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Abstract 

Background:  The leaf water content estimation model is established by hyperspectral technology, which is crucial 
and provides technical reference for precision irrigation.

Methods:  In this study, two consecutive years of field experiments (different irrigation times and seven wheat varie-
ties) in 2018–2020 were performed to obtain the canopy spectra reflectance and leaf water content (LWC) data. The 
characteristic bands related to LWC were extracted from correlation coefficient method (CA) and x-Loading weight 
method (x-Lw). Five modeling methods, spectral index and four other methods (Partial Least-Squares Regression 
(PLSR), Random Forest Regression (RFR), Extreme Random Trees (ERT), and K-Nearest Neighbor (KNN)) based charac-
teristic bands, were employed to construct LWC estimation models.

Results:  The results showed that the canopy spectral reflectance increased with the increase of irrigation times, espe-
cially in the near-infrared band (750–1350 nm). The prediction accuracy of the newly developed differential spectral 
index DVI (R1185, R1307) was higher than that of the existing spectral index, with R2 of 0.85 and R2 of 0.78 for the cali-
bration and validation, respectively. Due to a large amount of hyperspectral data, the correlation coefficient method 
(CA) and x-Loading weight (x-Lw) were used to select the water characteristic bands (100 and 28 characteristic bands, 
respectively) from the full spectrum. We found that the accuracy of the model based on the characteristic bands was 
not significantly lower than that of the full spectrum-based models. Among these models, the ERT- x-Lw model per-
formed the best (R2 and RMSE of 0.88 and 1.46; 0.84 and 1.62 for the calibration and validation, respectively). In addi-
tion, the accuracy of the LWC estimation model constructed by ERT-x-Lw was higher than that of DVI (R1185, R1307).

Conclusion:  The two models based on ERT-x-Lw and DVI (R1185, R1307) can effectively predict wheat leaf water 
content. The results provide a technical reference and a basis for crop water monitoring and diagnosis under similar 
production conditions.
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Background
Wheat is the main food crop in North China. Due to the 
imbalance between precipitation and water demand dur-
ing the growing period, reasonable irrigation has become 
a necessary condition for a high yield of wheat [1]. The 
leaf is an essential component of plant canopy structure 
and the site where a substantial number of important 
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biochemical processes occur; thus, leaf water content 
is an important indicator that reflects the overall crop 
water status and indirectly indicates the input and output 
of soil water [2, 3]. Therefore, the leaf water content can 
be used as a reliable reference index for making feasible 
irrigation decisions [4]. Hyperspectral remote sensing 
technology has the advantages of being fast, economic, 
and nondestructive. It can be used to monitor the growth 
of crops by obtaining reflectance information. Hence, 
the development of a diagnostic model of water status by 
hyperspectral remote sensing technology is of substan-
tial significance for precision irrigation and water-saving 
irrigation.

Currently, hyperspectral remote sensing technology is 
widely used in crop water monitoring scenarios. In pre-
vious studies, the relationship between wheat leaf water 
content and hyperspectral data has been analyzed, and 
the spectral index has been used to estimate leaf water 
content. For example, the leaf water content of rice, pea-
nut, soybean, and wheat can be well predicted by the 
ratio of the water index to the normalized vegetation 
index (WI(R900/R970)/NDVI(R900 − R680)/(R900 + R680), 
where R is the wavelength of the original spectral reflec-
tance) [5]. Zhao et  al. [6] established the presence of a 
significant correlation between leaf water content and 
the normalized difference water index (NDWI), the sim-
ple ratio (SR), and the shortwave infrared perpendicular 
water stress index (SPSI). Moreover, Rapaport et  al. [7] 
developed a water balance index (WABI = (R1500 – R531)/ 
(R1500 + R531)) for monitoring the plant water status 
in grapevine under field conditions. In recent years, 
machine learning methods have been increasingly uti-
lized for modeling and analysis of wheat growth infor-
mation and water index. In this respect, Zhang et al. [8] 
used reflectance data in the range of 859–1640 nm, par-
tial least squares (PLSR), artificial neural network (ANN), 
and support vector machine (SVN) algorithms to con-
struct models for estimating wheat leaf water content and 
the equivalent water thickness content, and compared 
the prediction accuracy with the vegetation index model, 
employed as a reference model. Additionally, Das et  al. 
[9] established a prediction model of wheat relative water 
content using a PLSR algorithm, multiple linear regres-
sion, SVN and random forest regression (RFR), based on 
hyperspectral and relative water content data of 10 wheat 
varieties in different periods. When full-band data are 
used for modeling, some issues arise, such as interference 
of redundant band information and long operation time, 
caused by a large amount of data, which exerts a certain 
negative impact on the model accuracy [10]. Therefore, 
it is highly important to select sensitive bands related to 

