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METHODOLOGY
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Abstract 

Background:  Pyropia is an economically advantageous genus of red macroalgae, which has been cultivated in the 
coastal areas of East Asia for over 300 years. Realizing estimation of macroalgae biomass in a high-throughput way 
would great benefit their cultivation management and research on breeding and phenomics. However, the conven-
tional method is labour-intensive, time-consuming, manually destructive, and prone to human error. Nowadays, high-
throughput phenotyping using unmanned aerial vehicle (UAV)-based spectral imaging is widely used for terrestrial 
crops, grassland, and forest, but no such application in marine aquaculture has been reported.

Results:  In this study, multispectral images of cultivated Pyropia yezoensis were taken using a UAV system in the north 
of Haizhou Bay in the midwestern coast of Yellow Sea. The exposure period of P. yezoensis was utilized to prevent the 
significant shielding effect of seawater on the reflectance spectrum. The vegetation indices of normalized difference 
vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI) and normalized difference of 
red edge (NDRE) were derived and indicated no significant difference between the time that P. yezoensis was com-
pletely exposed to the air and 1 h later. The regression models of the vegetation indices and P. yezoensis biomass per 
unit area were established and validated. The quadratic model of DVI (Biomass = − 5.550DVI2 + 105.410DVI + 7.530) 
showed more accuracy than the other index or indices combination, with the highest coefficient of determination 
(R2), root mean square error (RMSE), and relative estimated accuracy (Ac) values of 0.925, 8.06, and 74.93%, respec-
tively. The regression model was further validated by consistently predicting the biomass with a high R2 value of 0.918, 
RMSE of 8.80, and Ac of 82.25%.

Conclusions:  This study suggests that the biomass of Pyropia can be effectively estimated using UAV-based spectral 
imaging with high accuracy and consistency. It also implied that multispectral aerial imaging is potential to assist 
digital management and phenomics research on cultivated macroalgae in a high-throughput way.
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Background
Macroalgae contributes to around 10% of total global 
marine primary productivity, and its aquaculture produc-
tion constitutes approximately 28% of total world marine 
aquaculture production by weight [12, 43]. Macroalgae 
production is economically important for providing food, 
medicine, cosmetics, and biofuel [13, 14]. The red mac-
roalgae genus Pyropia (common name nori or laver), has 
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been cultivated and consumed in East and Southeast Asia 
for over 300 years [3, 14, 30]. Up to 2.56 million tonnes of 
Pyropia (fresh weight) were harvested in 2017 and valued 
at approximately US$2.32 billion (FAO [12]. Fisheries and 
Aquaculture Information and Statistics Branch 2019). In 
comparison to other cultivated macroalgae, Pyropia has 
the highest commercial value per unit mass at $905 per 
tonne. It has high nutritional value, in particularly high 
protein content at ~ 25–30% of the blade dry weight and a 
delicious flavour [3, 12].

High-throughput phenotyping has been increas-
ingly used in recent years in research on phenomics and 
breeding, as well as for the digital management of preci-
sion agriculture [1, 17, 49]. Among various measurable 
agronomic traits, biomass is the most basic, not only for 
evaluating the growth trend and estimating yield, but also 
for assessing the ecosystem services of vegetation [32, 
38]. However, the conventional estimation of biomass 
is labour-intensive, time-consuming, manually destruc-
tive with a tendency to produce human error, and can-
not provide data on large scale [8, 26]. Using unmanned 
aerial vehicle (UAV)-based multispectral or hyperspec-
tral imaging techniques makes high-throughput pheno-
typing more efficient, accurate, and precise, as well as 
being non-destructive. It has been widely used in terres-
trial agricultural research and management [42, 46, 57]. 
Using this technique, spatial and temporal crop biomass 
data can be obtained in time and can be used to analyse 
crop responses to dynamic environment conditions [28, 
34]. Several studies have used this technique to estimate 
the biomass of crops such as maize [19, 56], wheat [5, 35], 
rice [9, 52], barley [2, 40], soybean [54, 60], and rapeseed 
[16, 34].

