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METHODOLOGY
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Abstract 

Background:  Circadian rhythms regulate several physiological and developmental processes of plants. Hence, the 
identification of genes with the underlying circadian rhythmic features is pivotal. Though computational methods 
have been developed for the identification of circadian genes, all these methods are based on gene expression 
datasets. In other words, we failed to search any sequence-based model, and that motivated us to deploy the present 
computational method to identify the proteins encoded by the circadian genes.

Results:  Support vector machine (SVM) with seven kernels, i.e., linear, polynomial, radial, sigmoid, hyperbolic, Bes-
sel and Laplace was utilized for prediction by employing compositional, transitional and physico-chemical features. 
Higher accuracy of 62.48% was achieved with the Laplace kernel, following the fivefold cross- validation approach. 
The developed model further secured 62.96% accuracy with an independent dataset. The SVM also outperformed 
other state-of-art machine learning algorithms, i.e., Random Forest, Bagging, AdaBoost, XGBoost and LASSO. We also 
performed proteome-wide identification of circadian proteins in two cereal crops namely, Oryza sativa and Sorghum 
bicolor, followed by the functional annotation of the predicted circadian proteins with Gene Ontology (GO) terms.

Conclusions:  To the best of our knowledge, this is the first computational method to identify the circadian genes 
with the sequence data. Based on the proposed method, we have developed an R-package PredCRG (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​PredC​RG/​index.​html) for the scientific community for proteome-wide identification of 
circadian genes. The present study supplements the existing computational methods as well as wet-lab experiments 
for the recognition of circadian genes.
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Background
Rhythms of biological activity with a periodicity of 24 h 
are called circadian rhythms (CR) and are generated 
endogenously [1, 2]. There are molecular components 

with the underlying rhythmic features defining the cir-
cadian clock (CC). The three components (input, output 
and oscillator) model of the CC is the widely adopted one 
[3]. In this model, the input connects the environmen-
tal cues to the core component oscillator and the output 
links the functions of the oscillator with different bio-
logical processes [4]. So far, the CR has been extensively 
investigated in Arabidopsis thaliana, and the same clock 
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mechanism has been extended to several dicot [5–8] and 
monocot [9, 10] plants as well.

The roles of CR in respect of regulating different meta-
bolic pathways including carbon fixation and allocation 
of starch & sugar in leaf tissues have been reported in 
earlier studies [11, 12]. Anticipation of plants to environ-
mental fluctuations (on a daily basis) is facilitated by CC 
[13], where the daily timing of the biological process is 
organized to specific time of the day and night [11, 14, 
15] to increase the performance and reproductive fitness 
[16–18]. Including contribution to the agronomic traits 
of crops [19, 20], correct circadian regulations have been 
reported to enhance biomass accumulation, seed viabil-
ity and photosynthesis [21, 22]. The roles of the circadian 
system in regulating plant response to different biotic 
and abiotic stresses have also been well studied [23, 24]. 
Plant growth and development related metabolisms are 
also regulated by CC, where it affects the quality and pro-
ductivity of crops by bringing changes in the metabolites 
[25, 26]. The CC comprises several genes that form the 
transcriptional-translational feedback loops, resulting in 
rhythmic expression [11, 27]. The CC genes are report-
edly involved in hormonal signaling [28, 29], growth and 
development of plant species [30, 31]. As reported in ear-
lier studies [32, 33], crop productivity can be enhanced 
by manipulating the CC, particularly through circadian 
up-regulation of photosynthetic carbon assimilation.

A plethora of computational methods such as COS-
OPT [34], Fisher’s G-test [35], HAYSTACK [36], JTK-
CYCLE [37], ARSER [38] and LSPR [39] have been 
developed for the identification of potential circadian 
genes using the gene expression data. A supervised learn-
ing approach ZeitZeiger [40] has also been developed 
for the identification of clock-associated genes from 
genome-wide gene expression data. In this study, we 
made an attempt to discriminate protein sequences asso-
ciated with the circadian rhythms from the proteins that 
are not involved in the circadian clock. The motivations 
behind the present study are that (i) the existing compu-
tational methods use the genome-wide gene expression 
data for identifying the genes associated with the CC, 
(ii) identification of the circadian genes through wet-lab 
experiments require more time and resource, and (iii) 
no computational method based on the sequence (pro-
tein) data is available. In this study, we have employed 
the support vector machine with the Laplace kernel for 
discriminating circadian genes (CRGs) from non-CRGs 
by using the sequence dataset. We have also developed 
an R-package for easy prediction of CRGs by using the 
proteome-wide sequence data. This package is unique 
and we anticipate that our computational model will sup-
plement the existing efforts for the identification of circa-
dian genes in plants.

