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SOFTWARE

Maize‑IAS: a maize image analysis software 
using deep learning for high‑throughput plant 
phenotyping
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Abstract 

Background:  Maize (Zea mays L.) is one of the most important food sources in the world and has been one of the 
main targets of plant genetics and phenotypic research for centuries. Observation and analysis of various morphologi-
cal phenotypic traits during maize growth are essential for genetic and breeding study. The generally huge number 
of samples produce an enormous amount of high-resolution image data. While high throughput plant phenotyping 
platforms are increasingly used in maize breeding trials, there is a reasonable need for software tools that can auto-
matically identify visual phenotypic features of maize plants and implement batch processing on image datasets.

Results:  On the boundary between computer vision and plant science, we utilize advanced deep learning meth-
ods based on convolutional neural networks to empower the workflow of maize phenotyping analysis. This paper 
presents Maize-IAS (Maize Image Analysis Software), an integrated application supporting one-click analysis of maize 
phenotype, embedding multiple functions: (I) Projection, (II) Color Analysis, (III) Internode length, (IV) Height, (V) Stem 
Diameter and (VI) Leaves Counting. Taking the RGB image of maize as input, the software provides a user-friendly 
graphical interaction interface and rapid calculation of multiple important phenotypic characteristics, including leaf 
sheath points detection and leaves segmentation. In function Leaves Counting, the mean and standard deviation of 
difference between prediction and ground truth are 1.60 and 1.625.

Conclusion:  The Maize-IAS is easy-to-use and demands neither professional knowledge of computer vision nor 
deep learning. All functions for batch processing are incorporated, enabling automated and labor-reduced tasks of 
recording, measurement and quantitative analysis of maize growth traits on a large dataset. We prove the efficiency 
and potential capability of our techniques and software to image-based plant research, which also demonstrates the 
feasibility and capability of AI technology implemented in agriculture and plant science.

Keywords:  Maize phenotyping, Instance segmentation, Computer vision, Deep learning, Convolutional neural 
network
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Background
Multiple phenotypic traits constantly change over time 
in the vegetative stage of the life cycle of maize (Zea 
mays L.), reflecting the growth status of maize and are 

popularly used by plant researchers to evaluate the 
impact of specifically defined treatments and experi-
mental variables on maize [1–3]. As advanced Non-inva-
sive and high throughput plant phenotyping platforms 
(HTPPs) provide the possibility to automatically moni-
tor and record dynamics morphological traits of maize 
plants in a large scale of cultivation, booming data vol-
ume makes processing them an urgent problem.
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In recent years, research progress of image-based plant 
phenotyping have been made [4–7]. A range of hardware 
and software solutions are developed aiming at some 
specific traits with different levels of automation and 
throughput. On the field scene, unmanned aerial plat-
form (UAP) shows its potential to rapidly and cost-effec-
tively phenotype large numbers of plots by time series: M 
Zaman-Allah uses a UAP equipped with sensors [8] for 
multi-spectral imaging for low-nitrogen stress tolerance 
in maize. Liebisch et al. proposes a method [9] for remote 
phenotyping of maize genotypes using the Zeppelin NT 
aircraft, which has the ability of monitoring throughout 
the season, robust image segmentation and the identi-
fication of individual plots in images. An UAV-assisted 
HTPP framework [10] is used for preselecting maize 
phenotypic components. In laboratories scene, software 
systems have been assisting researchers to quickly quan-
tify traits of interest: T.E.Grift presents a measurement 
system [11] consisted of a semi-automated imaging box 
that provided a highly diffuse lighting scene and allow-
ing imaging of up 700 roots per day. TIPS [7] enables 
morphological features of maize tassels to be quantified 
automatically at a scale that supports population-level 
studies. Nocolas Brichet presents a pipeline [12] com-
bining computer vision, machine learning, and robot-
ics, which tracks the growth of maize ear and silks and 
applies large-scale genetic analyses in a non-invasive and 
automatized way.