agronomic parameters. Sun et al. [11] utilized continuous 
wavelet transform (CWT) to decompose and transform 
the canopy spectra under different irrigation treatments, 
and established that the PLSR model constructed using 
2400, 1596, and 2397  nm bands effectively estimated 
wheat equivalent water thickness (EWT). In another 
investigation, Krishna et  al. [12] found that the whole 
spectral reflectance band of rice was reduced to 32 by 
the loading weight method, which did not decrease the 
accuracy of the model. In addition to the aforementioned 
modeling methods, random forest, extreme random tree 
and k-nearest neighbor algorithms have also been used 
to estimate biomass, nitrogen content, leaf area, and 
SPAD [13–15]. However, these methods have been rarely 
applied for the assessment of wheat leaf water content.

In this study, five different models were established 
separately based on the canopy reflectance of seven 
wheat varieties under different irrigation treatments 
from 2018 to 2020. The main purpose of this inves-
tigation was to provide a future reference for hyper-
spectral monitoring of winter wheat leaf moisture 
under similar production conditions. To achieve this 
purpose, three major experimental sub-goals were 
defined: (i) to analyze the effect of different irrigation 
times on wheat leaf water content and spectral reflec-
tance; (ii) to evaluate the performance of newly devel-
oped spectral indices and existing spectral indices for 
leaf water content; and (iii) to compare the ability of 
four the regression models established by the four 
algorithms to monitor leaf water content and to iden-
tify the optimal model among them.

Experimental materials and methods
Design of field experiments
Experiment 1
The experiment was conducted in the field of Luoyang 
Academy of Agricultural and Forestry Sciences, Luoyang 
City, Henan Province, China (112° 49′ 18″ E, 36° 64′ 14″ 
N from 2018 to 2019). The soil type is loamy cinnamon 
soil (Organic Matter: 14.4  g  kg−1, Total N:1.83  g  kg−1, 
P2O5:24.6  mg  kg−1, K:126.9  mg  kg−1). The experimental 
variables included different irrigation period treatments 
(w0: irrigation at the bottom  stage w1: irrigation  at the 
bottom and jointing stage, w2: irrigation at bottom, joint-
ing and grain-filling stage) and seven different winter 
wheat cultivars (Luomai 27, Zhengmai 136, Zhengmai 
22, Zhengmai 16, Zhonngyu 1211, Luomai 34 and Zhou-
mai 18). A randomized complete block design was used 
in all experiments, in which winter wheat was planted 
in 42 plots (each with a size of 2.6  m × 5  m) with two 
replicates.
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Experiment 2
The experimental site was the same as that of experiment 1 
(112° 49′ 18″ E, 36° 64′ 14″ N from 2019 to 2020). The soil 
type in this area is loamy cinnamon soil (Organic Mat-
ter: 13.2  g kg−1, Total N:1.05  g kg−1, P2O5:18.6  mg kg−1, 

K:116.3  mg kg−1). The area of the sub-region was 10.4 m2 
(2.6  m × 4  m). The cultivation management measures and 
the sampling period were the same as those in experiment 1. 
Additional details regarding the experimental design and the 
sample collection time are presented in Table 1 and Fig. 1.

Table 1  Experimental treatments and sampling periods

Exp.no. Year Cultivars Irrigation 
treatments

Irrigation date Sampling 
time and 
date

Exp. 1 2018–2019 Luomai 27
Luomai 34
Zhengmai 16
Zhongyu 1211
Zhengmai 136
Zhoumai 18
Zhengmai 22

w0 Irrigation at the bottom stage/October 18, 2018 Mar 15

w1 Irrigation at the bottom stage/October 18, 2018 Mar 30

Irrigation at the jointing stage/March 20, 2019 Apr 18

w2 Irrigation at the bottom stage/October 18, 2018 Apr 25

Irrigation at the jointing stage/March 20, 2019 May 10

Irrigation at grain-filling stage/May 1, 2019 May 20

Exp. 2 2019–2020 Same as above W0 Irrigation at the bottom stage/October 22, 2019 Mar 13