Methods
Collection of protein sequences
The protein sequences encoded by the experimentally 
validated oscillatory genes were collected from the Circa-
dian Gene Database (CGDB) [41]. In this comprehensive 
database, about 73,000 genes encompassing 68 animals, 
39 plants and 41 fungal species were available. A total 
of 12,041 protein sequences were retrieved from 9 plant 
species, i.e., A. thaliana (6981), Glycine max (4810), O. 
sativa (110), Zea mays (72), Hodeum vulgare (22), Arabi-
dopsis lyrata (21), Physcomitrella patens (10), Solanum 
tuberosum (10) and Triticum aestivum (5). The 12,041 
sequences were used to build the positive dataset. Fur-
ther, 22,586 reviewed protein sequences of Viridi plan-
tae collected from the UniProt (https://​www.​unipr​ot.​org) 
were used to construct the negative dataset. The positive 
dataset thus comprised the protein sequences encoded 
by the circadian genes (CRG) and the negative dataset 
comprised the protein sequences encoded by other than 
the circadian genes (non-CRG). The positive and nega-
tive datasets were also referred to as CRG and non-CRG 
classes, respectively.

Processing of positive and negative datasets
The CD-HIT program [42] was employed to remove 
the sequences that were > 40% identical to any other 
sequences. In order to avoid the homologous bias in the 
prediction accuracy, both positive and negative datasets 
were subjected to homology reduction. After remov-
ing the redundant sequences, 8211 and 6371 sequences 
were obtained for the negative and positive datasets, 
respectively. The sequences with residues B, J, O, U, X 
and Z were also excluded to avoid ambiguity for gen-
erating numeric features because these six letters do 
not stand for any of the amino acids that function as 
the building blocks of proteins. After removing such 
sequences, 8202 negative and 6370 positive sequences 
were retained for the analysis. It was also noticed that 
the lengths of the sequences in the positive dataset 
were highly heterogeneous (39–4218 residues). Thus, 
the positive dataset was divided into four homogene-
ous subsets (P1, P2, P3 and P4) based on quartile values 
of the sequence length in order to improve the predic-
tion accuracy, where 39 ≤ P1 < 221 , 221 ≤ P2 < 363 , 
363 ≤ P3 < 538 and 538 ≤ P4 < 1001(Table 1). Since the 
sequences with > 1000 amino acids were detected as out-
liers (Fig.  1a), using such sequences may generate noisy 
feature vectors. Hence, the sequences with > 1000 resi-
dues were further excluded from the analysis. Similar to 
the positive set, four subsets (N1, N2, N3 and N4) were 
created from the negative dataset, where 43 ≤ N1 < 407 , 
407 ≤ N2 < 485 , 485 ≤ N3 < 607 and 607 ≤ N4 < 1001

(Table  1). In this way, we prepared four homogeneous 
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sub-datasets, i.e., Q1 (P1, N1), Q2 (P2, N2), Q3 (P3, N3) 
and Q4 (P4, N4) instead of a single heterogeneous dataset 
(Table 2).

Generation of numeric features
For each protein sequence, we generated amino acid 
composition (AAC), ProtFP features [43], FASGAI fea-
tures [44], Cruciani properties [45], transitional prop-
erties [46, 47] and other physico-chemical properties 
(hydrophobicity, instability index, molecular weight and 
iso-electric point). The AAC is one of the popular fea-
tures of protein sequences [48–51] which comprises a 
20-dimensional numeric vector of amino acid frequen-
cies. Given its simplicity and computational ease, the 
AAC is a well-performing feature set in terms of accuracy 
[51]. The ProtFP descriptor comprises the first 8 princi-
pal components obtained from the principal component 
analysis of 58 AAindex [52] properties of 20 amino acids. 
Based on the ProtFP features, each sequence was trans-
formed into an 8-dimensional numeric feature vector. 
The FASGAI is a set of 6 numeric descriptors that repre-
sent 6 different properties of protein sequences, i.e., bulky 
properties, hydrophobicity, compositional characteris-
tics, alpha and turn propensities, electronic properties 
and local flexibility. The Cruciani properties comprise 3 
descriptors (polarity, hydrophobicity and H-bonding) 
that are based on the interaction of amino acids with dif-
ferent chemical groups. The transitional features repre-
sent the frequencies of amino acid residues of one type 
followed by residues of other types. Pertaining to transi-
tional features, three types of residues for hydrophobicity 
(polar, neutral and hydrophobic), three types of residues 
corresponding to secondary structure (strand, helix and 
coil) and two types of residues for solvent accessibility 

(exposed and buried) were utilized. By using 8 types of 
residues, a total of 21 transitional descriptors were gener-
ated for each protein sequence. After combining all the 
feature sets, a total of 62 numeric features were obtained. 
A brief description about these features and the R-pack-
ages used to generate these features are provided in the 
Additional file 1: Table S1.

Prediction with support vector machine
Support vector machines (SVM) [53] have been widely 
and successfully employed in the field of bioinformatics 
[54–60], and hence we have utilized the SVM for pre-
diction in the present study. Binary SVM classifier was 
employed for the classification of CRG and non-CRG 
proteins. Let xi be the 62-dimensional numeric feature 
vector for the ith protein sequence, where i = 1, 2, …, N. 
Further, N1 and N2 are the respective number of protein 
sequences for the CRG and non-CRG classes such that 
N = N1 + N2. Also, let us denote yi as the class label for 
xi , where yi ∈{-1, 1} with 1 and -1 as the class labels for 
the CRG and non-CRG classes, respectively. The decision 
function for the binary SVM classifier to classify a new 
observation vector x can be formulated as.