Region of interest extraction, namely plant region seg-
mentation, is the primary function provided by software 
and papers mentioned above. ImageJ [13], PlantCV [14], 
HTPhone [15] and Image Harvest [16], like most of other 
open-source plant image processing software and librar-
ies published before, mostly utilize digital image pro-
cessing algorithms for their main functions. To extract 
RoI regions, they have to go through complex steps such 
as histogram threshold processing from multiple color 
space and merging of several binary images. The subse-
quent functions are based on this binary mask map, such 
as outputting clustering contours, circumscribed shapes 
of plant regions and color analysis, etc. The dependence 
on manual features and parameters reduces their stability 
and ease of use. Among them, PlantCV can use the Skim-
age library to skeletonize the mask map, then determine 
the branch points and tip points of the crop, and use 
these to finally determine the number of leaves. PlantCV 
also supports a naive bayes machine learning method. 
After labeling data and training models, it can achieve 
multi-classification of pixels with different color perfor-
mance in crop images, replacing the process of manu-
ally setting color thresholds. By contrast, the commercial 
image analysis software equipped with the lemnatec 
high-throughput phenotyping system is more mature 

and complete. It integrates some deep learning methods 
and can monitor the phenotypic characteristics of spe-
cific species in a limited growth cycle. They can identify 
the shoots, roots, and root hairs of seedlings grown on 
petri dishes or substrates. They can identify the embryos 
and endosperms of maize seeds that are neatly arranged, 
and can also detect emerging cotyledons during oilseed 
rape germination.

With the rapid development of computer vision and 
deep learning in recent years, there are more advanced 
research methods to extract and process visual informa-
tion of image data. CNN enjoys a stupendous success in 
object classification, localization, detection, and segmen-
tation. It has been applied on a large scale in the fields 
of automatic driving, face recognition and remote sens-
ing images analysis, greatly boosting productivity in 
these areas and achieving huge economic benefits. It is 
very valuable to explore the powerful capabilities of the 
CNN-based deep learning methods in image processing 
and understanding in the domain of plant and agricul-
tural science. Along with the tide of artificial intelligence 
and deep learning, researchers in the fields of computer 
vision and plant agriculture began to penetrate both 
sides. A deep-learning-based convolutional neural net-
work (CNN) and Long Short Term Memory (LSTM) 
framework aiming at plant classification is proposed and 
shows its benefits over hand-crafted image analysis [17]. 
To combat illegal logging, a series of CNN classification 
models are presented to identify the woods of 10 species 
in [18]. Based on CNN, a pipeline to detect regions con-
taining flowering panicles and estimate heading date of 
paddy rice is introduced in [19].

While plenty solutions have met the need of research 
customized for some specific phenotype and targeted 
at limited crop species, most of them are either based 
on digit image processing idea where requires various 
algorithms with multiple stages to complete the pro-
cessing, or based on CNN but not taking maize as the 
research object. To our knowledge, there is no free and 
easy-to-use image analysis software with GUI for maize 
sheath point detection and leaf instance segmentation in 
research community. In actual maize research, a power-
ful tool that can extract the phenotypic characteristics of 
interest end-to-end and automatically will undoubtedly 
greatly improve the efficiency of experiments and provide 
great help to the plant research community. The software 
platform proposed in this paper integrates the most pop-
ular methods of deep learning and computer vision and 
implements a variety of phenotypic analysis applications. 
By using deep learning method, the detection of maize 
leaf sheath points and the segmentation of leaf instances 
provided by this software are unprecedented new func-
tion among current plant phenotypic image processing 
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software, which can inspire researchers with new study 
materials and indexes. At the same time, the software 
supports batch processing, making automatic processing 
and information extraction of a large number of maize 
images collected by high-throughput phenotype plat-
forms possible.

