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METHODOLOGY

Method for accurate multi‑growth‑stage 
estimation of fractional vegetation cover using 
unmanned aerial vehicle remote sensing
Jibo Yue1,2,3†, Wei Guo1*†  , Guijun Yang3, Chengquan Zhou3,4, Haikuan Feng3 and Hongbo Qiao1* 

Abstract 

Background:  Fractional vegetation cover (FVC) is an important parameter for evaluating crop-growth status. Optical 
remote-sensing techniques combined with the pixel dichotomy model (PDM) are widely used to estimate cropland 
FVC with medium to high spatial resolution on the ground. However, PDM-based FVC estimation is limited by effects 
stemming from the variation of crop canopy chlorophyll content (CCC). To overcome this difficulty, we propose herein 
a “fan-shaped method” (FSM) that uses a CCC spectral index (SI) and a vegetation SI to create a two-dimensional 
scatter map in which the three vertices represent high-CCC vegetation, low-CCC vegetation, and bare soil. The FVC 
at each pixel is determined based on the spatial location of the pixel in the two-dimensional scatter map, which miti-
gates the effects of CCC on the PDM. To evaluate the accuracy of FSM estimates of the FVC, we analyze the spectra 
obtained from (a) the PROSAIL model and (b) a spectrometer mounted on an unmanned aerial vehicle platform. 
Specifically, we use both the proposed FSM and traditional remote-sensing FVC-estimation methods (both linear and 
nonlinear regression and PDM) to estimate soybean FVC.

Results:  Field soybean CCC measurements indicate that (a) the soybean CCC increases continuously from the flower-
ing growth stage to the later-podding growth stage, and then decreases with increasing crop growth stages, (b) the 
coefficient of variation of soybean CCC is very large in later growth stages (31.58–35.77%) and over all growth stages 
(26.14%). FVC samples with low CCC are underestimated by the PDM. Linear and nonlinear regression underesti-
mates (overestimates) FVC samples with low (high) CCC. The proposed FSM depends less on CCC and is thus a robust 
method that can be used for multi-stage FVC estimation of crops with strongly varying CCC.

Conclusions:  Estimates and maps of FVC based on the later growth stages and on multiple growth stages should 
consider the variation of crop CCC. FSM can mitigates the effect of CCC by conducting a PDM at each CCC level. The 
FSM is a robust method that can be used to estimate FVC based on multiple growth stages where crop CCC varies 
greatly.
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Background
Fractional vegetation cover (FVC, sometime referred to 
as “crop canopy coverage”) is the fraction of green veg-
etation seen from the nadir of a study area and describes 
the fraction of the mixed vegetation versus soil in an eco-
system [1]. FVC is an important parameter for evaluat-
ing crop-growth status and is essential for crop-growth 
models [2–4]. Moreover, long-term FVC estimates are 
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also essential for regional and global environmental 
monitoring because it is an essential indicator of dynamic 
changes in vegetation [5–9]. Thus, real-time estimates of 
FVC are of significant importance for both the agricul-
tural and environmental research community.

Traditionally, photographic techniques have been 
widely used for measuring farmland FVC. Photographic 
techniques involve the use of classification techniques 
(e.g., the threshold method or classification tools) or arti-
ficial counting to analyze the FVC based on images of the 
field canopy [10–13]. However, such techniques are time 
and labor intensive and are difficult to exploit for FVC 
mapping.

Optical remote-sensing techniques collect surface 
radiation to provide crop-canopy spectral reflectance 
from visible to short-wave infrared wavelengths [14, 15]. 
In practice, leaf-pigment content and the leaf-area index 
(LAI) are the two main variables that determine the crop-
canopy spectral reflectance [16–20]. Canopy chlorophyll 
content (CCC) and LAI govern the spectral reflectance in 
the visible bands, whereas LAI alone governs the spectral 
reflectance in the near-infrared (NIR) and short-wave 
infrared bands [16–19]. Leaf-chlorophyll absorption 
causes crop spectral reflectance in the blue and red bands 
to be less than that in the NIR band [21].

Many remote-sensing spectral indices (SIs) have been 
developed to quantify vegetation states [22]. A remote-
sensing SI combines the vegetation canopy spectral 
reflectance in two or more bands, and one of the most 
widely used vegetation SIs is the normalized difference 
vegetation index (NDVI) [23]. Remote-sensing SIs can 
mitigate the effects of Sun angle, viewing angle, terrain, 
and atmospheric perturbations, and are therefore widely 
used to estimate crop parameters via remote sensing 
[24–28].