The value of αi can be obtained by solving the convex 
quadratic programming

subjected to the constraint.
0≤αi ≤ C and 

∑N
i=1 αiyi = 0.

Here, C is the regularization parameter that controls 
the tradeoffs between margin and misclassification error, 
and b is the bias term. Choosing an appropriate kernel 
function in SVM is important because the kernel func-
tion maps the input dataset to a high-dimensional feature 
space where the observations of different classes are lin-
early separable. In this study, 7 different kernel functions 
K
(

xi, xj
)

 were utilized (Table 3). The performances of the 
kernels were first evaluated with the default parameters 
(Additional file  2: Table  S2) by using a sample dataset. 

f (x) = sgn

{

N
∑

i=1

yiαiK (xi, x)+ b

}

.

maximize

N
∑

i=1

N
∑

j=1

αiαjyiyjK (xi, xj)

Table 1  Summary statistics of the sequence length for positive 
and negative datasets

Based on the summary, both positive and negative datasets are divided into 
four sub datasets, where the length categories are minimum to 1st quartile, 
1st quartile to median, median to 3rd quartile and 3rd quartile to 1000 (amino 
acids)

Dataset Min 1st Quartile Median 3rd quartile Max

Positive 39 221 363 539 4218

Negative 43 256 407 607 5400

(See figure on next page.)
Fig. 1  a Box plot of the sequence lengths of the positive dataset, where it can be seen that sequence length with more than 1000 amino acids 
are outlying observations. Thus, the maximum sequence length considered is 1000 amino acids. b Overall accuracy for the four homogeneous 
sub-datasets and the heterogeneous full dataset. It is seen that accuracies are higher for the sub-datasets with homogeneous sequence length 
as compared to dataset with highly heterogeneous sequence length. c Performance metrics for seven different kernel functions with respect 
to classification of circadian and non-circadian proteins using support vector machine. Among all the kernel functions, Laplace, linear and radial 
kernels are found to be superior with regard to overall classification accuracy
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Then, the kernel functions with higher accuracies were 
chosen for the subsequent analysis.

Cross‑validation approach
In the present study, we employed fivefold cross-valida-
tion to control the bias-variance trade-off [61] and assess 
the performance of the SVM classification models. To 
perform the fivefold cross-validation, observations of 
CRG and non-CRG classes were randomly partitioned 
into 5 equal-sized subsets each. In each fold of the cross-
validation, one randomly selected subset from each 
CRG and non-CRG classes were used as test set and the 
remaining four subsets of CRG and non-CRG classes 
together were used as training set. The classification was 
repeated five times with different training and test sets in 
each fold. The accuracy was computed by taking an aver-
age over all the five test sets.

Prediction with balanced dataset
In all the four sub-datasets (Q1, Q2, Q3, Q4), the size of 
the negative set was higher than that of the positive set 

(Table 2). By using such an imbalanced dataset, the SVM 
classifier may produce biased accuracy towards the class 
having a larger number of instances. Thus, a balanced 
dataset was preferred for prediction using the SVM clas-
sifier. The balanced dataset was prepared by taking all the 
instances of the positive class and an equal number of 
instances from the negative class. For instance, the bal-
anced dataset for Q1 contained 1588 positive and 1588 
randomly drawn negative (from 2045) instances. Further, 
using only one random negative set means the remain-
ing negative instances are out of the evaluation. To over-
come such a problem, the classification experiment was 
repeated 10 times with a different negative set (randomly 
drawn) each time along with the same positive set. So, the 
problem of unbalanced-ness was handled by following 
the repeated cross-validation procedure, without training 
of the SVM model with unbalanced data. Performance 
metrics were measured by following the fivefold cross-
validation technique and the final metrics were obtained 
by taking an average over all the 10 experiments.

Using predicted class as a feature
The labels of each instance were represented as − 1 and 
1 for the CRG and non-CRG classes respectively. The 
predicted labels of the instances obtained after classi-
fication was considered as a numeric feature and added 
to the existing feature set. Then, the prediction using the 
same dataset (with different training and test) was per-
formed again by using the new feature set. This process 
was repeated 50 times and the accuracy was analyzed 
after adding the new feature each time. The idea of using 
the predicted label as numeric feature was implemented 
to achieve higher classification accuracy.

Performance metrics
The true positive rate (TPR or sensitivity), true negative 
rate (TNR or specificity), accuracy, positive predictive 
value (PPV or precision), area under receiver operating 
characteristic curve (auROC) and area under precision-
recall curve (auRPC) were computed to evaluate the per-
formance of classifier. The TPR, TNR, accuracy and PPV 
are defined as follows.

