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METHODOLOGY

L2MXception: an improved Xception 
network for classification of peach diseases
Na Yao1,2,3, Fuchuan Ni1,2*  , Ziyan Wang1, Jun Luo1,2, Wing‑Kin Sung1,4,5, Chaoxi Luo6 and Guoliang Li1,2 

Abstract 

Background:  Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid 
and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to 
detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are 
imbalance. The popular deep networks perform poor for this issue.

Results:  This paper proposed an improved Xception network named as L2MXception which ensembles regulariza‑
tion term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep 
learning models were compared in details and an improved loss function was integrated with regularization term 
L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the cur‑
rent best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of 
L2MXception was up to 93.85%, increased by 28.48%.

Conclusions:  The proposed L2MXception network may have great potential in early identification of peach diseases.
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Introduction
Peach is an important fruit and its production is affected 
by peach diseases. The major peach diseases are brown 
rot, anthracnose, scab, bacterial shot hole, gummo-
sis, powdery mildew, leaf curl, and so on. The diseases 
deduce the peach production, and thus it is urgently 
needed to find rapid and accurate methods to identify 
peach diseases in earlier stage.

There are several ways for diagnosing plant diseases 
in general and peach diseases in particular. The first way 
is visual assessment relying on the farmer’s experience; 
however, it is a subjective task, so that it may cause devia-
tions or even errors. The second way is using spectrom-
eter to diagnose the plant diseases by wavelength [1, 2]; 
however, the spectrometer cannot be popularized due 

to its high price. The third way is applying polymerase 
chain reaction [3–5] by biological operation; however, 
the experimental procedure is complicated for ordinary 
farmers. With the development of computer vision, 
another way is image-based recognition of plant disease, 
which is proposed and applied widely [6–14]. Ref. [15] 
proposed a shallow artificial neural network model to 
analyse images of cherry and plum shoots. These meth-
ods use traditional image processing algorithm, and can 
achieve high performance for a certain type of research 
objects. However, such computer methods are semiau-
tomatic because different images need different opera-
tions, such as the threshold-based segmentation of the 
lesion areas. Recently, deep learning is rapidly developed 
and solves the disadvantages of traditional computer 
vision methods, although it also has its own imperfec-
tions, such as relying on a large number of samples. Deep 
learning has been successfully applied in various fields, 
such as transportation [16], medical image analysis [17], 
signal processing [18]. Furthermore, the deep learning 
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is also used in agriculture, such as weed identification 
[19], plant identification [20], pest identification [21], and 
plant disease detection [22–26]. Nagasubramanian, [27] 
demonstrated that a 3D CNN model can be used effec-
tively to learn from hyperspectral data to identify char-
coal rot disease in soybean stems. Especially, Zhang et al. 
[28] compared deep learning and traditional methods 
in identification of peach leaf disease infected by Xan-
thomonas campestris, drawing a conclusion that convo-
lutional neural network is significantly superior than the 
traditional methods, such as Support Vector Machine, 
Nearest Neighbor and Back Propagation neural network.

In this paper, we focus on the identification of 7 
major peach diseases (brown rot, anthracnose, scab, 
bacterial shot hole, gummosis, powdery mildew, 
leaf curl, as shown in Fig.  1) with deep convolutional 

neural networks (CNN) Models. The peach disease 
image dataset, was collected from peach orchards by 
Prof. Luo’s team, College of Plant Science and Technol-
ogy, HZAU, which includes 7 categories of peach dis-
ease images. The 7 categories are 1) Brown rot fungi 
infecting fruits and leaves, 2) Anthracnose fungi infect-
ing fruits and leaves, 3) Scab fungus infecting fruits, 
branches and leaves, 4) Shot hole bacterium infect-
ing fruits, branches and leaves, 5) Gummosis fungi 
infecting branches, 6) Powdery mildew fungus infect-
ing fruits and leaves and 7) Leaf curl fungus infecting 
leaves. These diseases bring damages to different parts 
of the peach plant (see Fig. 1). For example, the brown 
rot disease mainly harms the fruit, causing the fruit to 
rot, which also harms the leaves and causes the leaves 
to dry up. Gummosis mainly harms branches, causing 