Comparatively, the marine cultured macroalgae have 
been less studied than terrestrial plants [37]. Until now, it 
has no such research been published on high-throughput 
phenotyping of cultivated macroalgae using UAV-based 

spectral imaging. Besides the social and economic fac-
tors, it might be due to the more complex environmental 
conditions of coastal area where mariculture is carried 
out, besides resuspended sediments, and coloured dis-
solved organic matter from terrestrial runoff, which not 
only limit the survey range but also interfere the imaging 
quality [21, 51]. Seawater can strongly absorb light in the 
red–near infrared (NIR) wavelength and reflects blue and 
green light, which in turn interferes with the spectral sig-
nal and influences the accuracy of imaging [20, 45]. How-
ever, for macroalgae floating on the seawater surface, 
especially for harmful macroalgae bloom, several studies 
have proved that it is feasible to estimate the biomass of 
Ulva prolifera, Sargassum natans, and Trichodesmium 
spp. based on spectral images [10, 21, 51]. Moreover, the 
benthic macroalgae such as Codium tomentosum, Lami-
naria saccharina, Corallina officinalis could be quali-
tative mapped by hyperspectral remote sensing in the 
coastal areas [6–8]. Therefore, theoretically, it is feasible 
to use UAV-based multispectral platform to estimate the 
biomass of cultivated macroalgae.

In the coast of Yellow Sea, Pyropia is cultivated on nets 
by three kinds of rafts: semi-floating, fixed pillars, or 
turnover (or full floating) (Fig.  1). The Pyropia nets are 
periodically exposed to the air during the low tide period, 
sometimes aided by artificial lifting, to follow the natural 
condition of Pyropia in the intertidal zone. This periodic 
exposure can decrease the epiphytes and competitors, 
and increases the protein content of Pyropia thallus [4, 
29, 30]. Simultaneously, these specific exposure period 
can provide a time frame for piloting the high-through-
put phenotyping using UAV-based spectral imaging on 
cultivated Pyropia.

In this study, Pyropia yezoensis, one of two widely culti-
vated Pyropia species, was investigated using UAV-based 
spectral imaging. The aim was to establish an algorithm 
model of biomass based on multispectral imaging data, 

Fig. 1  Three different cultivation methods of Pyropia cultivation. a Semifloating nets on the intertidal zone; b Nets on fixed pillars in the shoal 
region; c Turnover nets in the deep water zone
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which could be used for estimating P. yezoensis biomass 
in an accurate, high-throughput, and non-destructive 
way.

Results
Comparison of multispectral reflectance
The multispectral reflectance of P. yezoensis submerged 
in seawater was very similar to that of seawater, but quite 
different to that of P. yezoensis exposed to the air, which 
implied that seawater had a significant effect on seaweed 
(Fig.  2a). Compared with exposed P. yezoensis, the sub-
merged P. yezoensis (floating just below the surface of the 
seawater) showed that the reflectance spectrum signifi-
cantly increased in the blue, green, and red wavelengths 
(P < 0.01, Fig. 2b), and significantly decreased in the NIR 
wavelength (P < 0.01, Fig.  2b). On the other hand, com-
pared to seawater, for submerged P. yezoensis, its red edge 
reflectance which should be raised by P. yezoensis had 
no significant difference with that of seawater (P > 0.05, 
Fig.  2b), neither did NIR reflectance (P > 0.05, Fig.  2b). 
Therefore, the period of P. yezoensis exposure to the air 
was more optimal for multispectral aerial imaging and 
was used in the followed measurements.

Assessment of dehydrated effect
When exposed to the air, the water content of P. yezoensis 
thalli would gradually reduce and influence the reflection 
spectrum (Fig.  3). Laboratory experiments showed that 
the values of DVI, RVI, NDRE, and NDVI varied differ-
ently along with decreased relative water content (RWC) 
(Fig. 4). Compared with the control group (100% RWC), 
there was no significant difference in P. yezoensis from 
90% RWC to 10% RWC in the values of DVI. However, 
there were significant decrease for RVI and NDVI when 
the RWC was under 40% (P < 0.01), and relatively for 

NDRE under 50% (P < 0.05). Generally, all four indices 
were relatively stable at RWC ranging from 100% to 60%.