W1 Irrigation at the bottom stage/October 22, 2019 Mar 28

Irrigation at the jointing stage/March 18, 2020 Apr 15

W2 Irrigation at the bottom stage/October 22, 2019 Apr 23

Irrigation at the jointing stage/March 18, 2020 May 8

Irrigation at grain-filling stage/April 25, 2020 May 18

Fig. 1  Layout of the experimental design in 2018–2019 and 2019–2020. P1, P2, P3, P4, P5, P6 and P7 represented wheat cultivars, P1: Luomai 27, P2: 
Zhengmai 136, P3: Zhengmai 22, P4: Zhengmai 16, P5: Zhongyu 1211, P6: Luomai 34, P7: Zhoumai 18. w0, w1, and w2 represent different irrigation 
treatments: w0 is the irrigation during the bottom stage, w1 is the irrigation during the bottom and jointing stages, and w2 is the irrigation during 
the bottom, jointing, and grain-filling stages
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Determination method and index
Measuring plant hyperspectral data
All canopy spectral reflectance measurements were 
obtained from a height of 1.0  m above the vertical 
canopy under clear sky conditions between 10:00 and 
14:00 (Beijing local time), using ASD Field Spec Pro 
spectrometer (Analytical Spectral Devices, Boulder, 
CO, USA) with a 25° field of view fiber optics. Reflec-
tance values in the 350–2500  nm range were col-
lected with a sampling interval of 1.4 nm and spectral 
resolution of 3 nm between 350 and 1050 nm, and 2 
and 10 nm, respectively, between 1050 and 2500 nm. 
Moreover, the black and baseline reflectance was 
calculated using a 0.40 × 0.40 m2 white calibration 
panel made of BaSO4.To minimize the effects caused 
by sky and field conditions, spectral measurements 
were obtained from 10 sites in each plot and averaged 
into a single spectral sample. For each experiment, 
measurements were obtained on several dates that 
reflected the major growth stages of wheat. Using 
ViewSpec Pro version 6.0 software to assemble and 
interpret date.

Determination of the leaf water content
After the canopy spectra was measured, wheat plants 
were collected at corresponding points, and all leaves 
were extracted. The water content of the wheat leaves 
was determined by the drying method. The fresh weight 
of the leaves was weighed with an analytical balance 
(accuracy of 0.01  g). The leaves were then placed into 
an oven at 105  °C for 30  min. Finally, the samples were 
overdried at 80  °C until a constant weight was reached, 
which took approximately 3–5 days, and the dry weight 
was recorded. The LWC was calculated using the follow-
ing formula [16]:

where LWC is the water content of leaf, g.g−1; mf is the 
fresh weight of leaves, g; md is the dry weight of the 
leaves, g.

(1)LWC =
(mf −md)

mf

× 100

Data analysis and utilization
During the 2 years of the experiment, a total number of 
252 wheat samples were collected. The data from 2018–
2019 were used for model calibration (n = 126), whereas 
the test data from 2019–2020 were utilized as validation 
samples (n = 126). The statistical parameters of the leaf 
water content determined in each sample set are shown 
in Table  2. A flow chart of the development and appli-
cation of the winter wheat LWC estimation modeling 
method can be seen in Fig. 2.

Characteristic band screening
Due to the effect of the atmosphere on reflectance meas-
urements, the ranges 1350–1400, 1800–1950, and 2450–
2500 nm were excluded in this study. The assessment of 
the input of all spectral bands in the model would cause 
"dimension disaster". Therefore, the correlation coeffi-
cient and the load factor methods are used to screen the 
characteristic bands.

(1)	Correlation coefficient (CA)

This method determines the characteristic bands based 
on a coefficient of the correlation between the spectral 
band and the parameters. The correlation between the 
leaf water content and the canopy reflectance under dif-
ferent irrigation treatments was analyzed in this investi-
gation. The characteristic wavelength was determined by 
selecting the maximum absolute value of the correlation 
coefficient and the position of the wave crest and trough.

(2)	x-Loading weight (x-Lw)

The loading weight based on the PLSR model can estab-
lish the proportion of the influence of different depend-
ent variables of that of the total independent variables, 
which is of great significance for the rapid screening of 
characteristic bands [17]. The peak and valley values 
are extremum and can reflect the influence of a specific 
waveband on water content. In this study, the peak and 
trough were selected as the characteristic bands.

