl-
edge about the parameters before observing the data. 
P(y) normalizes the joint distribution (likelihood × prior) 
so that the integral of the distribution integrates to 1. This 
is the reason why the posterior distribution is a probabil-
ity distribution [49]. Thus, Bayesian statistics allows to 
make inferences based on probabilities [50].

Under some conditions, the maximum likelihood esti-
mates are equal to the modes of Bayesian posteriors: this 
is the case when using flat, improper priors (i.e. the ‘pre-
vious knowledge’ includes all values from negative infin-
ity to positive infinity), assuming the same likelihood 
function (i.e. distribution). After assuming a statistical 
distribution, using MLE means choosing flat, improper 
priors. Thus, the point estimates are the same as the 
modes of Bayesian posteriors with flat, improper priors: 
the joint distribution (Eq.  4) is identical. Then, for the 
same deterministic model (i.e. mathematical equation) 
and likelihood function, the point estimate of MLE and 
the mode of BE with flat, improper priors are the same. 
Differences might arise when adding more information 
to the priors.

An additional assumption and possible tradeoff of 
Bayesian statistics is the influence of the priors on the 
posterior (Eq.  4). Prior selection is an important step 
when designing a model, and may improve it by add-
ing experts’ previous knowledge. As shown previously, 
designing the deterministic model and selecting the like-
lihood function also adds prior information (i.e. “subjec-
tivity” or assumptions) to the model. Moreover, Bayesian 
statistics could include advances made in previous stud-
ies reflected in the priors [49]; especially for parameters 
like k that have been vastly studied (Fig. 2).

Moreover, large sample theory in Bayesian statistics 
demonstrates that posterior distributions of a param-
eter tend towards a single value (i.e. posterior consist-
ency) [51]. This is similar to MLE asymptotic theory: the 
larger the number of observations, the narrower range of 
probable values for the parameter, until reaching a single 
point. Moreover, priors have less influence on the poste-
rior for large sample sizes. This property of Bayesian sta-
tistics is desirable, considering the criterion of unbiased 
estimates.

Transformations
So far, the proposed estimation techniques were dealing 
with the nonlinear model described in Eq. (2), but the most 
common technique is taking the natural logarithm of the 
response (Eq. 3) to obtain a linear model (Fig. 2). Although 
transformations can be useful, they change the assumptions 
of MLE and the numerical results are different because the 
model is different (Fig. 1). Sometimes, LogTLM fit the data 
better, but each case should be assessed individually since 
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the distribution of the data will determine which method 
is valid [52]. As explained previously: Eqs. (2) and (3) are 
different models. Transformations could be implemented 
using either method (LSE, MLE or BE), but we have only 
included MLE in this analysis as an example.

Materials and methods
Experimental design
Two field experiments were conducted during the 
2007/2008 (Exp1) and 2014/2015 (Exp2) growing seasons. 
Both were located in the Agricultural Station of INTA 
located at Pergamino (33º56′S, 60º34′W), Buenos Aires, 
Argentina which has silty clay loam soils (Typic Argiudoll). 
Exp1 was configurated in a split-split-plot design with three 
replications, with row spacing (70 and 52 cm) as the main 
factor, planting density (9 and 12 plants·m−2) as the second, 
and genotype (Nidera AX 892 MG, Pioneer 39W55 and 
LP 122–2) as the last. Exp2 was configurated in a split-plot 
design with three repetitions, with planting density (9 and 
12 plants·m−2) as the main factor and genotype as the sec-
ond factor. Both experiments had the same row orientation 
(NE-SW). The genotypes differed in their year of release: 
DK2F10 (1980), DK752 (1993), DK190 (2002) and DK72-
10 (2012).

Canopy architecture measurements
Individual leaf area was estimated using lamina length (L) 
and maximum width (W) [53] from six plants per plot:

where α = 0.75 [54]. Leaf Area Index (LAI) per plot was 
estimated using the mean leaf area per plant (the mean of 

(5)Leaf Area = α · L ·W ,

the sum of individual leaves) and stand density. LAI val-
ues ranged from 0.3 to 7.6 (Fig. 3).