The last decades have seen the development of meth-
ods to estimate crop FVC based on remote-sensing 
images from unmanned aerial vehicle (UAV), aerial, 
or satellite platforms [5, 29–33]. These methods can be 
divided into five categories: (i) physical model methods, 
(ii) semi-empirical methods, (iii) empirical methods, (iv) 
crop growth methods, and (v) hybrid methods. Physi-
cal model methods are founded on physical principles; 
for example, the PROSAIL method, which is based on 
the optical properties of leaves and canopy bidirec-
tional reflectance [15, 20, 34]; the four-scale bidirec-
tional reflectance model, which is based on geometrical 
optics [35]; and the discrete anisotropic radiative transfer 
model, which is based on ray tracing [36–38]. However, 
many of the parameters required by these models may 
not be readily available, which limits the application of 
the models. Semi-empirical methods are often simpli-
fied versions of physical models and include the soil line 

method [39], the pixel dichotomy model (PDM) [40, 41], 
and the Baret model [29, 32]. The PDM hypothesizes that 
pixels contain mixed information from soils and crops 
[SItotal = (1 − FVC) × SIsoil + FVC × SIvegetation], which 
allows FVC to be calculated [FVC = (SItotal − SIsoil)/(SIvege-

tation − SIsoil)] [42]. Empirical methods use remote-sensing 
SIs and regression techniques [e.g., linear and nonlinear 
(LAN) regression [43], partial least squares regression 
[44], random forest [45]] to establish an empirical model 
of FVC. Empirical methods usually provide good accu-
racy on a regional scale. Crop models were founded on 
crop-growth theory and provide FVC from sowing to 
harvest; these include the AquaCrop model [2] and the 
WOFOST model [3]. In addition to optical remote-sens-
ing techniques, other remote-sensing techniques [e.g., 
synthetic aperture radar [30, 46]] have also been devel-
oped and applied to estimate FVC based on remote sens-
ing. Hybrid methods involve the combined use of several 
of the methods mentioned above; for example, the model 
of Wang et al. [31, 47] uses crop modeling and remote-
sensing-data assimilation. In recent years, the use of 
convolutional neural networks (CNNs) and high ground 
spatial resolution (GSD) images for estimating vegeta-
tion cover fractions has developed rapidly [48, 49]. The 
CNN-based studies were more focused on visual per-
ception and image segmentation, instead of analyzing 
canopy spectral response to vegetation parameters (e.g., 
leaf inclination angle, leaf structure, pigments) [50, 51]. 
The training of CNN models involves a large number of 
samples. Furthermore, the application of CNNs is more 
suitable for high- and ultra-high-GSD images (e.g., digital 
images obtained from low altitude UAVs [48, 49], satel-
lite-based high-GSD images [52]).

Two reasons explain why the PDM is widely used to 
estimate, based on remote-sensing images, cropland FVC 
from medium to high spatial resolution on the ground: (i) 
the results of the PDM have clear physical meaning and 
simple parameter input, and (ii) optical remote-sensing 
images with medium to high spatial resolution on the 
ground are available for free. The signal captured by each 
pixel in a remote-sensing image comes from a combina-
tion of soil background and vegetation of varying growth 
status (e.g., CCC, leaf water content, and LAI). In prac-
tice, the crop CCC is one of the key variables that deter-
mines the vegetation canopy spectral reflectance in the 
visible bands. For example, a high-CCC vegetation can-
opy corresponds to a large NDVI, whereas a low CCC 
vegetation canopy corresponds to a small NDVI. Thus, 
using the PDM on crop samples with low CCC may cause 
the FVC to be underestimated.

This study (i) analyzes how crop CCC affects SI-based 
estimates of FVC and (ii) estimates FVC for crops with 
various CCCs. To do this, we propose to use a fan-shaped 
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method (FSM) that uses the visible and near-infrared 
angle index (VNAI) as SI for the CCC [53] and the NDVI 
as a vegetation SI to create a two-dimensional (2-D) scat-
ter map in which the three vertices represent high-CCC 
vegetation, low-CCC vegetation, and soil. The FVC of 
each mixed pixel is determined based on its spatial loca-
tions in the 2-D scatter map, which weakens the depend-
ence of the PDM on the CCC.

We use the proposed FSM and two traditional remote-
sensing methods for estimating soybean FVC [i.e., (i) 
LAN regression an (ii) the PDM] based on spectra pro-
duced by applying the method to spectra obtained from 
(a) the PROSAIL model and (b) a spectrometer mounted 
on an UAV platform. The results show that the proposed 
FSM method can provide accurate estimates of FVC and 
may be applied in croplands with highly varying CCC.

Methods
Study site
The study site is situated in Jiaxiang County, Jining City, 
Shandong province, in China (see Fig.  1a, b). Jiaxiang 
County [Fig. 1b, E: 116°22′10″–116°22′20″, N: 35°25′50″–
35°26′10″] has a warm temperate semi-humid continen-
tal monsoon climate, the average temperature is 13.9 °C, 

and the annual rainfall is 701.8 mm. Field experiments 
were conducted at a soybean field (see Fig. 1c). Soybeans 
were grown in a loam soil field with the row spacing of 
15 cm, and the planting density of 190,000 plants ha−1. 
A total of 532 breeding lines were planted. Weed control 
was manually implemented at early growth stages.

Measurement of field data
Measurements of field canopy chlorophyll content
The main purpose of field CCC measurements was 
to analyze the soybean CCC as a function of soybean 
growth. Soybean leaf chlorophyll in the first and second 
uppermost leaves was measured in the field by using a 
Dualex scientific portable sensor (Dualex 4; Force-A; 
Orsay, France) [54]. Five measurements of each soybean 
leaf were collected from the center of each soybean plot, 
and the average was retained as the soybean CCC (see 
Table  1). Forty-two soybean plots were selected for the 
field CCC measurements.