Taking the RGB image of maize as input, Maize-IAS 
can extract the plant area and calculate the number of 
pixels in the projected area. Then the color analysis is 
performed on this area: the mean and standard deviation 
of the three-channel color values are calculated and the 
color histogram is drawn and displayed. The software can 
detect and locate the leaf sheath points of maize plant 
in the image and gives the distance between every two 
adjacent leaf sheath points (i.e., the stem node). On this 
basis, the height and stem diameter of the plants can also 
be calculated. At the same time, Maize-IAS can imple-
ment pixel-level instance segmentation of maize leaves, 
through which the number of leaves is counted. On the 
test-set, the mean of the difference between the ground 
truth of leaves number and the inference result reaches 
down to 1.60, and the standard deviation 1.625. All of 
the above functions for processing a single image can be 
completed in real time after clicking the corresponding 
button. The software also supports batch processing to 
extract and analyze phenotypic features respectively at an 
average speed of 100 ms per image (2454 * 2056, using 
NVIDIA Gefore RTX 2070), allowing users to choose the 
path where to save the processed results.

In this paper, algorithmic ideas for implementing 
each part of software function are introduced in section 
Implementation. The data annotation details, processing 
results of each function, and the software interface are 
described in section “Results and discussion”. Finally, sec-
tion “Conclusion” summarizes this paper and looks for-
ward to the research prospects.

Implementation
Maize-IAS is a software with PyQt5 graphical interface 
written with Python3.6, which runs on Linux platform 
only so far. It requires multiple scientific and numeric 
libraries so it is recommended for users to install an 
Anaconda Python distribution in operating environ-
ment. In addition, the machine will also needs to install 
the OpenCV Python library (v4.1.1), pytorch (v1.2.0) and 
torchvision (v0.4.0) deep learning framework. In order 
to improve the portability of the software and the con-
venience of installation, we use Pyinstaller to package the 
software as an executable program under the Linux sys-
tem. This executable program can be run directly in the 
terminal after decompression. Way to download the soft-
ware is introduced in the project home page (see “Avail-
ability and requirements” section) and related installation 

and debug guidelines is provided in (Additional file  1). 
The software is designed to accept RGB images of maize 
as input, which kind of image data can be provided by 
generally all high-throughput plant phenotypic plat-
forms. All calculated numerical results can be gener-
ated into “.txt” files in the batch processing function. The 
whole software function flow chart is shown in Fig.  1.

In this paper, we set the coordinate system of the image 
as follows: the upper left corner of the image is the coor-
dinate origin, from the origin to the right is the x-axis 
direction, and the downward direction is the y-axis direc-
tion (Fig.  4).

RoI extraction and color analysis
In this study, the region of interest is the maize body in 
the image (Figs.  2a and  3a), excluding the background 
board of the image capture chamber, cultivation pot and 
its fixture to the assembly line. RoI extraction is a basic 
procedure for most of following steps of phenotypic anal-
ysis of image-based data. Considering that the images 
captured by high throughput plant platforms have an 
extremely clean and identical background, whose color 
is very different from foreground objects, we apply color 
recognition methods to extract the plant body from the 
background.

The first step is to determine the range of values for 
each color channel of the foreground object. The origi-
nal RGB image has a color space designed for machine, 
whose color numerical value has no approximate linear 
relationship with color representation. Consequently, 
it will be very confusing and inaccurate to determine 
the range of three-channel value separately. Instead, we 
convert the RGB image into HSV (hue, saturation, value) 
color space, which aligns more closely with the way 
human vision perceives color-making attributes. In HSV 
color space, the pixels value delimitation of the maize 
body is easy and intuitive to operate. These boundary val-
ues are used as a threshold to determine the pixel that is 
set to 1 (maize body area) or 0 (background area) in the 
image binarization course. Consequently, we can get a 
preliminary binary mask image (Figs.  2b and  3b) of the 
maize plant. In order to optimize extraction result, the 
binary mask will be subjected to morphological opera-
tions, including erosion processing to remove noisy 
pixels at the area out of maize body, and dilation process-
ing to fill the tiny holes inside the plant body (Figs.   2c 
and  3c). Then we align the binary mask image with the 
original image to produce RGB color image with maize 
body only (Figs.  2d and  3d).