Fig. 1  Major plant diseases of peach. a Brown rot for fruit. b Brown rot for fruit. c Brown rot for leaf. d Anthrax for fruit. e Anthrax for leaf. f Scab for 
fruit. g Scab for leaf. h Bacterial perforation for fruit. i Powdery mildew for fruit. j Powdery mildew for leaf. k Leaf curl for leaf. l Gummosis for branch
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tree weakness, affecting fruit quality, and even caus-
ing death of branches and trees. The 7 diseases were 
researched in the laboratory, so laboratory personnel 
were familiar with the characteristics of the diseases. 
For example, a certain disease mainly infects fruits, and 
leaves and branches are also infected a few, so the dis-
ease images were mainly collected by fruit pictures. The 
project team is a team of experts on fruit disease pre-
vention and control posts in the National Peach Indus-
try Technology System, which can ensure the accuracy 
of its classification. For similar diseases and diseases 
that are easy to be confused, accurate conclusions can 
be drawn through tissue isolation of pathogenic bacte-
ria or direct monospore isolation, pathogen morphol-
ogy observation and molecular biological identification. 
The collection methods were two ways. The first way 
was collecting pictures of existing resources in the lab-
oratory or obtaining some pictures from other experts 
through cooperation in the Peach system, and the sec-
ond way was taking a large number of pictures indoors 
or orchards.

Comparing with seven existing deep CNN models, 
the results showed that DenseNet169 had the highest 
validation accuracy (89.32%). In order to improve accu-
racy, by analyzing data distribution of peach disease 
image dataset and the results based on seven existing 
deep learning models, we proposed to apply regulari-
zation to seven existing models. The Xception model 
with regularization term of L2-norm achieved the 
highest validation accuracy of 92.23%. Furthermore, 
when regularization term was changed to L2-norm and 

mean, the validation accuracy was further improved to 
93.85%.

Result and discussion
The results presented in Fig.  2 show that the models 
applying regularization with L2-norm achieved better 
performance compared to original CNN models except 
AlexNet, DenseNet and HRNet.

For the original models, DenseNet had the highest vali-
dation accuracy of 89.32% and SENet had the lowest vali-
dation accuracy of 56.63% as shown in Table 1.

When there are many predictors in the dataset and 
not all of predictors have the same predicting power, 
L2-norm regularization can be used to estimate the 
predictor importance and penalize predictors that are 
not important. When the L2-norm regularization is 
added to the loss function, overfitting problem will be 
solved better. For the methods with L2-norm regulari-
zation, validation accuracy increased by 26.86%, 13.41%, 
8.09% and 5.51% for Xception, ResNet, MobileNetV3 
and SENet, respectively. However, the validation accu-
racy decreased by 14.24%, 2.78% and 6.42% for AlexNet, 
HRNet and DenseNet, respectively. The validation accu-
racy of DenseNet and HRNet were slightly reduced after 
L2-norm regularization. The highest validation accuracy 
was 92.23% for Xception after applying regularization 
with L2-norm.

Regularization with L2-norm was most effective for 
Xception. On the basis of L2-norm, in order to improve 
the model the regularization term � ‖ w‖2 in Eq. (2) was 
changed to two parts of γ1 1

N

∑N−1
i=0 wi + γ2�w�2 as shown 

in Expression (3) consequently. After testing different 

Fig. 2  Validation accuracies of seven models and seven improved models
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parameter values of γ1 and γ2 as shown in Table  2, we 
found that when γ1 = 0.7 andγ2 = 0.3 , the valida-
tion accuracy of Xception was up to 93.85% as shown in 
Table  2. The parameters of γ1, γ2 are chosen to suitable 
value for better performance. Thus, it can be seen that 
regularization can make the performance of Xception 
better. The training accuracy and validation accuracy in 
the original Xception and Xception with different regu-
larization term was shown in Fig.  3. The training accu-
racy was average accuracy per epoch, and so was the 
validation accuracy. The results also showed that regular-
ization for Xception can greatly improve training accu-
racy and validation accuracy. The training accuracy of 
Xception with L2-norm is not much different from that 
of Xception with L2-norm and mean, but the validation 

accuracy of Xception with L2-norm and mean was obvi-
ously higher than that of Xception with L2-norm. Fur-
thermore, training loss and validation loss in the original 
Xception and Xception with different regularization term 
was shown in Fig.  4. Receiver operating characteristic 
(ROC) of the original Xception and Xception with differ-
ent regularization term was shown in Fig. 5, which also 
showed area under curve (AUC) of the original Xception 
and Xception with different regularization term in the 
legend at the bottom right. The AUC of L2MXception 
model outperformed the other two methods.   