Further field experiments confirmed the suitable 
period for acquisition of aerial image data. The compari-
son between the time when P. yezoensis was completely 
exposed to the air and 1 h later showed that there was no 
significant change for the four vegetation indices (Fig. 5, 
P > 0.05), both on 6th and 7th January, 2019. This indi-
cated that the spectral characters of P. yezoensis are sta-
ble during this period and suitable for data collection by 
aerial imaging.

Biomass estimation models and accuracy assessment
The strong and positive correlations existed between 
P. yezoensis biomass and individual vegetation index 
of DVI, RVI, NDVI, and NDRE, with correlation coef-
ficients of 0.962, 0.945, 0.922, and 0.849, respectively 
(Table 1; n = 80, P < 0.01). This also confirmed that DVI, 
RVI, NDVI and NDRE were promising indicators for the 
biomass estimation. The calculation equations of biomass 
based on single or combined vegetation indices with their 
regression diagnostic plots of the predicted values and 
the distribution plots of residuals are shown in Figs.  6 
and 7. For the single vegetation index, the quadratic 
model performed better than that of the linear regres-
sions with higher R2, Ac and lower RMSE (Fig.  6). The 
optimal regression equation was the quadratic model of 
DVI (Biomass = − 5.550DVI2 + 105.410DVI + 7.530). Its 
R2, RMSE, and Ac were 0.925, 8.06, and 74.93%, respec-
tively, and residual interval was between − 20.76 and 
18.84 (Fig.  6). RVI and NDVI exhibited relatively high 
R2 of above 0.8, while NDRE showed relative lower R2 
values of 0.721 and 0.731, respectively. For the com-
bined vegetation indices, the regressions with veg-
etation indices of DVI and RVI had higher accuracy 

Fig. 2  Multispectral reflectance at five wave bands (*P < 0.05 ; **P < 0.01)
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(R2 > 0.925, Ac > 75%) than that with combination with 
NDVI and NDRE. However, the optimal combination 
was that of DVI, RVI, NDRE, and NDVI (Biomass =​ ​84.​
122​D​VI + 3.763​R​VI ​+ 7​.​3​41N​DRE​ ​+ 3.147NDVI + 4.421), 
which values of R2, RMSE, and Ac were 0.926, 8.01,​ an​

d 7​5.0​6%, respectively, and the residual interval was 
between − 21.78 and 21.02 (Fig.  7). Comparing the two 
optimal regression models based on single and com-
bined indices respectively, although the later have little 
bit higher R2, Ac and lower RMSE, the residual interval 

Fig. 3  Hyperspectral reflectance of P. yezoensis under different RWC​

Fig. 4  Vegetation indices of P. yezoensis under different RWC (*P < 0.05 ; **P < 0.01)
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of the former (quadratic model of DVI) was smaller, 
which indicated a more accurate estimation of biomass. 
And save for simplification, the quadratic model of DVI 
(Biomass = − 5.550DVI2 + 105.410DVI + 7.530) was con-
sidered more applicable for estimating the biomass of P. 
yezoensis.

Model verification
As it shown in Fig.  8, the validated values of bio-
mass compared reliably with the estimated 
values based on the optimal regression model (Bio-
mass = − 5.550DVI2 + 105.410DVI + 7.530). The model 
consistently predicted the biomass with an R2 value of 
0.918, RMSE of 8.80, and Ac of 82.25%. The slope of the 
regression lines between the estimated and validated val-
ues was 0.943, indicating a good prediction according to 
the criterion of Jamieson et al. [23].

Discussion
In this study, UAV-based multispectral imaging was 
introduced to estimate the biomass of Pyropia, and the 
results have demonstrated its potential application in 
marine aquaculture. Although techniques and facili-
ties used in Pyropia cultivation have improved in recent 
years, the long distance offshore makes it difficult to 
supervise the situation on a large scale. The UAV-based 
spectral imaging system established in this study can be 
used for monitoring of the spatial and temporal status of 
cultivated Pyropia at large scales in a more high-through-
put and cost-saving way.