A total of 192 sets of soybean CCCs were collected 
from the soybean field from July 29 to September 28, 
2015 (S1 to S5 in Table  1). Table  1 shows the results of 
the analysis of the CCC datasets. Overall, the average 
soybean CCC increases continuously from the flowering 

Fig. 1  Study area and experimental field: a Jining City in Shandong province, China. b Location of Jiaxiang County in Jining City, Shandong 
province. c Mapping area and ROIs in experimental field (UAV-RGB image acquired September 17, 2015). Note: ROI is the region of interest, UAV 
stand for “unmanned aerial vehicle.”
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growth stage to the later-podding growth stage, and then 
decreases until harvest. The coefficients of variation cal-
culated for the early stages S1–S3 are relatively small, 
6.20%–9.01%. In contrast, the coefficients of variation 
calculated for the later stages S4–S5 are much larger, 
31.58–35.77%.

Collection of UAV‑based canopy RGB and hyperspectral 
images
The main purpose of UAV-based canopy digital images 
and spectral reflectance measurements is to analyze how 
soybean CCC affects FVC estimates based on remote-
sensing images. The UAV flights were conducted during 
stages S3 and S4 (see Table  1). The hyperspectral and 
RGB images collected during stages S3 and S4 were used 
to analyze how CCC affects the soybean canopy spectral 
reflectance and SIs. The hyperspectral and RGB images 
collected during stage S4 were used to analyze how CCC 
affects FVC estimates.

In this work, UAV-based canopy RGB and hyperspec-
tral images were collected from 11:00 a.m. to 2:00 p.m. 
from the soybean field before the field CCC dataset was 
collected. A DJI S1000 UAV was used as sensor platform 
(SZ DJI Technology Co., Ltd., Guangdong, China), on 
which was mounted a Sony DSC–QX100 digital camera 
(Sony, Tokyo, Japan) and a Cubert UHD-185 spectrom-
eter (UHD 185, Cubert GmbH, Baden-Württemberg, 
Germany) to collect field crop-canopy RGB and hyper-
spectral images. We used a 40 cm × 40 cm whiteboard 
to calibrate the UHD-185 spectrometer before the UAV 
took off. The details of the UAV, UHD 185 snapshot 
hyperspectral sensor, and RGB camera are available in 
the literature [53, 55, 56].

The location of ground control points (GCPs) in the 
experimental field was determined by using a handheld 
Trimble GeoXT6000 global positioning system receiver. 
In this work, we used an Agisoft PhotoScan (Agisoft 
LLC, St. Petersburg, Russia) and soybean canopy digital 
images and hyperspectral images to generate the soybean 

canopy hyperspectral and RGB digital orthophoto maps 
(DOMs). After the hyperspectral and RGB images were 
stitched together, a RGB and a hyperspectral DOM for 
the experimental field were produced. The methods used 
to mosaic the hyperspectral and RGB images are avail-
able in the literature [56].

Extraction of canopy spectra and fractional vegetation cover
The UAV-based RGB and hyperspectral DOMs were 
pre-processed by using ENVI software (Exelis Visual 
Information Solutions, Boulder, CO, USA). A total of 
120 regions of interests [ROIs, see Fig. 1c] were manually 
selected from the canopy image of the S4 stage. The fol-
lowing processing steps were involved:

(1) The UAV-based RGB DOMs were rectified by 
applying a field-measured GCPs in the ENVI software.

(2) Next, the UAV-based hyperspectral DOMs were 
rectified by using the UAV-based RGB DOM.

(3) The corresponding reflectance data were extracted 
from the hyperspectral DOMs by using the ENVI ROI 
tools.

From a UAV flying at an altitude of 50 m, the RGB cam-
era can collect high-ground-resolution soybean canopy 
images (approximately 1.17 cm spatial resolution on the 
ground). Thus, almost all pixels contain pure leaf and 
background information. The following processing steps 
were done:

(1) Images of the selected 120 ROIs were classified by 
using the neural network classification tools in the ENVI 
software. Three labels were selected: soybean green leaf 
(soybean1), soybean yellow leaf (soybean2), and soil 
background;

(2) The number of pixels for soybean1 (nsoybean1) and 
soybean2 (nsoybean2) were counted for each ROI, and the 
FVC of each ROI was calculated by dividing the sum 
nsoybean1 + nsoybean2 by the total number ntotal of each ROI 
[FVC = (nsoybean1 + nsoybean2)/ntotal].

This process produced a total of 120 sets of UAV-
based canopy hyperspectral reflectance datasets and the 

Table 1  Results of field measurements of soybean CCC (Dualex units)

Field soybean CCC measured by the Dualex 4 is marked as “Dualex units,” and n is the number of soybean plots. Some early-maturing plots were harvested during 
stage S5. Min, max and mean represent the minimum, maximum, and averaged value of soybean CCC​

Date (2015) Stage and abbreviation n Min Max Mean Standard
deviation

Coefficient
of variation

UAV

July 29 Flowering (S1) 42 23.19 33.84 26.82 2.42 9.01% -

August 13 Early-podding (S2) 42 20.99 28.91 25.54 1.58 6.20% -

August 31 Later-podding (S3) 42 29.27 47.83 37.38 3.01 8.07% √

September 17 Grain-filling (S4) 42 6.52 38.28 25.92 8.18 31.58% √

September 28 Harvest (S5) 24 8.81 36.05 21.33 7.62 35.77% -

– All stages 192 6.52 47.83 27.97 7.31 26.14% -
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corresponding FVC. Table 2 presents the statistical anal-
ysis of the FVC data from the 120 selected ROIs.