Light attenuation
Photosynthetically Active Radiation (PAR) was measured 
at the top (PAR0) and at the bottom (PARi) of the canopy 
for both experiments. In addition, PAR was measured 
at different levels inside the canopy; two levels in Exp. 1 
(two leaves below and two leaves above the ear leaf) and 
one level in Exp. 2 (at the level of the leaf holding the ear). 
All measurements were taken by the same person, around 
noon, on clear days with a 1 m long quantum-sensor placed 
diagonally with respect to the plant rows, in order to cap-
ture a representative portion of the light transmitted to the 
ground, below the plant canopy. The fraction of intercepted 
radiation (fPARi) at each level of the canopy was calcu-
lated as 1 − (PARi/PAR0) [6] and ranged from 0.23 to 0.98 
(Fig. 3).

Statistical analysis
A total of five different methods (as combination of statisti-
cal techniques and models) were implemented to estimate 
the light extinction coefficient, using LSE, MLE and Bayes-
ian approaches (Table 2).

A nonlinear model was fitted using LSE using the “BFGS” 
algorithm of the optim function in R software [46] using 
Eq. (7).

The statistical model behind MLE and BE can be written 
out generally as:

(6)yij ∼ P
(

yij|µij ,ψ
)

,

Fig. 3  Data structure. Distribution of the observed values of the fraction of intercepted photosynthetically active radiation (fPARi) and leaf area 
index (LAI) for the whole data set (black line) and each genotype individually (colored distributions)
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where yij is the i-th observation of genotype j, µij is the 
expected value of yij , ψ is the dispersion parameter (i.e. 
variability of the data), kj is the light extinction coeffi-
cient for genotype j and LAIij is the value of LAI of the 
i-th observation and genotype j. The expression in Eq. (6) 
implies that y (fPARi) may have different probability dis-
tributions. This is an assumption a scientist makes during 
model design, in order to be able to make statistical infer-
ence. Making the additional assumptions explicit, Eq. (6) 
can be rewritten as

 or

where µij is the expected value (Eq. 7), σ 2 is the variance, 
and κ is the dispersion of the normal and beta distribu-
tions, respectively.

Recall that MLE are equal to LSE when assuming 
normally distributed data (Eq.  8) and that most statisti-
cal software uses the normal distribution as the default 
option. However, if the data follow a normal distribution, 
a prediction could yield values that are not reasonable for 
a ratio like fPARi (e.g. < 0 or > 1). Instead, modelling the 
response variable with a beta distribution (which can 
take only values between 0 and 1) accounts for the pos-
sible values more realistically.

The MLE was applied to fit the data to two models: 
one assuming normal (Eq.  8) and a second one assum-
ing beta distribution (Eq. 9). The optimization algorithm 
was “BFGS” using random starting values between 0.2 
and 0.8, based on the literature that reports values for 
k between 0.35 and 0.80 (Additional file  1: Table  S1). 
Approximate variances for the MLE estimate of k were 
obtained by inverting the Hessian matrix. Standard 
errors for the MLEs of k were obtained by taking the 

(7)µij = 1− e−kj ·LAIij ,

(8)yij ∼ N
(

µij, σ
2
)

,

(9)yij ∼ beta
(

µij, κ
)

,

square root of the approximate variance. Likewise, the 
standard errors for the MLE of k were also used to con-
struct Wald‐type confidence intervals (CIs). When using 
MLE, all uncertainty estimates for the parameter k (e.g., 
variances, SE, CIs etc.) requires “large sample” assump-
tions [51, 55].

A Bayesian model was fitted assuming a beta distribu-
tion (Eq. 9) and weakly informative priors:

Note that a uniform(0,2) distribution gives the same 
likelihood to all values between 0 and 2, but assumes that 
values k > 2 or k < 0 cannot occur.

Last, a linear model with a log-transformed response 
variable (Eq. 3) was fitted using the lm function in R [46].

For each statistical technique, the mean squared error 
(MSE) was calculated as 

∑n
i=1 (fPARipredictedi−fPARiobservedi )

2

n  , 
where fPARipredictedi and fPARiobservedi are the predicted 
and observed values of fPARi of the i-th observation, and 
n is the total number of observations. For LogTLM, the 
predicted values for log(1-fPARi) were back-transformed 
to the observation level (i.e. fPARi), to make the MSE val-
ues comparable among techniques.

The statistical techniques were compared according to 
(i) their possibility for inference (e.g. estimating stand-
ard errors, confidence intervals, p-values, etc.), (ii) theo-
retical properties of the point estimates and (iii) mean 
squared error, as a measure of predictive performance.

Results
The point estimates for LSE and MLE (normal) were the 
same, whereas they were different to each other for the 
rest of the techniques—MLE (beta), Bayesian (beta) and 
LogTLM (Fig. 1; Table 3).