Sensitivity(TPR) =
TP

TP + FN
,

Specificity(TNR) =
TN

TN + FP
,

Accuracy =
1

2
(TPR+ TNR),

Table 2  Summary of the positive and negative datasets

Full dataset of positive and negative classes are partitioned into four sub-
datasets i.e., Q1, Q2, Q3 and Q4. The partitioning was done based on the 
homogeneity of sequence length. For the Q1 sub-dataset, the sequence lengths 
for the positive and negative classes are P1 and N1 respectively, where P1 
corresponds to 39 to 221 amino acids and N1 corresponds to 43 to 407 amino 
acids sequence length. Similar inference can be made for other sub-datasets

P1: 39 to 221 amino acids; P2: 221 to 363 amino acids; P3: 363 to 538 amino 
acids; P4: 538 to 1000 amino acids; N1: 43 to 407 amino acids; N2: 407 to 485 
amino acids; N3: 485 to 607 amino acids; N4: 607 to 1000 amino acids

Sub-dataset #Positive 
sequence

#Negative 
sequence

Length 
category

Q1 1588 2045 P1, N1

Q2 1596 2047 P2, N2

Q3 1593 2050 P3, N3

Q4 1365 1499 P4, N4

Total (Full dataset) 6142 7641 -

Table 3  List of kernel functions and their mathematical 
expressions

γ , d, r  and order are kernel parameters and <  > denotes the inner product

Kernel type Kernel function 
{

K
(

xi , xj
)}

Radial basis function (RBF) exp(−γ �xi − xj�
2)

Polynomial (γ < xi , xj> +r)d

Linear < xi , xj >

Hyperbolic tanh(γ < xi , xj > +r)

Laplace exp(−γ �xi − xj�)

Bessel −Besseldorderγ �xi − xj�
2

Sigmoid (< xi , xj > +r)d
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The TP and TN are the number of correctly classified 
instances of the CRG and non-CRG classes, respectively. 
The FN and FP are the number of misclassified instances 
of the CRG and non-CRG classes, respectively. The ROC 
curve was obtained by taking the sensitivity in y-axis and 
1-specificity in x-axis, whereas the PR curve was plotted 
by taking the precision and recall (sensitivity) in x- and 
y-axes respectively.

Results
Prediction analysis with different sequence length 
category
Prediction was performed with the full dataset and sub-
datasets, where 50% randomly drawn observations from 
both CRG and non-CRG classes were utilized. For com-
paring the accuracy between the full dataset (diverse 
sequence length) and sub-datasets (homogeneous 
sequence length), prediction was done only with the RBF 
kernel because the trend in accuracy between the homo-
geneous and full datasets was expected to remain the 
same by using the other kernels as well. The accuracies 
were observed to be higher (~ 4–6%) for the homogenous 
sub-datasets (Q1, Q2, Q3, Q4) as compared to the het-
erogeneous full dataset (Fig. 1b). Thus, the four sub-data-
sets (i.e., Q1, Q2, Q3 and Q4) were used hereafter instead 
of full dataset.

Prediction analysis with different kernel functions
Performance of the kernel functions were compared by 
using a random sample of 50% observations. The sensi-
tivity and specificity were respectively higher with the 
Laplace and linear kernels for the sub-datasets Q2, Q3 
and Q4 (Fig.  1c). For sub-dataset Q1, sensitivity and 
specificity were higher with the RBF and polynomial ker-
nels, respectively (Fig. 1c). The linear and Laplace kernels 
achieved similar accuracy for Q2 and Q3 sub-datasets, 
whereas the linear kernel achieved a little higher accuracy 
than the Laplace for Q1 and Q4 (Fig. 1c). Thus, no single 
kernel was found to perform better for each sub-dataset. 
It was also observed that the performance accuracies 
were higher for Q2 and Q3 (~ 65%) than that of Q1 and 
Q4 (~ 60%). Further, the Bessel kernel function achieved 
the lowest (~ 50%), followed by the hyperbolic kernel 
(Fig. 1c). As the Laplace, linear and RBF kernels achieved 
higher accuracies as compared to the other kernel func-
tions, these three kernels were chosen for the subsequent 
prediction analysis. The mathematical representations of 
the Laplace and RBF functions are similar except for the 
distance between the feature vectors which is expressed 
in squared term for the RBF and in linear term for the 

Precision(PPV ) =
TP

TP + FP
.

Laplace. This may be the reason the variability captured 
by the Laplace kernel could be higher than that of RBF 
kernel, resulting in higher classification accuracy with 
the Laplace kernel. Further, the polynomial, hyperbolic 
and sigmoid kernels are the transformation of the linear 
kernel with additional parameters. So, the variability with 
respect to the discrimination of the CRG and non-CRG 
classes couldn’t be captured well by these kernels. This 
may be one of the possible reasons that the linear kernel 
achieved higher accuracy as compared to the other three 
kernels.

Prediction analysis with iteratively added features
Either a little or no improvement in accuracies were 
observed with the Laplace and linear kernels, even after 
adding 50 predicted label features (results not provided). 
On the other hand, 2–4% improvement in accuracies 
was observed with the RBF kernel after including the 
additional features. Specifically, accuracies in Q1, Q2, 
Q3 and Q4 reached plateau after addition of 26, 25, 20 
and 45 features, respectively (Fig. 2a). The probable rea-
son for not improvement in accuracy for the linear and 
Laplace kernels may be the variability introduced in the 
dataset with the inclusion of features (only -1 s and 1 s) 
was not captured well by these two kernels. On the other 
hand, the non-linear RFB kernel could have captured that 
variability which contributed towards the discrimina-
tion of both the classes. Nevertheless, accuracies of the 
linear and Laplace without iterated features and RBF 
with iterated features were found to be similar. Thus, we 
employed these three kernels for the subsequent predic-
tion analysis.