PROSAIL radiation‑transfer model
The PROSAIL radiation-transfer model is widely used 
for analyzing how canopy reflectance is affected by leaf, 
canopies, and soil [14, 34, 57]. This work uses the PRO-
SAIL model to analyze how CCC (Cab: 5:5:50 μg/cm2; see 
Table 1, minimum: 6.52, maximum: 47.83) and LAI (0.01, 
0.5, 1, 1.5, 2, 3, 4, 6, 10) affect the canopy hyperspectral 
reflectance. The Cab and LAI parameters required spe-
cial settings, whereas the other parameters were fixed 
(Table 3).

Table  3 lists the leaf and canopy parameters used as 
input for the PROSAIL model. In this work, the PRO-
SAIL-based reference FVC (FVCref) was calculated from 
the LAI by using the following relation between FVC and 
LAI [58, 59]:

where G is the leaf-projection factor for a spherical ori-
entation of the foliage, Ω is the clumping index, LAI is 
the leaf area index, and θ is the viewing zenith angle. A 

(1)
FVCref = 1− e

−G×�×
LAI

cos (θ) , G = 0.5, � = 1, θ = 0,

simulation of the reflectance spectra of the vegetation 
canopy produced a total of 90 sets of spectra and FVCs 
(n = nCab × nLAI = 10 × 9 = 90).

Traditional remote‑sensing method to estimate fractional 
vegetation cover
Linear and nonlinear regression
Previous studies have developed numerous vegetation 
SIs to estimate crop FVC. NDVI is a normalized trans-
formation form of the NIR band and red band reflectance 
ratios. NDVI is defined as

where RNIR and RR are the vegetation canopy reflectances 
in the NIR and red bands, respectively. NDVI2 and the 
renormalized difference vegetation index (RDVI) [27] 
are two optimizations of NDVI. NDVI2 and RDVI are 
defined as

The soil-adjusted vegetation index (SAVI) [60] reduces 
the soil background effects:

Many studies use LAN regression [43] to estimate veg-
etation FVC. These equations are

(2)NDVI =
(RNIR − RR)

(RNIR + RR)
,

(3)NDVI2 = NDVI×NDVI,

(4)RDVI =
(RNIR − RR)

(RNIR + RR)
0.5

.

(5)SAVI = (1+ L)
(RNIR − RR)

(RNIR + RR + L)
, L = 0.5.

Table 2  Statistical analysis of FVC from 120 selected ROIs 
(n = 120, see Fig. 1)

Types Number of 
plots

Minimum Maximum Average

Calibration 80 0.00 1.00 0.85

Validation 40 0.02 1.00 0.87

Total 120 0.00 1.00 0.86

Table 3  Parameters of PROSPECT and SAIL

– represents dimension-less variable

Models Parameter Symbol Value or ranges Units

PROSPECT Leaf structure index N 1.5 –

Chlorophyll a + b content Cab 5:5:50 μg/cm2

Carotenoid content Car 0 μg/cm2

Brown pigments Cbrown 0 –

Equivalent water thickness Cw 0.02 cm

Dry matter content Cm 0.01 g/cm2

SAIL Leaf area index LAI 0.01, 0.5, 1, 1.5,
2, 3, 4, 6, 10

m2/m2

Hot spot effect hspot 0.5 –

Average leaf inclination angle ALIA 45

Solar zenith angle tts 20

Observer zenith angle tto 0

Soil moisture factor psoil 0.5 –

Azimuth psi 90
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where SI is a vegetation SI, and a and b are two empirical 
parameters to be obtained from the model calibration. 
We evaluate herein the results when using both the linear 
Eq. (6) and the exponential Eq. (7) to estimate vegetation 
FVC, but only the best FVC estimates (with the highest 
coefficient of determination, R2) are considered as LAN-
based results.

Pixel dichotomy model
In the theory of linear spectral mixture analysis, the spec-
tral element recorded in a mixed pixel combines the end-
member spectra and their proportion. If a mixed pixel 
combines vegetation canopy and soil, the reflectance of 
band i can be expressed as

where i is the band number, Ri is the reflectance in band 
i, and Ri,veg and Ri,soil are the reflectances in band i from 
pure vegetation and pure soil, respectively. Similarly, the 
NDVI of a mixed pixel can be expressed as [40, 41]

where NDVI0 is the NDVI for mixed reflectance spectra, 
NDVIveg and NDVIsoil are the NDVI of vegetation and 
soils. Then, FVC is calculated as

where FVCveg and FVCsoil are the NDVI for vegetation 
and soils, respectively, and NDVI0 is the NDVI for mixed 
soil-vegetation reflectance spectrum.