In spectral acquisition, the variations of coastal envi-
ronment would cause uncertainties. Previous studies 
reported that the environmental factors, such as clouds 
and tidal stage of the coastal area during UAV flight could 
result in the radiometric variability [11, 19]. In this study, 
the multispectral images were collected under the simi-
lar sky conditions and the flight time was closed to solar 
noon [48]. In addition, the irradiance sensor loaded on 
the UAV platform could help rectify the difference of 
light conditions. Moreover, in coastal areas, seawater may 
influence the reflection values derived from the UAV-
based spectral images. For instance, seawater can absorb 
in the red to NIR wavelengths and elevate the reflectance 
in the blue to green wavelengths [10, 21], especially in the 
coastal region with active river discharge and coastal tur-
bid currents [31]. The Yellow Sea is specifically character-
ised by high turbidity, which would enhance the influence 
on spectral reflection [45]. Usually, the interference from 
different depths of seawater on spectral reflectance also 
limits the use of spectral imaging on most cultivated 
macroalgae, such as Saccharina japonica and Gracilari-
opsis lemaneiformis, which constantly submerged below 
the water surface throughout the culture period [24, 44, 
53]. Compared to them, the cultivation of P. yezoensis 
involves periodic exposure out of the water which could 
be utilized for spectral imaging. In this study, it proved 
that the seawater significantly affected the reflection of 
P. yezoensis. Particularly, the seawater made it very dif-
ficult to distinguish between seawater and submerged P. 
yezoensis in the NIR wavelength, which is essential for 
calculating almost all vegetation indices. Therefore, at 
primary stage, multi-spectral imaging is suitable to be 
taken during the Pyropia exposure period. After solving 
the related techniques problems by developing higher 
resolution of the reflectance spectrum or eliminating dis-
turbance from seawater, it could be feasible to use UAV-
based spectral imaging for other cultivated macroalgae.

The vegetation index derived from spectral images has 
been widely used in the estimation of terrestrial crop 
biomass [35]. Same as terrestrial crops, the main pig-
ment of the photosynthetic reaction centre of Pyropia is 

Fig. 5  Comparison of the vegetation indices between different 
exposure time. T1, P. yezoensis once completely exposed to the air; T2, 
1 h after T1

Table 1  Correlation coefficient of  biomass with  each 
vegetation index (n = 80, P < 0.01)

DVI RVI NDRE NDVI

Biomass 0.962 0.945 0.849 0.922
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chlorophyll-a [59], which primarily absorbs the light of 
the red and blue wavelengths but scatters most of solar 
radiation in the NIR wavelengths [45]. To obtain plant 
traits including biomass using spectral techniques, the 
reflectance of red and NIR wavelengths have been com-
monly used to calculate vegetation indices such as DVI, 
NDVI, and RVI [9, 16, 20, 28].

However, it showed that the spectral reflectance can 
be influenced by plant water stress [18, 36, 39, 58]. Most 
Pyropia species lose 85–95% of cellular water during day-
time low tide [4]. This dehydration would also affect the 
spectral characters of P. yezoensis and hence influence 
the biomass estimation. In this study, through laboratory 

and field experiments, we defined a stable time frame for 
collecting the UAV-based spectral imaging, which was 
within 1 h after P. yezoensis exposed to the air. The results 
showed that no effects on the values of DVI, RVI, NDVI, 
or NDRE. This time frame ensured the application of 
UAV-based spectral imaging for Pyropia biomass estima-
tion using the four indices.