Table 2  Statistical parameters of the leaf samples used for determination of wheat leaf water content (LWC %)

Sample sets Experimental 
year

Sample size Maximum Minimum Mean Standard 
deviation

Coefficient of 
variation

Total 2018–2020 252 88.61 55.87 78.82 4.76 6.02

Modeling set 2018–2019 126 88.61 55.87 78.80 5.71 7.25

Validation set 2019–2020 126 83.75 67.54 78.84 3.92 4.98
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Based on the feature bands selected by the aforemen-
tioned two methods as independent variables, the inver-
sion models for leaf water content estimation of winter 
wheat were constructed by PLSR, RFR, ERT, and KNN.

Modeling method

(1)	Spectral index

In line with the existing research, the spectral index 
related to crop water status has been selected as shown in 
Table 3, and the relationship with leaf water content has 
also been analyzed. To obtain better spectral parameters, 
the normalized vegetation index (NDVI), the ratio veg-
etation index (RVI) and the difference vegetation index 
(DVI) were calculated in the range of 350–2500  nm, 

which were shown in the following formula, and the rela-
tionship between them and leaf water content was ana-
lyzed, so as to determine the optimal spectral estimation 
of leaf water content parameters were measured.

R λ 1 and R λ 2 represent the reflectivity of any two 
bands in the range of 350–2500  nm, respectively, and 
were selected by using self-developed code in MATLAB 
software.

(2)	Partial Least-Squares Regression (PLSR)

(2)NDVI (�1, �2) = (R�1− R�2)/ (R�1+ R�2)

(3)RVI (�1, �2) = R�1/R�2

(4)DVI (�1, �2) = R�1− R�2

Fig. 2  Flow chart of the overall research work performed
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A model can be effectively established by PLSR in 
cases of significant multiple correlations of independ-
ent variables [27]. In the process of modeling, the large 
number of measured collinear spectral variables was 
reduced to a few non-correlated latent variables [14]. 
Therefore, the cross-correlation among multiple hyper-
spectral features can be explained by this method [28]. 
Here, we calculated and used the number of latent vec-
tors yielding the smallest root mean squared error. We 
determined the number of latent vectors by the "Loo" 
cross-validation method using the Python 2.7 package 
“sklearn.cross decomposition”.

(3)	Random Forest Regression (RFR)

RFR can establish the relationship between multi-
ple independent variables and a dependent variable. 
Importantly, this method improves the prediction 
accuracy of the individual model through fitting many 
regression trees [29]. To apply this technique, we used 
“sklearn. tree” in Python 2.7, with “ n_estimators = 500, 
max_features = ‘sqrt’”.

(4)	Extreme Random Trees (ERT)

ERT is a top-down method that is very similar to the 
random forest approach, but is different from the lat-
ter in two points: first, it does not adopt bootstrap sam-
pling with a replacement strategy but directly uses the 
original training samples to reduce the deviation; sec-
ond, the bifurcation value is completely random, which 
can achieve the bifurcation of a decision tree. The result 
is smaller and more stable than that of the random 
forest [30]. To apply this technique, we used library – 
“sklearn. ensemble” in Python 2.7, with the parameters 
of “n_estimators = 500, max_features = ‘sqrt’”.

(5)	K-Nearest Neighbor (KNN).

KNN was proposed by Cover and Hart, which is a 
classification algorithm based on the proximity of simi-
lar samples in the pattern space [31]. Euclidean distance 
is used to measure the similarity between samples. A 
larger distance lowers the similarity. In this study, the 
k-nearest neighbor algorithm was employed in “sklearn. 
neighbors” of Python 2.7. A cross-validation method 
was used to determine K-values, K = 3.

Model validation
The coefficient of determination (R2), root mean square 
error (RMSE) and the ratio of performance to deviation 
(RPD) were used to evaluate the accuracy of the model. 
The calculation formula is as follows:

where y and ŷ represent the measured and predicted 
values, respectively. y represents the average of meas-
ured values. n is the number of samples. SD is the stand-
ard deviation of the measured data. The larger R2 with 
smaller RMSE values indicate good model prediction 
accuracy. The RPD values > 1.4 indicate that the predic-
tion ability of the model is acceptable, and the model can 
be applied.