The LogTLM was overall the most different method 
regarding the ranking and magnitude of k, and the 

(10)kj ∼ uniform(0, 2),

(11)κ ∼ gamma(24, 2).

Table 2  Summary of the statistical methods used in the analysis, and the frequency of their implementation in the scientific literature 
(Additional file 1: Table S1)

a Log-transformed linear model (LogTLM)

Technique Deterministic model Statistical distribution Frequency of 
implementation in the 
literature

Least squares Equation (2) – Never

Maximum likelihood Equation (2) Normal Sometimes

Maximum likelihood Equation (2) Beta Never

Maximum likelihood Equation (3)a Normal Mostly

Bayesian Equation (2) Beta Never
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predictive performance at the observation level (i.e. 
fPARi). Point estimates of k were lower for all genotypes 
and the ranking was notably different to the other meth-
ods (Fig.  1; Table  3). Moreover, when predictions were 
back-transformed to the observation level (i.e. fPARi 
instead of the logarithm), this method showed the high-
est mean squared error and a slightly worse residual 
distribution that either one of the nonlinear regression 
results (Fig.  4). The possible metrics for inference (i.e. 
standard errors, CI, etc.) were the same than nonlinear 
MLE; the main difference in choosing LogTLM lies in the 
value and ranking of k.

The LSE and MLE (normal) methods considered 
yielded similar residual distribution and mean squared 
error than MLE (beta) and BE; the main difference lies in 
the possibility for inference and model design. First, LSE 
point estimates are not compatible to make statistical 
inference. Second, MLE (normal) yields the same point 
estimates, and allows statistical inference and has asymp-
totically unbiased estimates. Note that the highest k esti-
mates were given for LSE and MLE (normal).

Discussion
This study compared LSE, MLE, LogTLM and BE meth-
ods to estimate a parameter (k) that is highly relevant 
for crop growth models and phenotyping. This research 
showcases the relevancy to report the statistical meth-
ods and assumptions used for its estimation because they 
have great influence on the numeric results, a critical 
step before comparing studies in the literature [56]. The 
LogTLM, reported in 76% of the screened studies (Addi-
tional file  1: Table  S1), was substantially different from 
the non-linear models and performed the worst predict-
ing fPARi at the observation level.

Changes in the results may affect interpretation and 
conclusions of a study, since k is related to several plant 
processes. Although results were consistent with the lit-
erature (Fig.  2), differences in magnitude and ranking 
among methods will lead to different conclusions. The 
plant processes explaining a same result in yield or bio-
mass would thus differ [57, 58], since k is related to light 
interception and RUE [7, 8]. Possible consequences are (i) 
incorrect estimations of total PAR interception, leading 

Table 3  Variability in the estimates of k for different genotypes (i.e., kj), depending on the statistical technique—point estimates and 
Bayesian posterior means, and 95% confidence or credible intervals in parenthesis

LSE least squares estimation, MLE (normal) maximum likelihood estimation assuming a normal distribution of the data, MLE (beta) maximum likelihood estimation 
assuming a beta distribution of the data, LogTLM log-transformed linear model, and Bayesian techniques

Genotype LSE MLE (normal) MLE (beta) LogTLM Bayesian

DK190 0.50 0.50 (0.46–0.54) 0.46 (0.43–0.49) 0.50 (0.46–0.53) 0.46 (0.43–0.50)

DK2F10 0.52 0.52 (0.48–0.56) 0.48 (0.45–0.52) 0.49 (0.45–0.52) 0.49 (0.46–0.53)

DK72-10 0.44 0.44 (0.41–0.47) 0.42 (0.39–0.44) 0.45 (0.41–0.48) 0.42 (0.39–0.45)

DK752 0.50 0.50 (0.46–0.54) 0.47 (0.44–0.50) 0.44 (0.41–0.47) 0.48 (0.44–0.51)

LP 122–2 0.61 0.62 (0.52–0.71) 0.52 (0.45–0.58) 0.46 (0.40–0.52) 0.55 (0.48–0.62)

P 39 W55 0.71 0.71 (0.61–0.81) 0.59 (0.52–0.65) 0.56 (0.51–0.62) 0.60 (0.54–0.67)

AX 892 MG 0.71 0.71 (0.60–0.82) 0.47 (0.42–0.52) 0.50 (0.46–0.54) 0.54 (0.47–0.60)