When regularization with L2-norm and mean(L2M) 
was used in seven models, the validation accuracy was 
shown in Table  3. Training parameters (epoch, learning 
rate and batch size) of seven models are same in Table 1 

Table 1  Results and parameters based on seven original models

Network Batch size Epoch Learning rate Training accuracy (%) Validation accuracy (%)

AlexNet 64 60 0.001 72.02 70.55

ResNet50 64 60 0.001 68.28 65.23

Xception 64 60 0.001 67.86 65.37

SENet154 64 60 0.001 53.00 56.63

DenseNet169 32 60 0.001 90.49 89.32

HRNet-w48 64 60 0.001 89.06 80.91

MobileNetV3 64 60 0.001 57.63 57.60

Fig. 3  Training accuracy and validation accuracy in the original Xception and the Xception with different regularization term
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Fig. 4  Training loss and validation loss in the original Xception and the Xception with different regularization term

Fig. 5  ROC of the original Xception and the Xception with different regularization term
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and the value of γ1 and γ2 were γ1 = 0.7, γ2 = 0.3 . The 
Xception with L2 and L2M both can improved the vali-
dation accuracy, while the Xception with L2M improved 
less compared to Xception with L2. The regularization 
with L2 and L2M were not suitable for all seven models, 
as shown in Table 3 and Fig. 2, DenseNet169, HRNet-w48 
and AlexNet were not suitable for using regularization 
with L2 and L2M. Maybe using regularization with L2 
and L2M is repeated for DenseNet169, because the net-
work includes actions for preventing overfitting. HRNet-
w48 is more complex than ResNet50. Also AlexNet is 
complex and it’s pre-trained model is lager than other 
four models. Maybe according to the reasons, the regu-
larization with L2 and L2M are not suitable for them.

We also experimented this dataset using Xception with 
regularization of L1-norm and L2-norm, and the vali-
dation accuracy was shown in Table  4. In this case, the 
regularization term � ‖ w‖2 in Eq.  (2) was changed to 
γ3�w�1 + γ4�w�2 , and the loss function is Eq.  (5). The 
parameters of γ3, γ4 are chosen to suitable value for better 
performance. The results in Table 3 showed that regulari-
zation with L2-norm and mean was better than regulari-
zation with L1-norm and L2-norm based on Xception.

The accuracy of DenseNet169 and MobileNetV3 was 
shown in Figs.  6 and 7, while the loss of DenseNet169 
and MobileNetV3 was shown in Figs. 8 and 9.   

Table 2  Different results corresponding to different parameters 
based on Xception(L2 and mean)

Parameters value ( γ1, γ2) Validation 
accuracy (%)

γ1 = 0, γ2 = 1 92.23

γ1 = 0.5, γ2 = 0.5 92.88

γ1 = 0.6, γ2 = 0.4 91.64

γ1 = 0.7, γ2 = 0.3 93.85

γ1 = 0.8, γ2 = 0.2 92.88

γ1 = 1, γ2 = 0 92.56

γ1 = 0, γ2 = 0 65.37

Table 3  The comparison of Validation accuracy of seven models 
with L2 and L2M

Network Validation 
accuracy(L2) (%)

Validation accuracy 
(L2M) (%)

Change

AlexNet 56.31 57.31 1.00% (+)

ResNet50 78.64 79.34 0.7% (+)

Xception 92.23 93.85 1.62% (+)

SENet154 62.14 62.84 0.7% (+)

DenseNet169 82.90 80.58 2.32% (−)

HRNet-w48 78.13 78.00 0.13% (−)

MobileNetV3 65.69 66.01 0.32% (+)

Fig. 6  Training accuracy and validation accuracy in the original DenseNet169 and the DenseNet169 with different regularization term
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Fig. 7  Training accuracy and validation accuracy in the original MobileNetV3 and the MobileNetV3 with different regularization term

Fig. 8  Training loss and validation loss in the original DenseNet169 and the DenseNet169 with different regularization term
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We used test dataset on Xception, Xception with L2 
and Xception with L2M, and the test accuracy is 64.32%, 
91.67% and 92.16%, respectively.