(6)FVC = a× SI+ b,

(7)FVC = a× SIb,

(8)Ri = Ri,veg × FVC+ Ri, soil × (1− FVC),

(9)
NDVI0 = NDVIveg × FVC+NDVIsoil × (1− FVC),

(10)FVC =
NDVI0 −NDVIsoil

NDVIveg −NDVIsoil
,

Proposed fan‑shaped method
Visible and near‑infrared angle index
We use a CCC SI to improve the FVC estimates based 
on the NDVI and PDM. The VNAI is a broadband opti-
cal CCC SI that uses the red, green, blue, and NIR bands 
(Fig. 2). As shown in Fig. 2(b), α is the angle enclosed by 
the rays G-B and G-R, and β is the angle enclosed by the 
rays G-B and G-NIR, and the VNAI can be explained as 
the sum of the two angles (VNAI = α + β) [53]. Yue (2020) 
shows that the VNAI can accurately estimate the CCC 
by relying on broadband remote-sensing reflectance as 
input.

Figure 2b and c show the method used to calculate the 
angles α and β. The result is

Mathematically, the angles can be calculated by using

where RB, RG, RR, and RNIR are the spectral reflectance of 
the blue (492.4 nm), green (559.8 nm), red (664.6 nm), 
and NIR (832.8 nm) bands, respectively. The quantities 
(G–B) = (559.8–492.4)/2500 = 0.027, (R–G) = (664.6–
559.8)/2500 = 0.0419, and (NIR–G) = (832.8–
559.8)/2500 = 0.1092 represent the normalized distance 
(in wavelengths) covered by bands (i) G and B, (ii) R and 
G, and (iii) bands G and NIR, respectively. Note the 

(11)angles = 180− arctan

(

y1

x1

)

+ arctan

(

y2

x2

)

,

(12)

α = 180− arctan

(

RG − RB

wavelength(G− B)

)

+ arctan

(

RR − RG

wavelength(R−G)

)

,

β = 180− arctan

(

RG − RB

wavelength(G− B)

)

+ arctan

(

RNIR − RG

wavelength(NIR− G)

)

,

VNAI = α + β ,

Fig. 2  Calculation of angles α and β
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ranges of arctan
(

RG−RB
wavelength(G−B)

)

 , arctan
(

RR−RG
wavelength(R−G)

)

 , 

arctan
(

RG−RB
wavelength(G−B)

)

 , and arctan
(

RNIR−RG
wavelength(NIR−G)

)

 

belong to (− 90°, 90°).

Visible and near‑infrared angle index, spectral index, 
fan‑shaped method
We use the PROSAIL-based NDVI and VNAI to create a 
2-D scatter map. As shown in Fig. 3(a, b), the optical-SIs 
for vegetation decrease with decreasing CCC. Figure 3(a) 

shows the 2-D scatter map for samples with medium-
CCC (using 20–35 μg/cm2) and different FVC (i.e., dif-
ferent LAI). Figure  3(b) shows the 2-D scatter map for 
datasets (using 5–50 μg/cm2) containing low-, medium-, 
and high-CCC and different FVC (i.e., different LAI). As 
shown in Fig. 3(b)–(c), the proposed FSM uses the VNAI 
and NDVI to create a 2-D scatter map in which the three 
vertices represent high-CCC vegetation, low-CCC veg-
etation, and soil.

The FVC of each mixed pixel can be calculated as fol-
lows based on its location in the VNAI–NDVI fan-
shaped 2-D scatter map (Fig. 3c):

where r is the radius of the fan-shaped geometric figure 
and L0 is the distance from point (VNAI0, NDVI0) to the 
bare-soil point (VNAI2, NDVI2). Because the VNAI–
NDVI 2-D scatter map is fan-shaped, the distance from 
the point for bare soil to low-CCC vegetation is the same 
as that to high-CCC vegetation, which is the radius of the 
fan-shaped geometric figure, thus

where NDVI1, NDVI2, and NDVI3 are the NDVI values 
for low-CCC vegetation, bare soil, and high-CCC veg-
etation, respectively; VNAI1, VNAI2, and VNAI3 are the 
VNAI values for low-CCC vegetation, bare soil, and high-
CCC vegetation, respectively; and the parameter k > 0 is 
the normalized distance from the VNAI to the NDVI. 
Thus, k2 is given by

The FVC is then given by

(13)FVC =
L0

r

(14)
r =

√

(k × VNAI3 − k × VNAI2)
2
+ (NDVI3 −NDVI2)

2
=

√

(k × VNAI2 − k × VNAI1)
2
+ (NDVI2 −NDVI1)

2,

(15)

k2 =
(NDVI2 −NDVI1)

2
− (NDVI3 −NDVI2)

2

(VNAI3 − VNAI2)
2
− (VNAI2 − VNAI1)

2

(16)

FVC =
L0

r
=

√

(k × VNAI0 − k × VNAI2)
2
+ (NDVI0 −NDVI2)

2

√

(k × VNAI3 − k × VNAI2)
2
+ (NDVI3 −NDVI2)

2
,

Fig. 3  Theory for quantifying the fraction of high-CCC vegetation, low-CCC vegetation, and soil based on VNAI and NDVI: a PROSAIL-based NDVI as 
a function of VNAI (Cab = 20–35 μg/cm2). b PROSAIL-based NDVI as a function of VNAI (Cab = 5–50 μg/cm2). c Quantifying FVC using plot of NDVI 
vs. VNAI. Note: NDVI1, NDVI2, and NDVI3 are the NDVI values for low-CCC vegetation, bare soil, and high-CCC vegetation, respectively; VNAI1, VNAI2, 
and VNAI3 are the VNAI values for low-CCC vegetation, bare soil, and high-CCC vegetation, respectively; point (VNAI0, NDVI0) represents a mixed 
pixel on the VNAI–NDVI 2-D scatter map, NDVI is the normalized difference vegetation index, and VNAI is the visible and near-infrared angle index
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where NDVI0 and VNAI0 are the NDVI and VNAI value 
of a mixed pixel, respectively.