Fig. 4  Empirical distributions of the difference between predicted and observed fPARi values for the five statistical methods, and the associated 
mean squared error (MSE). Note that in the log-transformed linear model, predictions had to be re-transformed to the observation level. MSE 
are defined as the mean squared difference between predicted and observed fPARi. Log-transformed log-transformed linear model, Bayes (beta) 
Bayesian model assuming a beta distribution of the data, MLE (beta) maximum likelihood estimation assuming a beta distribution of the data, MLE 
(normal) maximum likelihood estimation assuming a normal distribution of the data, LSE least squares estimation, techniques
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to improper average RUE estimations, and (ii) incorrect 
inferences about vertical light and nitrogen distribution 
that affect photosynthesis and kernel set. Although small 
changes in magnitude may not affect total light inter-
ception when the plant canopy is closed (i.e. at high LAI 
levels), they may affect the physiological inferences. For 
example, differences in yield or kernel set between the 
hybrids DK190 and DK752 would be explained differ-
ently depending on the method used. First, using LSE or 
MLE (normal), their value of k is the same, and the differ-
ences might be explained e.g. with intrinsic efficiencies, 
rather than interactions with light distribution. How-
ever, using any other method, some differences might 
be explained by light or N distribution. It is important to 
keep this possible bias in mind when comparing k values 
from different studies [56] and before drawing conclu-
sions from those studies. Choosing a statistical technique 
may be overlooked, but it could end up affecting the 
results, interpretation, and final conclusions of a study on 
this topic.

In addition, both LSE and MLE (normal) can return k 
values that may be considered comparatively high (in this 
case, > 0.70) (Additional file  1: Table  S1). For instance, 
most studies in the literature report LogTLM, and 
therefore could be obtaining estimates with lower k val-
ues relative to LS estimates for the same data, as is the 
case in the current study. The light extinction coefficient 
of modern maize hybrids usually lies between 0.4 and 
0.6 (Fig.  2). For example, a publication that implements 
LogTLM would report a value of 0.56 for the genotype P 
39 W55. Further studies should obtain similar values for 
k for that particular canopy structure (i.e. combination 
of genotype, stand density and row spacing) because the 
coefficient k remains constant under potential conditions 
(i.e. well-watered and fertilized). However, the magnitude 
may change to 127% of LogTLM, only by changing the 
statistical technique. Thus, it could be plausible that stud-
ies facing similar problems never published their too-
large estimates of k, if they only tried LSE methods [44, 
59], and compared it to results from LogTLM.

All things considered, the LogTLM was less reliable 
in obtaining an adequate estimate of k and should be 
avoided for k estimation. This transformation into a linear 
model was very useful in times when the main restriction 
was computational power [60]. However, in the current 
study it presented the greatest MSE and distribution of 
the difference observed-predicted fPARi (Fig. 4). Similar 
cases can be found in the literature, where transforma-
tions of the data were the norm, but are outperformed 
by nonlinear regression techniques [13, 52, 61, 62]. At 
the early beginnings of k estimation in the 1950s [7], 
such a transformation was helpful. However, modern 
methods should be used to improve the estimation of 

this parameter and allow to make reliable comparisons 
between studies.

Furthermore, models with a beta distribution (applying 
either MLE or BE) can be pointed out as the most pre-
ferred over LSE and MLE (normal). First, although LSE 
can be a good choice for a single-point estimation, infer-
ence is not available. Simple research questions such as 
the existence of differences between genotypes cannot be 
answered with LSE methods. Instead, likelihood-based 
or Bayesian methods should be preferred because they 
allow the user to make statistical inference. Second, going 
directly from LSE to MLE implies assuming a normal 
distribution, when beta is the closest one to model real-
ity: it produces values between 0 and 1, as expected for a 
proportion like fPARi. This common transition from LSE 
to MLE (normal) that can be found in the literature por-
trays Gelman and Hennig’s claim, when “Decisions that 
need to be made are taken out of the hand of the user and 
are made by the algorithm, removing an opportunity for 
manipulation but ignoring valuable information about 
the data and their background” [43]. In the current analy-
sis, a beta is more appropriate than a normal distribution, 
whereas MLE and Bayesian are both adequate to obtain 
single point estimates. Bayesian estimates are similar to 
MLE and have shown to improve estimation for noisy 
data [63].