Final prediction analysis
Final prediction analysis was performed using the three 
selected kernels (Laplace, linear and RBF) with opti-
mum parameters setting. The optimum values γ (for 
RBF and Laplace) and C (for RBF, Laplace and linear) 
were determined by performing a grid search with γ : 
2–6 to 26 and C: 2–6 to 26 with step size 2. Here, 2–6:26 
with step size 2 means 2–6, 2–5, 2–4, 2–3, 2–2, 2–1, 20, 21, 
22, 23, 24, 25, 26. For all the three kernels, higher accura-
cies were obtained with the default parametric values. 
Therefore, the prediction was made with the default 
parameter settings (Additional file 2: Table S2). Higher 
accuracies were obtained with the linear kernel for 
Q1 (61.13%) and Q2 (64.76%) sub-datasets, whereas 
the Laplace and RBF achieved higher accuracies for 
Q3 (65.69%) and Q4 (60.01%) respectively (Table  4). 
With regard to precision, the linear kernel achieved 
higher accuracies for Q1 (61.63%), Q2 (65.19%) and 
Q3 (64.67%), whereas the RBF kernel secured the high-
est accuracy for Q4 (60.05%) (Table  4). Sensitivities 
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of Q1 (68.64%) and Q2 (67.52%) were higher with the 
RBF kernel, whereas the sensitivities for Q3 (70.56%) 
and Q4 (64.91%) were higher with the Laplace kernel 
(Table  4). Higher values of specificities were obtained 
with the linear kernel for Q2 (62.61%) and Q3 (63.89%), 
whereas the RBF and Laplace kernels achieved higher 
specificities for Q4 (60.29%) and Q1 (63.21%), respec-
tively (Table 4). The aucROC values for Q1 (52.5%), Q2 
(50.4%), Q3 (49.5%) were higher with the Laplace ker-
nel, whereas the linear kernel secured higher aucROC 
for Q4 (51.1%) (Fig.  2b). The aucPR values for Q3 
(47.8%) and Q4 (50.7%) were higher with the RBF ker-
nel, whereas the Laplace and linear kernel achieved 
higher aucPR for Q1 (53%) and Q2 (51.3%), respectively 
(Fig. 2b).

The linear kernel achieved higher accuracy and preci-
sion for Q1, whereas the aucPR, aucROC and specificity 
were higher with the Laplace kernel. For Q2, the specific-
ity, accuracy, precision and aucPR were higher with the 
Laplace kernel, whereas the linear kernel achieved higher 
accuracy in terms of sensitivity and aucROC. In Q3, the 
specificity, precision and aucPR were higher with the lin-
ear kernel, whereas the sensitivity, accuracy and aucROC 
were higher with the Laplace kernel. For Q4, though RBF 
secured higher accuracy in terms of specificity, accuracy, 
precision and aucPR, the Laplace kernel achieved higher 
accuracy in terms of sensitivity and aucROC than that of 
RBF. Thus, no kernel was found to be an obvious choice 
with regard to higher prediction accuracy. Therefore, we 
employed a multiple criteria decision making (MCDM) 

Fig. 2  a Classification accuracy with respect to classification of circadian and non-circadian proteins by using support vector machine with the 
radial (RBF) kernel with addition of iteratively generated features. It is observed that the accuracies are improved by addition of iteratively generated 
features in all the four sub-datasets. b ROC and PR curves with regard to the classification of circadian and non-circadian proteins by using support 
vector machine with linear, Laplace and RBF kernels
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approach to determine the best kernel function which is 
explained in the next section.

TOPSIS analysis
The MCDM method TOPSIS [62] with different per-
formance metrics as the multiple criteria was used to 
determine the best kernel (in terms of accuracy). The 
TOPSIS scores were higher with the Laplace kernel for 
Q1 (61.12) and Q3 (58.11), whereas the linear and RBF 
kernel achieved higher scores for Q2 (67.50) and Q4 
(57.91) sub-datasets, respectively (Table  5). Overall, the 
highest score (73.20) was achieved by the Laplace kernel 
as compared to the linear (70.09) and RBF (23.77) kernel 
functions (Table  5). Thus, the Laplace kernel function 
was chosen as the best kernel function and utilized for 
the subsequent analysis.