Results and discussion
Response of vegetation canopy reflectance spectra 
and spectral indexes to canopy chlorophyll content 
and leaf‑area index
Response of canopy hyperspectral reflectance spectra 
and NDVI to canopy chlorophyll content and fractional 
vegetation cover
Figure 4 shows how vegetation canopy reflectance spec-
tra and SIs depend on CCC (using Cab) and FVC (using 
LAI). As shown in Fig.  4(a–c), CCC affects the vegeta-
tion canopy reflectance spectra mainly in the visible and 
NIR bands (Fig. 4a, b). The canopy hyperspectral reflec-
tance of high-CCC vegetation is less than that of low-
CCC vegetation, and the NDVI of high-CCC vegetation 
exceeds that of low-CCC vegetation. The results shown 

(17)

FVC =

√

k2(VNAI0 − VNAI2)
2
+ (NDVI0 −NDVI2)

2

√

k2(VNAI3 − VNAI2)
2
+ (NDVI3 −NDVI2)

2
,

in Fig. 4(d–f) also show that the NDVI of high-CCC veg-
etation exceeds that of low-CCC vegetation. Thus, the 
accuracy of multi-stage, SI-based FVC estimates is lim-
ited by variations in crop CCC (see coefficient of varia-
tion of CCC in Table 1).

Figure  55 shows how UAV-based NDVI depends on 
CCC. FVC ≈ 1 for the six selected plots and two growth 
stages; the NDVI of six plots in stage S3 are also simi-
lar (from 0.86 to 0.89, see Fig.  5). However, the NDVI 
of the same six plant plots in the S4 stage differ signifi-
cantly (from 0.56 to 0.83, see Fig. 5). Thus, the accuracy 
of multi-stage FVC estimation is limited by the variation 
of crop CCC (see Fig. 5).

Current methods for broadband remote-sensing FVC 
estimation are thus limited by vegetation CCC, princi-
pally because the optical SIs for pure crop canopies differ 
in the different growth stages. Many studies have con-
cluded that the spectral reflectance in the visible bands 
and optical SIs for low-CCC vegetation canopies is lower 
than for high-CCC vegetation [16–18].

However, methods to reduce the effect of CCC on FVC 
estimation remain under-developed. In practice, the 
coefficient of variation of soybean CCC is huge in later 

Fig. 4  a, b, d, e Reflectance spectra of vegetation canopy and associated NDVI as a function of c LAI and f Cab. Note: Cab is the chlorophyll a and b 
content, LAI is the leaf-area index.
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growth stages (31.58%, Table 1), which, in turn, leads to 
lower optical SIs for low-CCC vegetation canopies than 
for high-CCC vegetation canopies. For example, the 
NDVI is high for high-CCC soybean (about 0.86–0.89, 
see Figs. 4 and 5), whereas the NDVI for low-CCC soy-
bean is low (about 0.56, see Figs.  4 and 5). Thus, the 
LAN- and PDM-based methods may produce inac-
curate estimates of FVC in the later growth stages, and 
FVC estimates based on data gathered over the long term 
depend essentially on the vegetation CCC.

How canopy chlorophyll content and fractional vegetation 
cover affect spectral indexes as a function of VNAI
Figure 6 shows how CCC (using VNAI) and FVC (using 
NDVI) affects PROSAIL-based SIs as functions of VNAI. 
The VNAI–NDVI, VNAI–NDVI2, VNAI–RDVI, and 
VNAI–SAVI 2-D scatter maps are all similar: they form 
four fan-shaped 2-D scatter maps in which the three verti-
ces represent high-CCC vegetation, low-CCC vegetation, 
and soil (see Fig.  3). The PROSAIL-based VNAI–SI 2-D 
scatter maps support our approach for quantifying the 
fraction of high-CCC vegetation, low-CCC vegetation, 
and soil based on a CCC SI and a vegetation SI. Figure 7 
shows how CCC and LAI affect UAV-based SI vs. VNAI 
scatter maps. The UAV-based VNAI–NDVI, VNAI–
NDVI2, VNAI–RDVI, and VNAI–SAVI 2-D scatter maps 
are similar for all PROSAIL-based simulations.