(5)R2
= 1−

n∑

i=1

(
yi − ŷi

)2
/

n∑

i=1

(
yi −

−

y

)2

(6)RMSE =

√√√√1

n
×

n∑

i=1

(yi − ŷi)
2

(7)RPD = SD/RMSE

Table 3  The calculation method and reference of spectral index related to crop moisture status

Spectral index Definition or equation References

Ratio Index R1650/R2220 Elvidge et al. [18]

Normalized differential water index, NDWI (R860−1240)/(R820 + 1240) Gao et al. [19]

Moisture stress index, MSI R1600/R820 Hunt et al. [20]

Maximum water difference index, MDWI (Rmax1500−1750)-(Rmin1500−1750)/(Rmax1500−1750) + (R
min1500−1750)

Eitel et al. [21]

Hyperspectral normalized difference vegetation index, hNDVI (R900−R680)/(R900−R680) Rouse et al. [22]

Water index, WI R900/R970 Penuelas et al. [23]

Simple ratio water index, SRWI R820/R1200 Zarco-Tejada et al. [24]

Normalized Difference Infrared Index, NDII (R820−R1649)/(R820 + R1679) Hardisky et al. [25]

WI/hNDVI (R900/R970)/[(R900−R680)/(R900−R680)] Zhang et al. [8]

FD730-955 FD730/FD955 Liang et al. [26]
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Results
Effects of the irrigation times on the leaf water content 
(LWC) and canopy spectral reflectance of wheat
To explain the effects of different irrigation times on 
LWC and canopy spectra, the data of experiment 1 
were taken as an example. As can be seen from Fig. 3, 
plant growth of all varieties was accompanied with an 
initial increase in LWC, followed by a decrease. The 
highest LWC value was reached 10 days after the irriga-
tion at the jointing stage (Mar 30). At the early wheat 
growth stage, an insignificant difference was observed 
in LWC among the different irrigation time treatments. 
However, it decreased rapidly in the late growth period, 
which gradually increased the difference. The LWC 
in w0 was the lowest, which was significantly lower 
than those in w2 and w1. Our results showed that the 

irrigation at the grain-filling stage delayed leaf senes-
cence and prolonged the green color-retaining period 
of leaves.

We analyzed the effect of irrigation times on wheat 
spectral reflectance in Luomai 27, considering it a rep-
resentative example (Fig.  4). Five days before the irriga-
tion at the jointing stage (Mar 15), the canopy reflectance 
was slightly lower than that detected 10  days after the 
irrigation at the jointing stage (Mar 30) at the same irri-
gation treatment times. The reflectance decreased again 
after the point of 10 days after the irrigation at the grain-
filling stage (May 10). Therefore, the canopy reflectance 
was initially augmented but then decreased with the 
advancement in growth. The canopy reflectance in the 
visible region (350–750 nm) did not change significantly 
with the prolongation in the irrigation times, whereas 

Fig. 3  Effects of different irrigation times on water content of wheat leaves. The letters on the column indicate the significant difference among 
different treatments in the same period (P < 0.05)

Fig. 4  Spectral characteristics of LWC under different irrigation times
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the canopy reflectance in the near-infrared region 
(750–1350 nm) gradually rose. The main reason for that 
tendency is that the sufficient water supply received by 
plants through the irrigation accelerated the growth of 
leaf area index and biomass. In return, the canopy reflec-
tance increased. In particular, there was significant dif-
ference in canopy reflectance among different irrigation 
treatments after filling water, the reflectance of w2, w1, 
and w0 reached 43.45%, 35.28%, and 31.01% at 820 nm, 
respectively. The values of the canopy reflectance of w2, 
w1, and w0 were 32.27%, 28.08%, and 25.58% at 970 nm, 
respectively. The canopy reflectance of w2, w1, and w0 
were 24.00%, 20.47%, and 18.85% at 1266  nm, respec-
tively. It is more evident after filling water, that was 
w2 > w1 > w0. The different irrigation times did not influ-
ence the variations in the canopy spectral reflectance, 
which were basically the same in all wheat varieties.

Correlation between LWC and spectral index of wheat 
leaves
To establish a new spectral vegetation index, the cor-
relations between LWC and all possible two-band com-
binations of NDVI (normalized spectral index), RVI 
(ratio spectral index, and DVI (difference spectral index) 
were analyzed. Then, the contour maps of coefficient of 
determination between LWC and new spectral vegeta-
tion index were plotted (Fig. 5). According to Fig. 5, the 
highest R2 band combination was extracted from the hot 
spot area as the best spectral index of leaf water con-
tent. The results showed that the sensitive regions of the 
three spectral index combinations were consistent, and 
the combination of 800–1300, 1600–1900, and 1950–
2200  nm was better. The best result was obtained that 

NDVI, RVI, and DVI consisting of 1185 nm and 1307 nm 
performed the best for LWC estimation.