Prediction with the independent test dataset
The SVM with the Laplace kernel was used for the pre-
diction of the independent dataset. The independent 
dataset was built with the circadian clock associated 
sequences collected from the existing studies. We col-
lected 30 sequences from [63], 27 sequences from [64], 
13 sequences from [33] and 26 sequences from [65]. Out 
of 96 sequences (30 + 27 + 13 + 26), some sequences were 
not found in NCBI (while searching with the gene  ID) 
and some others were found to be present in the train-
ing (positive) dataset. After excluding such sequences, 
the remaining 54 circadian protein sequences were used 
as an independent dataset. Prediction for the independ-
ent dataset was made by using the models trained with 
Q1, Q2, Q3 and Q4 sub-datasets. Out of 54 sequences, 34 
sequences were correctly predicted as circadian proteins 
and 20 sequences were wrongly predicted as non-circa-
dian proteins. In other words, an accuracy of 62.96% was 
obtained with the independent dataset, which was simi-
lar to that of fivefold cross-validation accuracy with the 
Laplace kernel i.e., 62.48% (61.04 + 64.20 + 65.69 + 59.01
/4). Thus, it may be said that the prediction accuracy was 
neither overestimated nor underestimated.

Comparative analysis with other machine learning 
algorithms
The performance of SVM with the Laplace kernel (pro-
posed approach) was further compared with that of other 
state-of-art machine learning algorithms, i.e., Random 
Forest (RF) [66], Bagging [67], Adaptive Boosting (Ada-
Boost) [68], eXtreme Gradient Boosting (XGBoost) [69] 
and L1-penalized logistic regression LASSO [70]. The RF, 
Bagging, AdaBoost, XGBoost and LASSO were imple-
mented by using the R-packages randomForest [71], ipred 
[72], adabag [73], xgboost [74] and glmnet [75] respec-
tively. All the predictions were made with default param-
eters (Additional file  3: Table  S3) and the performance 
metrics were measured by following fivefold cross-val-
idation. In terms of sensitivity, specificity, accuracy and 
precision, performance of the LASSO and the proposed 
approach were observed to be higher than that of other 
four algorithms (Fig.  3). RF achieved higher auROC for 
Q1 (55.08%), Q2 (52.69%) and Q3 (52.23%), whereas 
XGBoost for Q4 (50.36) sub-datasets (Fig.  3). The pro-
posed approach achieved higher aucPRC for Q1 (53.01%) 
and Q2 (50.13%), whereas XGBoost and AdaBoost for 
Q3 (50.67%) and Q4 (60.66%), respectively. Between 
LASSO and the proposed approach, higher specificities 
were achieved by LASSO (Q2: 65.45%, Q3: 64.46%, Q4: 
57.43%) than that of proposed approach (Q2: 64.32%, 
Q3: 60.81%, Q4: 53.11%). On the other hand, higher sen-
sitivities were observed for the proposed approach (Q2: 
64.07%, Q3: 70.56%, Q4: 64.91%) than that of LASSO 

Table 4  Classification accuracy of the support vector machine 
with three different kernels with default parameters

Classification was made with each sub dataset and performance metrics were 
computed following repeated cross validation where the experiment was 
repeated 100 times. In terms of accuracy, performances are higher for the 
Laplace kernel for Q2 and Q3 sub-datasets, whereas linear and RBF kernel 
performed better in Q1 and Q4 respectively. Performance metrics are higher for 
Q2 and Q3 sub-datasets than that of Q1 and Q4. The accuracies are seen to be 
more stable for RBF kernel, barring few exceptions

Dataset Kernel Sensitivity Specificity Accuracy Precision

Q1 Linear 59.24 ± 0.90 63.02 ± 3.42 61.13 ± 1.66 61.63 ± 2.16

Laplace 58.86 ± 1.71 63.21 ± 2.42 61.04 ± 1.86 61.56 ± 2.07

Radial 68.64 ± 1.55 51.86 ± 3.42 60.25 ± 1.54 58.81 ± 1.55

Q2 Linear 63.32 ± 2.06 66.21 ± 1.39 64.76 ± 1.48 65.19 ± 1.43

Laplace 64.07 ± 1.83 64.32 ± 2.11 64.20 ± 1.49 64.25 ± 1.57

Radial 67.52 ± 3.67 60.62 ± 1.30 64.07 ± 1.93 63.14 ± 1.47

Q3 Linear 66.10 ± 4.34 63.89 ± 2.85 65.01 ± 2.20 64.67 ± 1.94

Laplace 70.56 ± 4.25 60.81 ± 2.61 65.69 ± 1.93 64.29 ± 1.56

Radial 67.61 ± 3.52 60.75 ± 4.74 64.18 ± 1.11 63.36 ± 1.78

Q4 Linear 59.26 ± 2.29 57.94 ± 3.71 58.61 ± 2.50 58.53 ± 2.63

Laplace 64.91 ± 2.68 53.11 ± 2.27 59.01 ± 1.71 58.06 ± 1.48

Radial 59.70 ± 2.52 60.29 ± 1.98 60.01 ± 1.51 60.05 ± 1.45

Table 5  TOPSIS scores of the prediction performance for the 
three different kernels

For Q1 and Q3, TOPSIS scores are higher for the Laplace kernel, whereas linear 
and RBF achieved higher scores for Q2 and Q4 respectively. While all the four 
sub-datasets are accounted, the Laplace kernel achieved higher TOPSIS score 
than the other two kernel functions

Kernel Q1 Q2 Q3 Q4 Overall

Linear 54.64 67.50 45.98 47.56 70.09

Laplace 61.12 59.85 58.11 41.67 73.20
Radial 40.78 31.75 24.98 57.91 23.77
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(Q2: 63.26%, Q3: 66.6%, Q4: 60.14%). However, the accu-
racy and precision of the proposed approach and LASSO 
were found to be similar (Fig. 3). Thus, the LASSO and 
the proposed approach may achieve similar accuracy and 
better than the other considered algorithms.