Estimating and mapping fractional vegetation cover
Using LAN, PDM, and FSM to estimate fractional vegetation 
cover
Figure 8 shows the reference FVC (FVCref) and FVC esti-
mated by using the methods LAN, PDM, and FSM and 
the SIs NDVI, NDVI2, RDVI, and SAVI. The accuracy of 
the FVC estimated by various models and SIs is listed in 
Table 3. The results suggest that the accuracy of FVC esti-
mates made by LAN and PDM methods may be limited 
by variations in crop CCC. For example, given low CCCs, 
FVC is underestimated by LAN and PDM methods. In 
some extreme cases, using NDVI and LAN methods clas-
sify vegetation with 100% cover as having 50% cover (see 
Fig.  8). The most accurate FVC estimates are obtained 
by using the SAVI and the proposed FSM method (see 
Fig.  8 and Table  4, R2= 0.99, root-mean-square error 
(RMSE) = 0.03). 

The proposed FSM reduces the effect of the CCC by 
applying a PDM at each level of CCC (Fig. 3). For example 
(see Fig.  3b), the NDVI = 0.92 for high-CCC (Cab = 50) 
vegetation, the NDVI = 0.57 for low-CCC (Cab = 5) 
vegetation, whereas the NDVI = 0.17 for soil [FVC(Cab 

= 5) = (NDVI total – NDVI soil)/( NDVI vegetation (Cab = 5) – 
NDVI soil), FVC(Cab = 50) = (NDVI total – NDVI soil)/( NDVI 
vegetation (Cab = 50) – NDVI soil)]. The results of our PRO-
SAIL-based estimates of the FVC (Fig.  8; Table  4) indi-
cate that the proposed FSM method is robust and can be 
used for estimating FVC over multiple stages.

Fig. 5  Dependence of hyperspectral images and RGB images (S3 and S4) on CCC. Note: UAV-based hyperspectral images are false-color images: R, 
G, B = 834, 662, and 558 nm, respectively. DOM stands for “digital orthophoto map.”
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Figure  9 shows the FVC measured and estimated by 
using different methods (LAN, PDM, and FSM) and SIs 
(NDVI, NDVI2, RDVI, and SAVI). The accuracy of the 
FVC estimates produced by different methods and SIs are 
listed in Table 4. The accuracy of FVC estimates based on 
the UAV-based dataset is similar to that of estimates cal-
culated from the PROSAIL-based dataset (Fig.  8). FVC 
is underestimated by LAN and PDM when CCC is low. 
In some extreme cases, the PDM classifies vegetation 
with 100% cover as having 40% cover (see Fig.  7). The 
most accurate FVC estimates are obtained by using the 
FSM method (see Fig.  7; Table  5, total: R2 = 0.75–0.86, 
RMSE = 0.10–0.14). Thus, the results of UAV-based FVC 
estimates (see Fig. 7; Table 4) indicate that the proposed 
FSM method is a robust method that can be used to esti-
mate FVC over multiple stages.

We evaluated the accuracy of FVC estimates based on 
a PROSAIL-based dataset, an image-based dataset, and 
the proposed FSM. Compared with LAN and PDM, the 
results indicate that FSM is a robust method that reduces 
the influence of crop CCC and thereby provides the most 

accurate estimates of FVC. As shown in Figs.  8 and 9, 
the FVC of samples with low CCC are underestimated 
by the PDM; and the LAN method underestimates the 
FVC of low-CCC samples and overestimates the FVC 
of high-CCC samples. By using a CCC SI, the proposed 
FSM mitigates the effect CCC and thereby improves FVC 
estimates. Considering that the variation of CCC is one 
of the most influential factors in the PDM (Figs. 4, 5), the 
proposed FSM offers the advantage of accurately estimat-
ing FVC over multiple stages.

Mapping fractional vegetation cover using image‑based 
dataset
The FVC maps were calculated by using (i) the NDVI 
based on UAV-hyperspectral images and (ii) LAN, PDM, 
and FSM. Figure  10a–d show the UAV RGB DOM, the 
LAN-FVC map, the PDM-FVC map, and the FSM-FVC 
map. As shown in Fig.  10, three plots were selected for 
performance evaluation. Similar to the PROSAIL-based 
results shown in Fig.  4, the LAN, PDM, and FSM esti-
mates of FVC for plot 1 (high-CCC plot: green leaves) 

Fig. 6  PROSAIL-based VNAI–SIs 2-D scatter maps. a VNAI–NDVI, b VNAI–NDVI2, c VNAI–RDVI, d VNAI–SAVI. SI spectral index, RDVI renormalized 
difference vegetation index, SAVI  soil-adjusted vegetation index
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are similar; however, the FVC of plots 2 and 3 (low-CCC 
plots: yellow leaves) are underestimated by LAN and 
PDM. Thus, the results shown in Fig.  10 suggest that 
the FVC map calculated by the proposed FSM is more 
accurate.

In this work, soybean hyperspectral images acquired at 
later growth stage were used for validation. These images 
cover low-, medium-, and high-CCC soybean plots 
(Fig.  10). The CCC and LAI are the dominating factors 
affecting the visible bands of vegetation canopy spectra. 
Consequently, the estimation of FVC at early growth 
stages [CCC: about 20–35 μg/cm2, see Fig.  3a, red fan-
shape] is similar to that for median-CCC samples at later 
growth stages when using the PROSAIL-based dataset 
[see Fig.  3b, red fan-shape]. In this study, no field FVC 
and real canopy spectra for early stages were tested. Fur-
ther quantitative validation from field sites is necessary.