Conclusions
In this paper, an improved Xception Network ensemble 
with L2M Loss was proposed for classification of peach 
diseases. And seven deep learning models were applied to 
identify peach diseases from images. The disease image 
dataset has 7 kinds of diseases and 1560 images, includ-
ing infected different parts such as fruits, branches and 
leaves. In the dataset 1251 images are used for train and 
156 images are used for validation and 153 images are 
used for test. The highest validation accuracy was 89.32% 
based on original DenseNet169 model. By analyzing the 
data distribution and classification results of seven deep 
learning models, the improved methods with regulariza-
tion were proposed to improve accuracy. After experi-
ments, the highest validation accuracy is 93.85% from 
Xception model with regularization term of L2-norm 
and mean. But the regularization with L2 and L2M were 
not effective for all seven models, and regularization with 
L2 and L2M for DenseNet169, HRNet-w48 and AlexNet 
were not effective. Because the DenseNet169 network 
includes actions for preventing overfitting, so regulari-
zation with L2 and L2M is excess. HRNet-w48 is based 

on ResNet50, but it’s more complex than ResNet50. Also 
AlexNet’s pre-trained model is lager than other four 
models. Maybe according to the reasons, the regulariza-
tion with L2 and L2M are not effective for them.

ResNet50, Xception, SENet154 and MobileNetV3 get 
higher validation accuracy by using regularization with 
L2 and L2M. The experiments show that regulariza-
tion is highly suitable for Xception model. Furthermore, 
when regularization term was changed to L2M loss from 
L2 loss, the validation accuracy was up to 93.85% based 
on Xception. The proposed method can help to identify 
peach plant diseases in earlier stage, rapidly and accu-
rately. We will tailor the improved Xception network into 
Intelligent embedded system in the future.

Methods
Peach disease image dataset
The images of peach diseases were formed into the Peach 
Disease Image Dataset (PDID). the numbers of each cat-
egories in PDID are shown in Fig.  10. The numbers of 
images of brown rot disease, anthracnose disease, scab 
disease, bacterial shot hole disease, gummosis disease, 
powdery mildew disease and leaf curl disease are 94, 157, 
654, 427, 91, 50 and 87, respectively. Figure 10 shows that 
the distribution of the numbers of images of different dis-
ease classes are extremely imbalanced. The numbers of 

Fig. 9  Training loss and validation loss in the original MobileNetV3 and the MobileNetV3 with different regularization term
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images of training dataset, validating dataset, and testing 
dataset are 1251, 156, and 153, respectively.

Convolutional neural network
Convolutional neural network (CNN) has become one of 
the research hotspots in the field of pattern classification. 
Since the method avoids the complicated pre-processing 
of images, CNN can directly deal with the original 
images, and extract features automatically. Convolutional 
neural networks are very similar to ordinary back-propa-
gation neural networks, and they all consist of neurons 
with learnable weights and constant bias. Each neuron 
receives inputs and make mathematical calculations. 
When xi as inputs, the output of single neural network is: 
output = f (

n
∑

i=1

wixi + b) . Where wi is weight and b is 

constant bias. The convolutional neural network output 
is the score of each classification. The default input of 
convolutional neural network is an image that allows us 
to encode specific properties into the network structure, 
making the feedforward functions more efficient and 
reducing a large number of parameters.

The basic structure of CNN is composed of convolu-
tional layer, rectified linear units layer, pooling layer and 
fully connected layer. Each convolutional layer consists of 
several convolutional units, and the parameters of each 
convolutional unit are optimized by a backpropagation 

algorithm. The convolution operation is to extract differ-
ent features of the input. The first layer of convolutional 
layer may only extract some low-level features such as 
edges, lines and corners. The following layers can itera-
tively extract more complex features from low-level fea-
tures. The Rectified Linear units (ReLU) layers mainly 
perform a nonlinear mapping on the output of the con-
volutional layer. The excitation function used in this layer 
is generally a ReLU function: ReLU(x) = max(0, x) . The 
pool layers reduce the dimension of each feature map, 
and the depth of the output remains the same as the 
number of feature maps. The fully connected layers com-
bine all the local features into global features to calculate 
the score for each class lastly.