Proteome‑wide identification and functional annotation
The developed computational model was further 
employed for proteome-wide identification of proteins 
associated with the CR (CR-proteins). We collected the 
proteome-wide sequence datasets of two crop species 

Fig. 3  Difference performance metrics of the proposed approach (SVM with the considered features) along with the five other state-of-art learning 
algorithms. The accuracies of the proposed approach are found at par with that of LASSO, but higher than the other algorithms



Page 10 of 15Meher et al. Plant Methods           (2021) 17:46 

i.e., rice (proteme id: UP000059680) and sorghum (pro-
teome id: UP000000768) from the proteome database 
(https://​www.​unipr​ot.​org/​prote​omes/). There were four 
trained models in the background corresponding to Q1, 
Q2, Q3 and Q4. Based on the sequence length of the sup-
plied test sequence, the trained model was first decided 
and subsequently the prediction was made. Out of 48,903 
sequences of rice, only 1538 were predicted as CR-pro-
teins with > 0.8 probability. Similarly, 1510 out of 41,298 
sequences of sorghum were predicted as CR-proteins 
with > 0.8 probability. The probability threshold 0.8 was 
used to minimize the number of false positives. Func-
tional analysis of the predicted 1538 rice sequences and 
1510 sorghum sequences were also carried out with Gene 
Ontology (GO) terms. The GO annotation (biological 
process and molecular function) was performed using the 
PANTHER [76]. In rice, 1260 out of 1538 were mapped 
into biological processes (BP) and molecular functions 
(MF). In sorghum, 1140 out of 1510 were mapped into BP 
and MF. For BP in rice, biological_process (GO:0008150; 
51.98%), cellular process (GO:0009987; 39.44%), meta-
bolic process (GO:0008152; 38.57%), organic substance 
metabolic process (GO:0071704; 33.33%) and cellular 
metabolic process (GO:0044237; 31.19%) showed maxi-
mum number of hits (Fig. 4). With regard to MF in rice, 
the most represented GO terms were molecular_function 
(GO:0003674; 55.31%), catalytic activity (GO:0003824; 
39.04%), binding (GO:0005488; 33.57%) and ion bind-
ing (GO:0043167; 20.79%) (Fig.  4). In sorghum, meta-
bolic process (GO:0008152; 39.47%), organic substance 
metabolic process (GO:0071704; 33.15%), cellular meta-
bolic process (GO:0044237; 32.11%) and nitrogen com-
pound metabolic process (GO:0006807; 26.22%) were the 
most represented BP, whereas the molecular_function 
(GO:0003674; 57.36%), catalytic activity (GO:0003824; 
40.78%) and hydrolase activity (GO:0016787; 14.12%) 
were the most represented MF (Fig.  4). The metabolic 
process showed significant enrichment in BP, whereas 
the catalytic, hydrolase and transferase activities were 
found significantly enriched for MF category in both rice 
and sorghum (Fig. 4).

An R‑package for users
Based on the proposed computational model, we devel-
oped an R-package “PredCRG” (https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​PredC​RG/​index.​html) for proteome-
wide identification of proteins encoded by the circadian 
genes. There are three main functions in this package 
i.e., PredCRG, PredCRG_Enc and PredCRG_training. 
With the function PredCRG, users can predict the labels 
of the test protein sequences as circadian (CRG) or non-
circadian (non-CRG) along with their probabilities. The 

function PredCRG_Enc can be used to encode the protein 
sequences based on the features of the PredCRG model. 
Most importantly, with the function PredCRG_training, 
users can develop their prediction models using four dif-
ferent kernel functions (Laplace, RBF, linear and poly-
nomial) with their training datasets. The trained model 
can be subsequently used for the prediction of the test 
sequence of their interest. In summary, the developed 
R-package will be of great help for the researchers work-
ing in the field of identifying circadian genes via wet-lab 
experiments.

Discussion
The distribution of common CR-related genes in plants 
is yet to be fully understood [63]. Identification of molec-
ular components underlying the plant CR will certainly 
facilitate understanding the plant behavior in response 
to different environmental stimuli [77]. Circadian genes 
manipulation may help breeding crop cultivars with 
enhanced reproductive fitness [1, 33]. Circadian genes 
also reciprocate the defense signaling genes in plants 
[78]. Keeping in mind the roles of circadian genes, a com-
putational model was developed in the present study to 
recognize the proteins encoded by the circadian genes.