The most significant advantage of the FSM is that it 
can be used to estimate and map crop FVC from vari-
ous CCC conditions. As shown in Table  1, the coeffi-
cient of variation of soybean CCC is small during the 
early growth stages but increases significantly in the later 
growth stages. Thus, to estimate FVC for mapping in the 
later growth stages and over multiple growth stages, one 
should consider the variation of crop CCC (Figs. 5, 6, 7). 

We use the proposed FSM to calculate FVC at different 
CCC levels, which may help to provide FVC estimates 
that are more robust than those provided by PDM and 
LAN. However, as with any method, the FSM has short-
comings, the most obvious of which is that it requires an 
additional parameter [k2, see Eqs. (13)–(16)] to normal-
ize the distance from the VNAI to the NDVI, which may 
limit its application. As shown in Eq.  15, the parameter 
k2 depends on the NDVI and VNAI of soil, high CCC 
vegetation, and low CCC vegetation. But in practice, the 
NDVI and VNAI values for different soybean cultivars 
differ due to leaf and canopy parameters (see Table 3, leaf 
structure, carotenoid content, etc.). Thus, the parameter 
k2 needs to be calibrated for practical application of FSM 
(see Eq. 15).

The strategy of combining a CCC SI into the FSM 
could also be applied to satellite multispectral remote-
sensing imagery, but the feasibility of FVC estimates 
based on long-term data acquired from satellite multi-
spectral remote-sensing images remains to be validated. 
In this work, the proposed FSM was validated by using 
only PROSAIL-based simulations and a UAV-based 
soybean canopy spectral image from a single site. Thus, 
further validation is required from additional crops and 
study sites.

Fig. 7  UAV-based VNAI–SI 2-D scatter maps for stage S4. a VNAI–NDVI, b VNAI–NDVI2, c VNAI–RDVI, d VNAI–SAVI. Note: Red dots represent the 120 
ROIs from Fig. 1c
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Conclusions
To estimate FVC, we propose herein a FSM that miti-
gates the effect of CCC by conducting a PDM at each 
CCC level. The FSM is a robust method that can be used 
to estimate FVC based on multiple growth stages where 
crop CCC varies greatly. The results lead to the following 
two conclusions:

(1)	 Estimates and maps of FVC based on the later 
growth stages and on multiple growth stages should 
consider the variation of crop CCC. Field soy-
bean CCC measurements (Table  1) indicate that 
(a) the soybean CCC increases continuously from 
the flowering growth stage to the later-podding 
growth stage, and then decreases with increasing 
crop growth stages, (b) the coefficient of variation 
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Fig. 8  Reference FVC (FVCref) and FVC estimated by using different SIs and methods (PROSAIL-based dataset). LAN linear and nonlinear regression, 
PDM pixel dichotomy model, FSM fan-shaped method. FVCref is the reference FVC calculated from Eq. (1)); FVCNDVI, FVCNDVI2, FVCRDVI2, and FVCSAVI are 
FVC estimates based on a NDVI, NDVI2, RDVI, SAVI, and b LAN, PDM, and FSM

Table 4  Results of FVC estimates produced by various methods and based on various SIs (PROSAIL-based dataset)

Methods Dataset n NDVI NDVI2 RDVI SAVI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LAN Calibration 60 0.84 0.13 0.81 0.14 0.94 0.08 0.94 0.08

Validation 30 0.80 0.15 0.77 0.15 0.92 0.09 0.93 0.08

PDM Total 90 0.83 0.14 0.80 0.16 0.93 0.09 0.94 0.09

FSM Total 90 0.95 0.11 0.98 0.05 0.99 0.03 0.99 0.03
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of soybean CCC is very large in later growth stages 
(31.58–35.77%) and over all growth stages (26.14%). 
Thus, PDM underestimates the FVC of samples 
with low CCC, and LAN underestimates the FVC 
of low-CCC samples and overestimates the FVC of 
high-CCC samples.

(2)	 The proposed FSM method can provide accurate 
FVC estimates based on data from multiple growth 

stages and can be applied to croplands with sig-
nificant variation in crop CCC. The proposed FSM 
mitigates the influence of CCC by applying a PDM 
at each CCC level, making it a robust method for 
multi-stage estimates of FVC in  situations involv-
ing strong variations in crop CCC. The improved 
FVC estimates are validated by both PROSAIL- and 
images-based datasets.
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Fig. 9  FVC measured and estimated by using different SIs and methods (UAV-based dataset). Note: FVCref is the reference FVC from UAV-image 
classification; FVCNDVI, FVCNDVI2, FVCRDVI2, and FVCSAVI are the FVC estimates based on a NDVI, NDVI2, RDVI, SAVI, and b LAN, PDM, and FSM

Table 5  Results of FVC estimates produced by various methods and based on various SIs (UAV-based dataset)

Methods Dataset n NDVI NDVI2 RDVI SAVI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LAN Calibration 80 0.61 0.16 0.51 0.17 0.54 0.17 0.54 0.17

Validation 40 0.69 0.16 0.58 0.19 0.62 0.18 0.61 0.18

PDM Total 120 0.64 0.23 0.54 0.32 0.57 0.34 0.57 0.34

FSM Total 120 0.86 0.10 0.83 0.11 0.78 0.13 0.75 0.14
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