After getting the masked RGB image of the plant body, 
we have convenient access to implement various process-
ing only on the pixels of RoI. In this function page, we 
count the total number of RoI pixels. Combined with 
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Fig. 1  Software function flow chart

Fig. 2  Maize RoI extraction (level view). a Original image. b Preliminary binary mask image. c Optimized mask image. d Foreground RGB image

Fig. 3  Maize RoI extraction (top view). a Original image. b Preliminary binary mask image. c Optimized mask image. d Foreground RGB image
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camera parameters and environment settings, the real 
projected area of maize body in the image and its true 
size can be calculated. Color analysis about mean and 
standard deviation of three channels of RoI is performed 
as Eqs. (1) and (2). Here c represents 3 color channel of 
RGB and pc,(i,j) is the value of pixel(i, j) of color channel c. 
The sum from (h0,w0) to (hn,wn) represents the accumu-
lation of foreground pixels of the extracted maize plant 
and numpixel is the total number of pixels in the RoI. Its 
color histogram is drawn.

Leaf sheath points and height detection
The Stem Node is the node where a leaf grows out of the 
stem and the Internode Length is the distance between 
two adjacent nodes, which is the distance between two 
adjacent leaf sheath points. So the problem of measur-
ing the internode length can be transformed into the 
problem of detecting the leaf sheath points. The current 
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object detection algorithm has a good performance on 
the mainstream benchmark dataset like PASCAL VOC 
[20]. But the maize dataset generally has a character of 
much higher resolution and relatively smaller objects to 
be detected. When applying the common object detec-
tion algorithm like Faster R-CNN [21] to the maize data-
set, the original image needs to be downsampled due to 
GPU memory limitations. But this will in turn results in 
the loss of detailed information describing the character-
istics of the small object, like location.

In order to solve this contradiction, in our previous 
work [22] a Small Object Detection method guided by 
prior knowledge from coarse to fine is proposed. In the 
task of detecting leaf sheath points, the target image is 
highly structured. That is, the position of the leaf sheath 
point is likely to appear in the center of the image, rather 
than at the edge of the image. Such prior knowledge can 
be used as a constraint to guide the detection process. 
To obtain prior knowledge, the probability map of the 
position of leaf sheath point is computed from labeled 
training image, then expanded, eroded and blurred. To 
achieve high precision, the concept of two-stage detec-
tion in Faster R-CNN methods is borrowed. In the first 
phase, an area that may contain the objects is roughly 
find out, namely the leaf sheath region. The original 
image is downsampled to an appropriate size to reduce 
the burden of GPU memory. In the downsampled image, 
feature maps of different scale are calculated through the 
backbone network (ResNet50 [23] with FPN [24]). Then, 
prior knowledge is used to guide the RPN network to 
generate RoIs. These RoIs are rough and need to be fur-
ther classified. In the second stage, the features of these 
small RoIs are calculated from the high-resolution image 
for fine classification. This method makes the detection 
accuracy of the leaf sheath point higher.

Along with the leaf sheath points detection, the end tip 
of the leaf at the most top position of the image (Htop ) 
is detected, as well as the most bottom position of maize 
stem (Hbottom ). Plant height is defined as the distance 
from the soil surface to the farthest end of the plant in the 
direction of plant growth, which is the distance between 
the above two points (Fig.  4).

Stem diameter
Stem diameter here is defined as the cross-sectional 
diameter of the middle of the second stalk from the soil 
surface. Since we have already got the binary mask image 
in the first section and all the junction coordinates in the 
second section, obviously the second stalk is between the 
second junction and the third junction from the soil sur-
face. Now we can easily determine the horizontal posi-
tion (y-axis = Y D ) where to measure the stem diameter. 
Firstly, in the binary mask image, traverse all the pixels on 

Fig. 4  Height definition and coordinate system
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this Y D horizontal line in order and determine the coordi-
nates where pixel value changes from 0 to 1 and from 1 to 
0. These coordinates ((Xa1,YD),(Xa2,YD ); (Xb1,YD),(Xb2,YD

);...) are the intersection between the edge of leaves&stem 
and the horizontal line. All these coordinates are paired 
and between every two adjacent of them are leaf or stem 
pixels. Secondly, select the two junction nodes with the 
largest y-axis coordinate (except the H pot point) and cal-
culate the average value of their x-axis coordinates. The 
average value, named as S A , is excepted to be the approx-
imate x-axis range where the stem is located in the image. 
Finally, compare the distance between the midpoint of all 
point pairs (SA1 = (Xa1+Xa2)/2, S A2 , etc.) and S A , choose 
the smallest one, and the distance between these two 
endpoints is the stem diameter, as shown in Fig.  5.