In this study, using UAV based five spectral band sen-
sors, 4 existing vegetation indices were derived instead 
of creating a new index from specific spectral wave-
lengths. It was corroborated its convenience, effective-
ness and relatively lower-costing by previous study 
[16]. Among the four indices, the DVI were finally 

Fig. 6  Regression models and residuals-analysis plots based on single vegetation index (n = 80)



Page 7 of 13Che et al. Plant Methods           (2021) 17:12 	

selected for biomass estimation models, which based 
on the reflectance of NIR and red spectral wavelength. 
It showed that the DVI was highly significantly corre-
lated with biomass and present more stable than other 

index in the laboratory measurement on different dehy-
dration level of Pyropia. In the study on biomass esti-
mation of Spartina alterniflora, Zhou et  al. [61] also 
proved that the quadratic regression model of the DVI 

Fig. 7  Regression models and their residuals-analysis plots based on combined vegetation indices (n = 80)
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was more suitable than other vegetation indices. More-
over, in the present study, the regression model of Bio-
mass = − 5.550DVI2 + 105.410DVI + 7.530 shows high 
accuracy on biomass estimation of Pyropia. It is the first 
success in biomass estimation on cultivated macroalgae 
using UAV-based multi-spectral imaging, which suggests 
that there is high potential to establish efficient, accurate, 
and high-throughput phenotyping for mariculture.

On the other hand, red and brown macroalgae have 
more pigments besides chlorophyll-a, which could be 
characterized wavelength-specific absorbance and reflec-
tance properties and used for high-throughput pheno-
typing [32]. Hu et al. [21] reported that the phycourobilin 
and phycoerythrobilin, which were also the dominant 
pigments of Pyropia, resulted in spectral curvatures 
between 469 and 555  nm using hyperspectral satellite. 
However, in this study, we did not discover the similar 
phenomenon, which might be limited by the broad band 
width of the multispectral sensor. Therefore, if the UAV 
platform is equipped with a hyperspectral sensor, more 
spectral features might be used for more accurate esti-
mation [55]. In fact, in our laboratory experiment on 
dehydration effect, the continuous spectrum with high 
resolution presented detailed information among dif-
ferent dehydration levels of P. yezoensis. After explor-
ing more specific indices for different phenotraits under 
controllable conditions in the lab, it could be expected 
to utilise UAV equipped with a hyperspectral sensor 
for high-throughput phenotyping of more traits and 
more cultured macroalgae species in the field. The high-
throughput acquisition of more morphological and phys-
iological phenotraits of macroalgae would contribute 
to the phenomics study of the interactions between the 
genome and the environment.

Moreover, a UAV-based spectral imaging system can 
be utilised in ecosystem-based management by providing 
prompt and instinctive information on large-scale moni-
toring. Several studies reported that large-scale cultiva-
tion of macroalgae benefited the coastal environment by 
extracting inorganic nutrients (such as nitrogen, phos-
phorus, and carbon dioxide), mitigating adverse environ-
mental impacts, and reducing the occurrence of harmful 
algal blooms [14, 30, 41, 53]. The UAV-based spectral 
imaging systems could help to reasonably manage culti-
vated area, and predict algal blooms [25]. And after fur-
ther validation on larger scale and a long term of years, 
the biomass estimation model established in this study 
will be benefit the cultivation management of P. yezoensis 
for sustainable aquaculture.

Conclusions
This study established a regression model using a vegeta-
tion index (DVI) and a feasible method to estimate the 
biomass of Pyropia using UAV-based multispectral imag-
ing. High accuracy of the estimated model was validated 
by the strong similarities between estimated and manu-
ally measured biomass. Compared with the conventional 
measurement, the model could monitor the spatial and 
temporal status of cultivated Pyropia in a large-scale and 
cost-saving manner.

Methods
Experimental sites
This study was conducted in the north of Haizhou Bay, 
in the midwestern coast of the Yellow Sea. Haizhou Bay, 
with 25  km of winding coastline, experiences regular 
semidiurnal tide. The tidal cycle is approximately 12  h 
18  min and the average tidal range is approximately 
344 cm. In this area, the aquaculture area of P. yezoensis 
was more than 200 hectares in 2017 [33]. The study area 
consisted of three parts, plots A, B, and C (Fig.  9). The 
cultivation rafts of plot A was semi-floating in the inter-
tidal mudflat, and those of plots B and C were fixed pil-
lars in shallow sea.