Bayesian techniques allow making probabilistic infer-
ences and including expert’s prior information. First, BE 
provides entire posterior distributions instead of sin-
gle point estimates and thus can be used to propagate 
uncertainty. Second, the MLE approach discards infor-
mation learned in previous studies because it assumes 
“k lies somewhere in between negative infinity and posi-
tive infinity”. The Bayesian priors account for the state 
of knowledge about k, “it lies somewhere between 0 and 
2”: something every researcher would agree on. Such 
information in the priors may reduce the amount of 
data required to achieve the same level of inference [64]. 
Additionally, previous studies have shown that Bayes-
ian techniques are helpful to solve identifiability issues 
in MLE (e.g. with noisy data). Identifiability issues may 
arise when the data are sparse or present collinearity and 
magnify the uncertainty to estimate a parameter or a set 
of parameters. This can be avoided by using slightly more 
informative priors [65, 66]. Assumptions about k (priors) 
that are supported by previous works could be an advan-
tage for improving inference efficiency or avoiding identi-
fiability issues in MLE.

The current analysis can be understood as a case 
study for the estimation of a non-linear parameter: the 
light extinction coefficient k. The statistical method and 
comparisons can be directly applied to the same coef-
ficient (to study similar processes) in other crops (e.g., 
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sorghum—Sorghum bicolor (L.) Moech—or sunflower—
Helianthus annuus L.). Other field methods should be 
explored to describe and quantify light attenuation due 
to changes in canopy architecture (e.g. soybeans, Glycine 
max L.). Additionally, this approach has great potential 
for modelling other variables that present vertical pat-
terns in the canopy, i.e. nitrogen distribution, photo-
synthesis, carbohydrates, or other nutrients that follow 
the light attenuation canopy profile [67–72]. Nonlinear 
regressions like sigmoid growth curves or allometric rela-
tionships should be evaluated according to the data and 
its distribution [52, 73]: log-transformations are some-
times preferable [52, 73] or unrecommended [62]. In this 
study, both MLE (beta) and Bayesian methods provided 
robust models and yielded similar results. Further advan-
tages from Bayesian statistics could be expected in other 
non-linear relationships that present identifiability issues 
in MLE [74], for parameters that in theory would need to 
be constrained as k, or adding complexity to the models.

Looking forward, new approaches integrating machine 
learning, remote sensing, and crop modeling may con-
form a proper complement to the current methodology 
to describe and quantify vertical canopy light distribu-
tion [75–78]. However, due to the advancements on these 
new methods in the last years, it is still surprising to find 
that only a few studies are applying these or any other 
new approaches tested for examining this critical factor 
affecting overall canopy photosynthesis and underpin-
ning yield formation.

Conclusion
This study provides a comparison to estimate the light 
extinction coefficient k using different methods (LSE, 
MLE, BE and LogTLM). The LogTLM has been the 
most frequently reported method but based on the 
results of this study it should be avoided for k estima-
tion, mainly because (i) it yields the most different 
estimates compared to the other models, and (ii) the 
regression coefficients are optimal for models using the 
log-transformed variable, but suboptimal for models 
using the variable at the observation level (i.e. where 
predictions are required). Otherwise, the selected 
model and technique should match the purpose of 
the study, knowing benefits and tradeoffs. Since fPARi 
is a proportion that ranges from 0 to 1, models with a 
beta distribution instead of normal -currently absent 
in the literature- are more realistic and preferrable. In 
this case, selecting MLE or BE techniques, modelled 
with beta-distributed data was equally recommend-
able to obtain a single point estimate. The most popu-
lar approaches presented in the literature (LogTLM and 
MLE with normal distribution) are not adequate, and 
the new methods tested in this study (beta distribution 

applying MLE or BE) are highly recommended. This 
approach has the potential to be applied to other non-
linear regressions, such as the canopy distribution of 
nitrogen or other nutrients following light distribution.
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 Additional file 1: Table S1 Summary of values found in the literature for 
the light extinction coefficient k in maize and the statistical method used 
in the estimation. We conducted a search in the Web of Science database, 
using the search terms “corn/maize/Zea mays”, and “light extinction /
light attenuation/light interception/extinction coefficient/attenuation 
coefficient”. From the resulting 422 publications, 35 were selected because 
they matched the following criteria: studies had to report estimates of 
k in maize, have plant densities between 6 and 12 plants m−2 (i.e. the 
same range as our experiments), and be written in English. There were 
no restrictions on date of publication. The mean vas selected for studies 
with treatments with several measurement moments [50], as well as the 
intermediate row spacing arrangements (i.e. 0.5-0.8 m) [51].
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