CNN was proposed in LeNet network [29] with four 
typical layers. The AlexNet [30] detonates the application 
boom of convolutional neural networks, which was the 
champion of the Large Scale Visual Recognition Chal-
lenge 2012 (ILSVRC2012). Since then, more deeper con-
volutional neural networks are proposed, such as VGG 
(Simonyan K and Zisserman A, 2014) [31], GoogLeNet 
[32], ResNet [33], Xception [34], SENet [35], DenseNet 
[36], HRNet [37], MobileNetV3 [38] and so on. Goog-
LeNet was the champion of the ILSVRC-2014 competi-
tion. The VGG describes that the depth of the network 
is the key factor for the performance of the algorithm 
and performs better than GoogLeNet in some Transfer 

Fig. 10  Distribution of sample of each disease
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Fig. 11  Depthwise separable convolution

Fig. 12  The Xception architecture
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Learning tasks. The ResNet proposes the idea of residual 
learning and many later models are designed on ResNet 
network. The structure of Xception is based on ResNet, 
but the convolutional layer is replaced by depthwise sep-
arable convolution as shown in Fig. 11. Although separa-
ble convolution can bring about an increase in accuracy 
or a significant drop in theoretical calculations, due to the 
scattered calculation process, the efficiency is not high 
enough. Complete description of the Xception network 
is presented in the Chollet and François’s paper [34] and 
the Xception architecture [34] is shown in Fig. 12. Own-
ing to feature reuse and setting bypassing, the parameter 
amount of DenseNet network is greatly reduced, and the 
problem of the gradient vanishing is alleviated, while the 
network has a certain effect of regularization. HRNet, 
based on residual unit, connects high-to-low resolution 
convolutions in parallel, where there are repeated multi-
scale fusions across parallel convolutions. MobileNetV3 
is a combination of depthwise separable convolutions, 
inverted residual with linear bottleneck and the light 
weight attention model. AlexNet, ResNet, Xception, 
SENet, DenseNet and HRNet were applied for classify-
ing peach diseases in this paper. Transfer learning was 
used to initialize weights for AlexNet, ResNet, Xception, 
SENet and DenseNet, while HRNet and MobileNetV3 
were trained directly by the peach disease image data-
set. The pretrained models of AlexNet [39], ResNet [40], 
Xception [41], SENet [42] and DenseNet [43]are pro-
vided by pytorch.

Image preprocessing
The samples in the dataset are RGB images. Gener-
ally, deep learning models have four image preprocess-
ing steps. Images were processed as following stages: 
firstly, all the images were resized to 224 × 224 pixels for 
AlexNet, ResNet50, SEnet, DenseNet, MobileNetV3, 299 
× 299 for Xception, and 256 × 256 for HRNet. Model opti-
mization and prediction were performed on the rescaled 

images. Secondly, all pixel values were divided by 255 to 
[0.0, 1.0]. Thirdly, Z-Score normalization was performed, 
which was carried out as follows: for each pixel value x 
as input, mean value mx and standard deviation sx were 
calculated and then input x is turned to x′ = x −mx/sx , 
so that the normalized data was a standard normal distri-
bution with zero mean and unit variance. Finally, several 
augmentations including random rotation (10), cropping, 
and flipping (0.5) were used on the training, validating 
and testing dataset. Rotation, cropping and flipping are 
random. The parameters of affine transformation for 
training is degree (−10,10), translate (0.15,0.15), scale 
(0.9,1.1) and shear (10). Degree (−10,10) represents the 
range of rotation degree is (−10, 10); Translate(0.15,0.15) 
represents horizontal shift is randomly sampled in the 
range (image_width × 0.15, image_width × 0.15) and 
vertical shift is randomly sampled in the range (image_
height × 0.15, image_height × 0.15); Shear (10) represents 
a shear parallel to the x axis in the range (−10,10) will 
be applied. The augmentation was helpful for enhancing 
generalization ability of model and preventing overfitting.

Regularization to improve CNN models
This paper applied seven CNN models (AlexNet, ResNet, 
Xception, SENet, DenseNet, HRNet and MobileNetV3) 
for classifying peach disease images. The parameters and 
prediction accuracies of all models are shown in Table 1. 
The best validation accuracy was 89.32% in DenseNet169 
and the lowest validation accuracy was 56.63% in SENet. 
Samples in this dataset were imbalanced, and the number 
of samples was relatively small. So, too simple model may 
not work well for this dataset.