Analyses of the correlations between wheat leaf water 
content under different irrigation treatments and the 
existing water-related vegetation indexes (Ratio index, 
NDWI, MSI, MDWI, hNDVI, NDII, WI, SRWI, WI/
hNDVI, and FD730-955), as well as of the newly developed 
three vegetation indexes were conducted, and the predic-
tion performance of the models constructed by the 13 
spectral indices were compared and analyzed (Fig. 6). In 
the modeling set, MSI, NDWI, hNDVI, WI, NDII, and 
FD730–955 were the spectral indices with R2 higher than 
0.6. The models were validated by the data obtained in 
Experiment 2, where R2 ranged from 0.38 to 0.78. Our 
results revealed that the proposed DVI (R1185, R1307) 
had the best performance with high R2 and low RMSE 
values. The best linear equation of LWC predicted by 
DVI value was illustrated in Fig. 7, with calibration R2 of 
0.85 and RMSE of 2.25, validation R2 of 0.78, and RMSE 
of 1.95. Therefore, the newly developed indices can be 
used for accurate estimation of the changes in RWC 
caused by irrigation times in wheat.

Extraction of the characteristic bands of LWC
The correlation between LWC and the original spectral 
reflectance (350–2500  nm) under different irrigation 
times was depicted in Fig. 8. We found that the correla-
tion coefficient ranged from −0.83 to 0.87, with maxi-
mum positive and negative correlation coefficient values 
of 0.86 (618  nm) and −0.83 (769  nm), respectively. By 
selecting the maximum absolute value of the correlation 
coefficient at the local peaks and troughs, we established 

Fig. 5  Contour maps of the coefficients of determination (R2) between LWC and RVI, NDVI and DVI values based on canopy spectra
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the optimal wavelengths, which were 505, 551, 681, 747–
831, 989, 1101, 1158, 1445, 1716, 1782, 1978, 2000, 2007, 
2038, 2242, and 2394 nm.

Based on the contribution rate of the PLSR model 
and RMSEP, the number of principal components was 
determined. When the principal component was 3, 
RMSEP was 2.34% and explained 96.12% of the vari-
ance (88.86%, 6.03%, and 1.23% for PC1, PC2, and PC3, 

correspondingly), which was presented in Fig. 9a. There-
fore, the best characteristic band was determined by the 
peaks and troughs of the loading weight values of the 
three principal components (Fig.  9b). According to the 
data if the above analysis, the optimal bands determined 
were 588, 663, 674, 680, 700, 763, 777, 783, 808, 816, 970, 
977, 984, 1070, 1072, 1156, 1205, 1246, 1264, 1402, 1445, 
1456, 1660, 1678, 1957, 1702, 2221, and 2252 nm.

Fig.6  Coefficient of determination between 13 spectral indices and LWC

Fig.7  Relationships between leaf water content (LWC) and spectral index DVI (R1185, R1307) and model verification
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Comparison of LWC inversion models constructed 
by different methods
The full band and the characteristic band selected by cor-
relation coefficient (CA) and x-Loading weight (x-Lw) 
were used as independent variables respectively, and 
LWC was taken as the dependent variable. After the 
PLSR, KNN, RF and ERT models were established.

The full and characteristic bands that were selected by 
the two methods as input and the models constructed 
by different modeling methods are presented in Table 4. 
The accuracy of the model was not significantly lower 
than that of the full-band model, with feature bands 

extracted from CA and x-Lw as independent variables, 
but the input variables were reduced, which improved 
the efficiency of the model. For 100 characteristic bands 
selected by CA method was used as the input of the 
model, and the performance of the model was as fol-
lows: PLSR-CA > ERF-CA > RF-CA > KNN-CA. For 
the 28 characteristic bands selected by x-Lw method, 
the performance of the model was as follows: ERF-x-
Lw > PLSR-x-Lw > RF-x-Lw > KNN-x-Lw. Compared 
with the CA method, the number of the independ-
ent variable was lower by 98.63% in the x-Lw method, 
which significantly improved the modeling efficiency. 

Fig.8  Correlation between canopy reflectance and leaf water content (LWC)

Fig. 9  Principal component contribution rate and load value calculated by PLSR regression



Page 11 of 14Zhang et al. Plant Methods           (2021) 17:34 	

Among the 12 models constructed, the ERT-x-Lw 
model had the higher R2 value and lowest RMSE. In 
the modeling set, R2, RMSE, and RPD were 0.88, 1.46, 
and 3.37, respectively, whereas in the validation set, R2, 
RMSE, and RPD were 0.84, 1.62, and 2.39, correspond-
ingly (Fig. 10).