Leaves counting
Leaves counting is a more challenging task. In [25], 
thanks to the radial growth pattern of Arabidopsis, 
the distance between the arabidopsis plant centroid 
and its leaf contour (at angles from 0 and 360 degrees 
with a 15-degree interval) is used as a criterion to 
judge whether there is a leaf. In more related work of 
[26], maize leaves number are counted after the archi-
tecture determination operating, including extraction, 
skeletonization and complicated graphical representa-
tion of a plant, based on digital image processing meth-
ods. Here not only do we require to know the number 

of leaves of the maize plant in an image, but we also 
extract the edge contours of every single leaf to obtain 
the individual mask for each leaf, which is actually 
an instance segmentation task. Given that our cus-
tom dataset is small, we follow the approach of Mask 
R-CNN [27] framework, and fine-tune an instance 
segmentation model pre-trained on COCO dataset 
[28]. Faster R-CNN [21] is real-time object detection 
network with branches for classification and bound-
ing box regression, which can output a rectangular box 
wrapping object of a specific category. FCN [29] can 
perform semantic segmentation on images which is 
pixel-to-pixel multi-classification of images.And Mask 
R-CNN is an extension of Faster R-CNN by adding a 
branch of a small FCN for predicting segmentation 
masks on each RoI, so that it can output mask for every 
object in every category.

We conduct transfer learning on the Mask R-CNN, 
which is based on top of Faster R-CNN backbone. To 
fine-tune the backbone network for predicting the 
domain-specific classes, we replace the pre-trained 
head classifier with a new FastRCNNPredictor that 
has the number of classes defined by our task. Here 
the number of classes is simply set as 2, represent-
ing two categories of foreground maize body and 
background. Because we also need to compute the 
instance segmentation masks, so a new MaskRCN-
NPredictor of RoI heads with compatible input features 

Fig. 5  Stem diameter definition
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number is also replaced. Before feeding image data to 
the network, randomly flip the training images for data 
augmentation.

Function of leaf sheath point detection and leaves 
counting are not related to maize’s growth stage, and 
there is no upper or lower limit to number of leaves. As 
long as they match the feature of leaves and leaf sheath 
points, they will be segmented and detected.

Results and discussion
The maize image dataset used in the software test is 
from the Institute of Crop Sciences, Chinese Acad-
emy of Agricultural Sciences. Images were collected 
using the high-throughput plant phenotyping platform 
system Lemnatec Scanalyzer 3D. During the growing 
period of maize, images were captured every three 
days from the seedling stage to the filling stage, and 
were taken from three angles of 0◦ , 90◦ in the horizon-
tal direction and the direction of the top of the maize. 
The resolution size of the image is 2454 * 2056. The 

maize dataset is labeled using two different annota-
tion methods to construct two sub-datasets, which 
correspond to detection and segmentation problems 
respectively.

The Maize-IAS application supports fast one-click 
analysis and its use is simple and clear.

Projection and color analysis
Click the pushbutton Open to load in a maize image. 
The original image will be displayed. It’s path, file name 
and pixel shape will be listed below. Click the pushbut-
ton Projection to start the processing, then the projected 
RGB image will be displayed. The total number of maize 
area pixels and original image pixels will be listed, as 
shown in Fig.  6. Click the pushbutton MeanStd to start 
calculating the mean and standard deviation of the maize 
area in the image, result and histogram will be output, as 
shown in Fig.  7.