Image data acquisition
Airborne multispectral and digital images of the 
study areas were acquired using a RedEdge-M sensor 
(MicaSense, USA) and a Firefly 8  s camera (Hawkeye, 
China), respectively (Fig.  10). The RedEdge-M sensor is 
comprised of a solid state with five spectral bands rang-
ing from 400  nm to 900  nm. The wavelengths of each 
band were blue (475 nm centre, 20 nm bandwidth), green 
(560  nm centre, 20  nm bandwidth), red (668  nm cen-
tre, 10 nm bandwidth), red edge (717 nm centre, 10 nm 
bandwidth), and NIR (840 nm centre, 40 nm bandwidth). 
The resolution of the sensor was 1280 × 960 pixels with 

Fig. 8  Relationship between the estimated and validated value of P. 
yezoensis biomass
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a field of view of 47.2°. Both sensors were flown onboard 
an Ecodrone UAS-8 Multifunctional UAV (Ecotech Eco-
logical Technology Ltd., China). The flights altitude were 
approximately 40  m above cultivated Pyropia (Table  2). 
The radiometric calibration images of the RedEdge-M 
sensor were captured on a calibrated reflectance panel 
(MicaSense, USA) before each flight.

To investigate the multispectral reflectance charac-
ters of P. yezoensis when it exposed to the air or sub-
merged in seawater,, the UAV imaging was taken when 
ten nets were randomly selected by lifting them out of 
the water, in plot B on 22nd November 2018 (Table  2). 
Each 100 pixels (0.6 × 0.6 m) were extracted from images 
of exposed P. yezoensis, submerged P. yezoensis and sea-
water for comparing their multispectral reflectance. To 
check the potential influence of dehydration on reflec-
tance, a laboratory experiment was conducted on P. 
yezoensis with a series of relative water content (RWC). 
The P. yezoensis thalli were spread flat on a plate to obtain 
the RWC from 100% to 10% in a gradient of 10% at 10 °C 

room temperature following the methods of Sun et  al. 
[47]. The spectrums of P. yezoensis were measured using 
the hyperspectral camera Specim IQ (Specim, Finland) in 
400–1000 nm range. And in the field, extra experiments 
were carried out to decide a suitable aerial imaging time. 
In plot A during the low tide period, the UAV-boarded 
multispectral sensors were flown twice at the time of P. 
yezoensis once totally exposed to air and 1  h later. The 
100 pixels (0.6 × 0.6 m) were selected and compared their 
derived vegetation indices based on multispectral reflec-
tance. Consistency in the investigated sites was ensured 
by determining the same global positioning system (GPS) 
coordinates using a Garmin 12 channel GPS receiver 
(Garmin, Taiwan). The field experiments were conducted 
twice on 6th and 7th January, 2019, respectively (Table 2).

Data processing
Data processing was conducted as shown in Fig. 11. The 
images were jointed and orthorectification was taken 
using Pix4D 4.1.2 (Lausanne, Switzerland) and Agisoft 

Fig. 9  Study sites with RGB images of plot A, B and C
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Photoscan software. They were then subjected to geo-
metric correction processing using the measurements 
of the 12 ground control points. After geometric cor-
rection, the radiometric calibrations were performed 
using Pix4D software. Radiometric calibration was car-
ried out using the calibration images of the reflectance 
panel with known reflectance values. Each time before 
the UAV platform took off to the object regions, the 
multispectral camera acquired the images of the reflec-
tance panel in advance. Using the corresponding values 
of the calibrated reflectance panel, the captured images 
data were carried out the radiometric correction using 
Pix4D or Photoscan automatically. Radiometric cor-
rections were used to improve radiometric data qual-
ity and correct the spectral reflectance from images. 
The images acquired by the UAV-based multispectral 

Fig. 10  UAV platform and sensors

Table 2  Details of the flight in this study

Region A B C

Flight date 6th and 7th Jan, 
2019

22nd Nov, 2018 
and 13th Jan, 
2019

13th Jan, 2019

Area (m2) 25200 13150 12800

Flight time (min) 3520 20

Flight height (m) 40 40 40

Line spacing (m) 10 10 10

Forward overlap Average over-
lap > 70% (Timer 
exposure mode)