In addition to the loss function of CrossEntropyLoss, 
an additional term is added which varies depending on 
L1-norm, L2-norm or other combination terms. This 
additional term is called regularization term which helps 
to avoid overfitting (L2) and perform features selection 
(L1). The total loss function with regularization term:

Here, if �  is zero then we get back CrossEntropyLoss. 
However, if  �  is very large then it will add too much 
weight and it will lead to under-fitting. So, when � is cho-
sen to a suitable value, this technique works well. In 
Eq. (1), if regularization term is L1, L1 is �w�1 =

∑

i=1

|wi| ; 

if regularization term is L2, L2 is �w�2 =
√

∑

i=1

|wi|
2 ; The 

CrossEntropyLoss(CE) is:
CrossEntropyLoss = 1

N

∑

i

Li =
1
N

∑

i

−
M
∑

c=1

yic log(pic) . Where 

N  is the number of samples; M is the number of catego-
ries; If the category is the same as the category of sample 

(1)
loss = CrossEntropyLoss + �(regularization term)

Table 4  Different results corresponding to different parameters 
based on Xception (L1 and L2)

Parameters value ( γ3, γ4) Validation accuracy 
(%)

γ3 = 0, γ4 = 1 92.23

γ3 = 0.5, γ4 = 0.5 88.35

γ3 = 0.6, γ4 = 0.4 87.06

γ3 = 0.7, γ4 = 0.3 87.70

γ3 = 0.8, γ4 = 0.2 86.41

γ3 = 1, γ4 = 0 86.73

γ3 = 0, γ4 = 0 65.37
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i, yic is 1, otherwise it is 0; pic is the predicted probability 
that the observed sample i belongs to category c.

To avoid overfitting due to imbalanced samples when 
training the models, we devised regularization term with 
L2 to the loss function and the loss has two parts:

where � is a weight decay constant that controls the bal-
ance between better fitting of the training data using 
the term CrossEntropyLoss and minimizing the param-
eter(w ) values using the regularization term � ‖ w‖2 . To 
further improve the model, we add a term of mean in the 
regularization term and replace � ‖ w‖2 by two terms:

where γ1 and γ2 are constant coefficients for the first term 
and the second term, 1N

∑N−1
i=0 wi is the mean of w.

In total, our L2M loss function is:

Based on experiments, when γ1 = 0.7 and γ2 = 0.3 , the 
validation accuracy of L2MXception network is up to 
93.85%. (Shown as Table 2.)

We also do some experiments when the regularization 
terms conclude L1 and L2:

When γ3γ4 has the same values with γ1γ2 respectively, 
the validation accuracy of Xception network with loss 
function in Eq.  (5) is lower than the validation accuracy 
of L2MXception network with loss function in Eq. (4).

Implementation
The experiment of classification was performed on a 
CentOS workstation equipped with two Intel(R) Xeon(R) 
E5-2683 v4 CPU (55G RAM), accelerated by two Tesla 
P100-PCIE GPU (16 GB memory). The model implemen-
tation in this paper was powered by deep learning frame-
work of PyTorch.

All applied CNN models in this paper were trained 
using parameters shown in Table  1. All CNN models 
used the same training parameters (epoch, learning rate 
and batch size) except DenseNet169 because of using 
more memory. These parameters gave the best results 
during training after appropriate experimentation.

Running time per epoch of different network is shown 
in Table  5. This running time is an average time of 60 
epochs.

(2)loss = CE + ��w�2

(3)γ1
1

N

∑N−1

i=0
wi + γ2�w�2

(4)loss = CE + γ1
1

N

∑N−1

i=0
wi + γ2�w�2

(5)loss = CE + γ3�w�1 + γ4�w�2
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Table 5  Running time per epoch

network Original(Second) Original + L2 
(Second)

Original + L2M(Second)

AlexNet 4.05 5.36 7.23

ResNet50 13.53 14.64 22.26

Xception 18.12 18.59 27.6

SENet154 45.86 54.76 78.59

DenseNet169 19.63 28.14 46.24

HRNet-w48 2.26 2.14 2.26

MobileNetV3 4.24 4.96 7.58
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