We collected the experimentally validated circadian 
gene sequences of the plant species from the CGDB data-
base (http://​cgdb.​biocu​ckoo.​org/) and constructed the 
positive set. As far as non-circadian gene sequence is 
concerned, no database having such sequences is avail-
able. Thus, the protein sequences of the Viridiplantae 
clad collected from the UniProt database was used as 
the negative set. Further, we employed the CD-HIT algo-
rithm to remove the redundant sequences from both the 
positive and negative sets. The CD-HIT algorithm sorts 
the input sequences from long to short, and processes 
them sequentially from the longest to the shortest. The 
first sequence is classified as the representative sequence 
of the first cluster. Then, each of the remaining sequences 
is compared to the representative sequences and is clas-
sified as redundant if it is found similar (with the given 
sequence identity cut-off) to the existing representative 
sequence. This process is repeated till all the sequences 
are classified as either redundant or representative. 
Finally, the non-redundant dataset (at the given thresh-
old) is obtained by combining all the representative 
sequences. In this study, we applied a 40% sequence iden-
tity cut-off and obtained the dataset in which none of the 
sequences were > 40% identical to any other sequences.

The positive (39–4218 amino acids) and negative 
(43–5400 amino acids) datasets were found to be much 
diverse with regard to sequence length. As sequence 
length plays an important role in determining the phys-
ico-chemical properties of protein sequences, both 

https://www.uniprot.org/proteomes/
https://cran.r-project.org/web/packages/PredCRG/index.html
https://cran.r-project.org/web/packages/PredCRG/index.html
http://cgdb.biocuckoo.org/
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Fig. 4  Gene Ontology terms analysis of the predicted circadian proteins for rice and sorghum
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positive and negative sets were partitioned into four 
homogeneous sub-datasets. As expected, improve-
ments in accuracies were found with the homogene-
ous sub-datasets as compared to the heterogeneous full 
dataset. One of the probable reasons for this may be the 
generation of noisy observation vectors with the diverse 
sequence length. Amino acid composition and physico-
chemical features of proteins determine their functions 
to a large extent [79–81]. Thus, the compositional and 
physico-chemical features were adopted for the genera-
tion of discriminative features.

The considered kernel functions are either expressed 
as the inner product of the feature vectors (polynomial, 
hyperbolic, linear and sigmoid) or the distance between 
the feature vectors (radial, Laplace and Bessel). Among 
the kernel functions, the Laplace kernel emerged as the 
best kernel followed by the linear and RBF for classifica-
tion of circadian and non-circadian proteins. Though the 
Laplace kernel was found more appropriate in the pre-
sent study, accuracy may vary with different positive and 
negative datasets.

While compared with other start-of-art machine learn-
ing methods such as RF, XGBoost, AdaBoost, Bagging, 
SVM was found to outperform them. We also noticed 
that the accuracy obtained with the LASSO was similar 
to that of SVM with the Laplace kernel. Although LASSO 
produces biased estimates, an advantage of LASSO is 
that it may yield higher accuracy by ignoring the redun-
dant features. When we plotted the correlation matrix 
among the generated numeric features in the form of 
heat maps (Fig.  5), a higher degree of correlations was 
observed among certain features. The higher correlations 
among the features might have induced the redundancy 

in the feature set. So, one of the probable reasons for get-
ting higher accuracy with the LASSO may be the use of 
only non-redundant features.

Motivated from the earlier studies [82, 83], the pre-
dicted label of the observation was utilized as additional 
feature. With the addition of such features, a little or no 
improvement in accuracy was found with the linear and 
Laplace kernels. On the other hand, improvement in 
accuracy was noticed with the RBF kernel. Improvement 
with the RBF and no improvement with the linear and 
Laplace kernels may be due to the non-linear relationship 
between the iteratively generated features (-1  s and 1  s 
only) and the response vector.

The developed computational model achieved ~ 63% 
classification accuracy, while assessed through fivefold 
cross-validation procedure. Similar accuracy was also 
obtained with the independent test dataset. Equivalent 
accuracy for five-fold cross-validation and independent 
test set implies that there was neither over-prediction 
nor under-prediction accuracy with the proposed model. 
We further performed proteome-wide identification of 
circadian proteins using proteome dataset of rice and 
sorghum, followed by the functional annotation of the 
predicted circadian proteins. For reproducibility of the 
work, we have developed the R-package “PredCRG”. We 
anticipate that this package would not only be helpful for 
the users to predict their test sequences, but also to build 
their prediction model using their training dataset.

Conclusions
This study presents a novel computational approach 
for the recognition of proteins encoded by the circa-
dian genes. The prediction accuracy is not very high. 

Fig. 5  Heat maps showing the correlation among 62 numeric features in four sub-datasets. It can be seen that some of the features are highly 
correlated
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However, this is the first computational approach for 
predicting the circadian genes (proteins) with the 
sequence dataset. So, we believe that further improve-
ment can be made by including more discriminatory 
feature sets. The developed approach is expected to 
supplement the existing models that are based on gene 
expression data. The R-package “PredCRG” is believed 
to be of great help to the scientific community for 
proteome-wide identification of circadian genes. Our 
future endeavor would be to develop a more accurate 
model by using the sequence dataset.
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