Discussion
The growth and development of wheat can be directly 
affected by water deficit. Leaf water content is an impor-
tant indicator of wheat growth that can be monitored by 
hyperspectral technology. The hyperspectral reflectance 

technique, which detects the spectral reflectance of the 
canopy from visible- (VIS) to shortwave-infrared (SWIR), 
has been shown to have a great potential to detect even 
the slight variations and modifications in biophysical 
and biochemical characteristics of crop canopy [32, 33]. 
Furthermore, canopy reflectance in the near-infrared 
(NIR,700–1300 nm) and the shortwave-infrared (SWIR, 
1300–2500  nm) regions are strongly influenced by sev-
eral internal leaf structural and water content of the can-
opy. Therefore, it is successfully used to track the changes 
in plant parameters related to plant water status and 
monitor the changes of biomass and leaf area indirectly 

Table 4  Regression analysis of the characteristic bands and LWC by different modeling methods

Modeling method Feature band screening 
method

Number of modeled 
bands

Modeling Validation

R2 RMSE RPD R2 RMSE RPD

PLSR Full band 1901 0.87 2.11 2.73 0.82 1.78 2.09

CA 100 0.86 2.10 2.52 0.84 1.61 2.43

x-LW 28 0.86 2.61 1.96 0.84 1.73 2.04

RF Full band 1901 0.88 2.80 1.26 0.83 1.69 2.31

CA 100 0.90 2.49 1.63 0.81 1.75 2.15

x-LW 28 0.88 1.57 3.10 0.80 1.86 1.92

ERF Full band 1901 0.87 1.36 2.18 0.85 1.52 2.30

CA 100 0.86 1.95 2.48 0.82 1.76 2.34

x-LW 28 0.88 1.46 3.37 0.84 1.62 2.39

KNN Full band 1901 0.82 2.10 1.61 0.83 1.61 2.20

CA 100 0.85 2.00 2.25 0.80 1.79 2.16

x-LW 28 0.84 2.04 1.80 0.80 1.74 1.83

Fig.10  Modeling and validation results of leaf water content (LWC) and characteristic bands based on ERT-x-Lw



Page 12 of 14Zhang et al. Plant Methods           (2021) 17:34 

caused by wheat moisture [34]. In this study, the spectral 
reflectance of wheat canopy initially increased but then 
decreased with the advance of plant growth. At the joint-
ing stage, the canopy reflectance of wheat increased after 
the irrigation was performed, compared with that with-
out irrigation. Further, the reflectance decreased signifi-
cantly in the treatment of 10 days after the irrigation at 
the grain-filling stage. The reason for these results may be 
that a growth of wheat biomass and leaf area at the joint-
ing stage, especially the timely irrigation at that stage, 
was able to increase the water absorption rate of plants, 
elevating the leaf water content and thus further acceler-
ating the growth of wheat plants, which ultimately con-
tributed to improving the canopy reflectance. However, 
at the later stage of grain-filling, the leaf area and leaf 
water content gradually decreased with plant senescence, 
which led to a decline in canopy reflectance [35, 36].

In addition, the different irrigation times exerted a 
significant effect on canopy spectral reflectance. No sig-
nificant difference was observed among three treatments 
before and after the jointing stage. In the near-infrared 
region (750–1350 nm), the canopy reflectance increased 
significantly with the increase of the irrigation times after 
the jointing stage, which was due to the rise in the wheat 
plant height, chlorophyll content, and net photosynthetic 
rate. It is noteworthy that the canopy reflectance of w2 
was significantly higher than those of w1 and w0. This 
result indicates that the leaf senescence and photosyn-
thesis time after flowering can be delayed by irrigation at 
the grain-filling stage. However, without irrigation, wheat 
plants grow shorter; the leaves turn yellow and wither 
ahead of time; the lower leaf water content causes cell 
structure changes, which eventually leads to wheat yield 
reduction [36].