For the dataset used in this study, the RoI extraction 
method based on color recognition is sufficient to obtain 

Fig. 6  Functional interface for calculating projected area of plant area
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Fig. 7  Functional interface for calculating the mean and standard deviation of the three channel colors in the plant area

Fig. 8  Leaf sheath points labeled on maize image
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Fig. 9  Functional interface for detecting the internode length

Fig. 10  Functional interface for detecting the maize plant height
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accurate results. In the case study of segmenting maize 
leaves, with the increase of labeled data fed into the deep 
neural network, the segmentation effect will grow better, 
and the edge of the mask will become sharper. Further 
discussion is given below.

Internode length and height detection
To train the deep network, images labeled with ground 
truth are essential. We create a labeled maize data-
set consisting of 520 maize images, where 370 of them 
are used as the training set and 150 as the test set. Leaf 
sheath points of the maize plant in these images are man-
ually labeled by professional researchers in the agricul-
ture field, as shown in Fig.  8.

Click the pushbutton Open to load a maize image, the 
original image will be display below. Cilck the pushbut-
ton Internode to initiate the detection, and the visuali-
zation result is the ouput, as shown in Fig.  9. Click the 
pushbutton Height to detect the plant height, with both 
ends of maize plant are marked with horizontal lines, as 
shown in Fig.  10.

When a maize image of a particular viewing angle 
is detected, defects of inability to detect all leaf sheath 

points caused by occlusion between the leaves are inevi-
table. Further research can fuse image information from 
different perspectives, and finally accurately detect the 
leaf sheath points of the maize plant.

Stem diameter
Click the pushbutton Open to load a maize image, the 
original image will be display below. Cilck the pushbut-
ton StemDiameter to detect the stem radius with red 
lines as the measuring position. The diameter measuring 
position of the mazie stem is marked by a short red line 
and the diameter of the stem in pixels is displayed below, 
as shown in Fig.  11.

Leaves counting
we build a custom maize dataset to train the CNN model. 
The segmentation task is pixel-level classification, which 
means that our dataset also demands pixel-wise annota-
tions. We use the open-source annotation tool Labelme 
[30] (Image Polygonal Annotation with Python) to make 
polygonal annotation on original maize images. In the 
course of manual labeling, every piece of leaf and the 
main stem are surrounded by a polygon with its real cat-
egories attached. Category labels include leaf, stem, and 

Fig. 11  Functional interface for detecting the maize stem diameter
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background. Among them the label background is split 
automatically by Labelme application. The exampled 
labeled images from different views are shown in Fig.  12. 
We create a dataset consisting of 253 maize images, 
among them, 172 are siding view images at 0◦ and 90◦ , 
and the remaining 81 are top view images. In statistically, 
there are approximately 10 different leaf masks in every 
labeled maize image.

We conduct experiments with different amounts of 
training data. After feeding the network 50, 140 and 233 
training images separately, the prediction results are 
shown in Figs.   13 and   14. As the amount of training 
data increases, the prediction result is obviously growing 
better and the statistical results of the number of leaves 
are more accurate with the same confidence. The corre-
sponding mean and standard deviation of the difference 
between the inference value and the ground truth value 

Fig. 12  Leaves segmentation label sample

are shown in Table  1. The algorithm performs best with a 
confidence of 0.7.

Click the pushbutton Open to load a maize image, the 
original image will be display below. Click the pushbutton 
LeavesCount to segment leaves, and different color and posi-
tion represent different leaf instance, as shown in Fig.  15.

Batch processing
In batch processing, click the Open button to select the 
folder where the image collection is located, then click 
the Process and Save button to start the related process-
ing to the image set and store the result file in the path 
where the original collection is located. Click Open and 
Process to directly select the images’ path and perform 
the operation, as shown in Fig.  16.