Average over-
lap > 70% (Timer 
exposure mode)

Average over-
lap > 70% 
(Timer 
exposure 
mode)

Side overlap 70% 70% 70%

Resolution 1280 × 960 1280 × 960 1280 × 960

Fig. 11  Schematic workflow of model establishment
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sensors were performed using ENVI 5.1 software. To 
filter out the noise formed by the seawater background, 
kernel neighbourhood maximal calculation was per-
formed. Resampling was used to control the number of 
pixel points involved in computation.

The reflectance values were derived using ENVI 5.1 
software. The four vegetation indices, the difference veg-
etation index (DVI), ratio vegetation index (RVI), nor-
malised difference of red edge (NDRE), and normalised 
difference vegetation index (NDVI) were calculated fol-
lowing the equations shown in Table 3 in ENVI 5.1.

In the equations of Table  3, ρNIR , ρR, and ρRE are the 
measured reflectance of NIR, red, and red edge bands, 
respectively.

The reflectance of P. yezoensis measured by the Specim 
IQ hyperspectral camera was transformed to RedEdge-M 
equivalent reflectance using the spectral response func-
tion of the RedEdge-M sensor, as the following equation.

In the equation above, the Si (λ) is the spectral response 
function of the i-th band of the RedEdge-M, F0 (λ) is the 
average solar irradiance, R (λ) is the measured reflectance 

(1)RRedEdge-M(�i) =
∫ F0(�)Si(�)R(�)d�

∫ F0(�)Si(�)d�

by the hyperspectral camera, and RRedEdge-M(λ) is the 
RedEdge-equivalent reflectance. The processes were per-
formed using ENVI 5.1.

Field measurement of biomass
Matching the acquisition time of UAV multispectral 
imaging data, the field samples were synchronously 
obtained in plots B and C on 13 January 2019 (Table 2). 
Thirty-six P. yezoensis nets were randomly selected in 
plots B and C (Fig.  12). Each net was sampled by three 
0.6 × 0.6  m quadrats within 1  h after P. yezoensis was 
completely exposed to the air. The locations of all sample 
quadrats were determined using the Garmin 12 channel 
GPS receiver. The P. yezoensis biomass of each quadrat 
was acquired by weighing the constant weight after dry-
ing in a heat oven (BPG-9070A) at 80 °C [5].

Estimation model establishment and assessment
The regression of vegetation indices provides a sim-
ple and effective method for estimating biomass. In this 
study, the four vegetation indices were calculated from 
multispectral images using the mean reflectance values 
of a 0.6 × 0.6  m pixel in accordance with the same field 
sampling site (as determined using GPS coordinates). 
Eighty field quadrats out of a total of 108 were selected 
randomly as the training data for the establishment of the 
linear or non-linear regression model, and the remain-
ing 28 quadrats were used for model validation. The sim-
ple linear or square regressions were used to estimate 
the parameters of calculation equations based on single 
or combined vegetation indices. The accuracy of each 
model was assessed using the root mean square error 
(RMSE), relative estimated accuracy (Ac) and coefficient 

Table 3  Vegetation indices used in this study

Vegetation Index Formula Reference

RVI ρNIR/ρR [27]

DVI ρNIR-ρR [50]

NDRE (ρNIR − ρRE )/(ρNIR + ρRE ) [15]

NDVI (ρNIR − ρR)/(ρNIR + ρR) [22]

Fig. 12  Sampling points in the study plot B (a) and C (b)
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of determination (R2). The smaller the RMSE value, the 
better the accuracy. Furthermore, the higher Ac and R2 
values indicate greater similarities between the estimated 
and true values. The equations for these parameters are 
as follows:

In the equations above, X and Y are the measured and 
estimated biomass values of sample i, n is the number 
of samples, and X̄ is the average value of total measured 
biomass. The regression diagnostic plots of the different 
vegetation indices and the distribution of the predicted 
values and residuals were used for model assessment.
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