The change of canopy reflectance is caused by the 
change of LWC. In this study, LWC showed no sig-
nificant differences among the treatments on Mar 15 
(Fig.  3) and canopy reflectance also had no changes 
(Fig. 4a). At 10 days after the irrigation at the jointing 
stage, the LWC of the non-irrigated treatment (w0) was 
significantly lower than those of the other treatments 
(Fig.  3), and the canopy reflectance was the lowest in 
the near-infrared band (Fig. 4b). After the irrigation at 
the grain-filling stage, LWC was marked by significant 
differences among the treatments (w2 > w1 > w0; Fig. 3), 
and canopy reflectance also changed (w2 > w1 > w0; 
Fig.  4c). A previous study established water-sensitive 
bands at 820, 970, 1200, and 1450 nm [37]. In this study, 
we found that canopy reflectance in these bands was 
different among the treatments, and decreased with the 
decline of LWC. Therefore, our model was constructed 
by the characteristic response band of leaf water con-
tent, which can be used to diagnose and retrieve leaf 

water content. Many studies have developed spectral 
indices for estimating of the leaf water index. However, 
due to the diversity in the experimental conditions in 
different studies, various bands have been selected in 
the spectral index. For example, Liang et  al. [26] used 
the first derivative ratio index at 730 and 955 nm to pre-
dict wheat leaf water content, achieving a value of the 
modeling prediction coefficient R2 of 0.74. In another 
investigation, Jiang et al. [38] selected the bands at 1300 
and 1200  nm for the development of a ratio spectral 
index for the prediction of the water content in wheat 
leaves, with R2 of 0.63. On the other hand. The bands 
at 1391 and 1830  nm were used by other researchers 
to predict the wheat leaf water status [9]. DVI (R1185, 
R1307) developed in this study showed high accuracy; 
moreover, it is similar to wavebands selected by Jiang 
et  al. [38] and Wu et  al. [39]. Furthermore, the two 
bands selected in this study were in the water-sensitive 
near-infrared region [40]. Our model yielded a mode-
ling R2 value of 0.85, and a prediction R2 value of 0.78 
and was thus superior to the water spectral indices 
developed in previous studies.

To improve the modeling accuracy, machine learning 
and other methods have also been applied to model and 
analyze the water content of wheat. Several researchers 
in the past [41], based on the grey correlation analysis 
method, selected a spectral index with a high correlation 
to be used for leaf water content analysis. These spectral 
indices were used as independent variables in PLSR and 
Back Propagation (BP) neural network models to predict 
wheat leaf water content, with R2 values of 0.72 and 0.80, 
respectively [41, 42]. In the present study, the correlation 
coefficient (CA) and x-loading weight (x-Lw) methods 
were employed to select the characteristic bands. Com-
pared with the CA method, the x-Lw method reduces 
the number of bands by 72%, which may be due to the 
concentration of sensitive bands extracted by the CA 
method and the smaller adjacent interval [43]. Twenty-
eight characteristic bands related to leaf water content 
were selected by x-Lw. Among them, the wavelengths of 
663, 674, 680, and 700 nm are located in the "red edge" 
region, which can indirectly diagnose the water status of 
wheat due to the high reflection of the crop leaf structure 
[44]. On the other hand, 1156, 1205, 1246, and 1264 nm 
are related to the leaf and canopy cell structure [12]. 
Additionally, 1402, 1445, 1456, and 1957 nm are associ-
ated with the water absorption band [45]. This is basi-
cally consistent with the water-related bands selected in 
a previous experiment [12]. Among the four modeling 
methods, the one using x-Lw-ERT provided the best pre-
diction for leaf water content retrieval. The values of the 
coefficient of determination (R2) during the calibration 
and validation were 0.88 and 0.84, correspondingly, and 
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RMSE were 1.46 and 1.62, respectively which were higher 
than those of the PLSR, RF, and KNN models. These 
outcomes were probably due to that the better generali-
zation ability and more stable performance of ERT [46]. 
However, KNN breaks the continuous characteristics of 
the band because it learns and predicts according to the 
distance features between different samples [47]. Our 
findings suggest that the extreme random tree (ERT) may 
be a reliable modeling method to improve the modeling 
accuracy of machine learning and other methods used to 
model and analyze the moisture content of wheat.

Conclusion
We studied the effect of different irrigation times on 
the wheat canopy reflectance spectrum based on a field 
experiment with different irrigation treatments in two 
consecutive years. Five different models were com-
pared, the results of which showed that the irrigation at 
the jointing + grain-filling stage increased the leaf water 
content, leaf area, and biomass; moreover, plant senes-
cence was delayed and canopy reflectance elevated. The 
new model constructed by DVI (R1185, R1307) can be 
used to estimate the LWC of winter wheat. The accu-
racy of the extreme random tree model based on the 
x-loading weight method had the best performance 
among the other compared models. Therefore, both 
models can be used to estimate the water content of 
wheat leaves effectively.
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