From the maize data set collected for 18 consecutive 
months, we randomly select 5 images each month, and 
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Fig. 13  Case of top view. The three rows from top to bottom are the inference results with the training set sizes of 50, 140 and 233. Each row from 
left to right is the result of leaves inference at confidence of 0.9, 0.8, 0.7 and roI extraction respectively

Fig. 14  Case of level view. The three rows from top to bottom are the inference results with the training set sizes of 50, 140 and 233. Each row from 
left to right is the result of leaves inference at confidence level of 0.9, 0.8, 0.7 and roI extraction respectively
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apply the batch processing function to these 90 images. 
The trend of plant height, stem diameter, number of leaf 
sheath points and number of leaves changing over time 
is shown in Fig.   17. The abscissa is the date, and the 
ordinate is the number of pixels or 1. We can observe 
the trend of the continuous growth of maize plant 
height and number of leaves from subgraphs a and d. In 
the subgraphs of stem radius and number of leaf sheath 
points, the data from 1026 to 1030 showed a downward 

trend. The former was due to the fact that at stage 1030 
and 1102, some leaves originally wrapped around the 
bottom of the main stem stretched out, resulting in a 
decline in stem radius as shown in Fig.  18. The latter is 
because at that growth stage, the leaves at the bottom 
of maize stem began to wither or even fall. The feature 
of the normal leaf sheath points became less obvious. 
Plus there are few similar images in the data set, so the 
model does not recognize them as leaf sheath points, as 
shown in Fig.  19. This is also the reason why the num-
ber of leaf sheath points continued to decline in the last 
three date.

Then manually label the above four attributes of these 
90 images. We perform a statistical analysis on the dif-
ference between the software processing result and the 
ground truth to obtain the mean and standard devia-
tion of the difference, as shown in the Table   2. Here 
gt_mean is the mean value of ground truth, dif_mean 

Table 1  Mean and standard deviation of difference between the 
inference and ground truth

Confidence 0.9 0.8 0.7 0.6 0.5

Mean 4.90 2.95 1.60 2.60 4.85

Std 3.239 2.729 1.625 1.818 3.198

Fig. 15  Functional interface for leaves counting
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is mean of the difference between ground truth and 
processing results, and dif_std is standard deviation 
of the difference between ground truth and processing 
results.

Conclusions
The high-throughput plant phenotypic platform makes 
it possible to automate the monitoring of large num-
bers of plants. With the collection of consequent huge 
amounts of imaged-based data, the problem of how to 
quickly extract the phenotypic characteristics we require 
from the results comes forth. This paper explores the 
possibility of AI empowering agriculture and proposes a 
software for maize phenotype measurement. Standing in 
the perspective of agriculture and plant science, a small 
object detection method based on Faster R-CNN [21] 
is used to detect the leaf sheath points and a fine-tuned 

Mask R-CNN model completes the instance segmenta-
tion of leaves and stem. Meanwhile, to train the deep 
neural network, maize images dataset labeled manu-
ally with task-specific ground truth is build. Statistical 
analysis is implemented to evaluate the accuracy and 
effect of these methods. The Maize-IAS version1.0 inte-
grates advanced technologies in machine vision to auto-
matically solve multiple image-based maize phenotypic 
analysis tasks, including interndoe length, height, stem 
diameter, RoI segmentation, color analysis and leaves 
counting. All of the above phenotype data is widely used 
to analysis maize growth conditions, more extensive 
research can be developed upon these data. We reveal 
the potential development prospects of visual phenotype 
detection using deep learning methods. The methods 
and workflow provided in this article can also be easily 
applied to other crops.

Fig. 16  Functional interface of batch processing
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Fig. 17  Standard deviation plot of maize changing over time. a SD plot of height changing over time. b SD plot of stem radius changing over time. 
c SD plot of number of leaf sheath points changing over time. d SD plot of number of leaves changing over time

Fig. 18  The stem radius decrease because leaves originally wrapped at the bottom of the main stem stretched out (left: 1026, right: 1030)
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Availability and requirements
Project name: A Maize Image Analysis Software using 
Deep Learning for High-throughput Plant Phenotyping.

Project home page: https://​github.​com/​suref​yyq/​
Maize-​IAS

Operating system: Ubuntu18.04.
Programming language: Python3.
Other requirements: Pytorch 1.1.0 or higher, Torchvi-

sion 0.3.0 or higher.
Any restrictions to use by non-academic: None.
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The online version supplementary material available at https://​doi.​org/​10.​
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Additional file 1. Installation and debug guidelines.
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