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Abstract 

Background:  Plant root research can provide a way to attain stress-tolerant crops that produce greater yield in a 
diverse array of conditions. Phenotyping roots in soil is often challenging due to the roots being difficult to access and 
the use of time consuming manual methods. Rhizotrons allow visual inspection of root growth through transparent 
surfaces. Agronomists currently manually label photographs of roots obtained from rhizotrons using a line-intersect 
method to obtain root length density and rooting depth measurements which are essential for their experiments. We 
investigate the effectiveness of an automated image segmentation method based on the U-Net Convolutional Neural 
Network (CNN) architecture to enable such measurements. We design a data-set of 50 annotated chicory (Cichorium 
intybus L.) root images which we use to train, validate and test the system and compare against a baseline built using 
the Frangi vesselness filter. We obtain metrics using manual annotations and line-intersect counts.

Results:  Our results on the held out data show our proposed automated segmentation system to be a viable solu-
tion for detecting and quantifying roots. We evaluate our system using 867 images for which we have obtained 
line-intersect counts, attaining a Spearman rank correlation of 0.9748 and an r2 of 0.9217. We also achieve an F1 of 0.7 
when comparing the automated segmentation to the manual annotations, with our automated segmentation system 
producing segmentations with higher quality than the manual annotations for large portions of the image.

Conclusion:  We have demonstrated the feasibility of a U-Net based CNN system for segmenting images of roots in 
soil and for replacing the manual line-intersect method. The success of our approach is also a demonstration of the 
feasibility of deep learning in practice for small research groups needing to create their own custom labelled dataset 
from scratch.

Keywords:  Roots, Convolutional neural network, Rhizotron, Deep learning, Phenotyping, Image analysis, Root 
intersection method
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Background
High-throughput phenotyping of roots in soil has been 
a long-wished-for goal for various research purposes 
[1–4]. The challenge of exposing the architecture of roots 
hidden in soil has promoted studies of roots in artificial 
growth media [5]. However, root growth is highly influ-
enced by physical constraints [6] and such studies have 
shown to be unrepresentative of roots in soil [7, 8].

Traditionally studies of roots in soil have relied on 
destructive and laborious methods such as trenches in 

the field and soil coring followed by root washing [9]. 
Recently 3D methods such as X-ray computed tomogra-
phy [10] and magnetic resonance imaging [11] have been 
introduced, but these methods require expensive equip-
ment and only allow small samples.

Since the 1990, rhizotrons [12–14] and minirhizotrons 
[15, 16] which allow non-invasive monitoring of spa-
tial and temporal variations in root growth in soil, have 
gained popularity. Minirhizotrons facilitate the repeated 
observation and photographing of roots through the 
transparent surfaces of below ground observation tubes 
[17].

A major bottleneck when using rhizotron methods 
is the extraction of relevant information from the cap-
tured images. Images have traditionally been annotated 
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manually using the line-intersect method where the 
number of roots crossing a line in a grid is counted and 
correlated to total root length [18, 19] or normalised 
to the total length of grid line [20]. The line-intersect 
method was originally developed for washed roots but is 
now also used in rhizotron studies where a grid is either 
directly superimposed on the soil-rhizotron interface [21, 
22] or indirectly on recorded images [23, 24]. The tech-
nique is arduous and has been reported to take 20 min 
per metre of grid line in minirhizotron studies [25]. Line-
intersect counts are not a direct measurement of root 
length and do not provide any information on architec-
tural root traits such as branching, diameter, tip count, 
growth speed or growth angle of laterals.

To overcome these issues, several attempts have been 
made to automate the detection and measurement of 
roots, but all of them require manual supervision, such as 
mouse clicks to detect objects [26, 27].

The widely used “RootFly” software provides both 
manual annotation and automatic root detection func-
tionality [28]. Although the automatic detection worked 
well on the initial three datasets the authors found it did 
not transfer well to new soil types (personal communica-
tion with Stan Birchfield, September 27, 2018).

Following the same manual annotation procedure as in 
RootFly, [29] calculated that it takes 1–1.5 h per 100 cm2 
to annotate images of roots from minirhizotrons, adding 
up to thousands of hours for many minirhizotron experi-
ments. Although existing software is capable of attaining 
much of the desired information, the annotation time 
required is prohibitive and severely limits the use of such 
tools.

Image segmentation is the splitting of an image into 
different meaningful parts. A fully automatic root seg-
mentation system would not just save agronomists time 
but could also provide more localized information on 
which roots have grown and by how much as well as root 
width and architecture.

The low contrast between roots and soil has been a 
challenge in previous attempts to automate root detec-
tion. Often only young unpigmented roots can be 
detected [30] or roots in black peat soil [31]. To enable 
detection of roots of all ages in heterogeneous field 
soils, attempts have been made to increase the contrast 
between soil and roots using custom spectroscopy. UV 
light can cause some living roots to fluoresce and thereby 
stand out more clearly [3] and light in the near–infrared 
spectrum can increase the contrast between roots and 
soil [32].

Other custom spectroscopy approaches have shown 
the potential to distinguish between living and dead roots 
[33, 34] and roots from different species [35, 36]. A dis-
advantage of such approaches is that they require more 

complex hardware which is often customized to a specific 
experimental setup. A method which works with ordi-
nary RGB photographs would be attractive as it would 
not require modifications to existing camera and lighting 
setups, making it more broadly applicable to the wider 
root research community. Thus in this work we focus on 
solving the problem of segmenting roots from soil using a 
software driven approach.

Prior work on segmenting roots from soil in photo-
graphs has used feature extraction combined with tra-
ditional machine learning methods [37, 38]. A feature 
extractor is a function which transforms raw data into 
a suitable internal representation from which a learning 
subsystem can detect or classify patterns [39]. The pro-
cess of manually designing a feature extractor is known 
as feature engineering. Effective feature engineering for 
plant phenotyping requires a practitioner with a broad 
skill-set as they must have sufficient knowledge of both 
image analysis, machine learning and plant physiology 
[40]. Not only is it difficult to find the optimal descrip-
tion of the data but the features found may limit the per-
formance of the system to specific datasets [41]. With 
feature engineering approaches, domain knowledge is 
expressed in the feature extraction code so further pro-
gramming is required to re-purpose the system to new 
datasets.

Deep learning is a machine learning approach, condi-
tioned on the training procedure, where a machine fed 
with raw data automatically discovers a hierarchy of rep-
resentations that can be useful for detection or classifica-
tion tasks [39]. Convolutional Neural Networks (CNNs) 
are a class of deep learning architectures where the fea-
ture extraction mechanism is encoded in the weights 
(parameters) of the network, which can be updated 
without the need for manual programming by changing 
or adding to the training data. Via the training process a 
CNN is able to learn from examples, to approximate the 
labels or annotations for a given input. This makes the 
effectiveness of CNNs highly dependent on the quality 
and quantity of the annotations provided.

Deep learning facilitates a decoupling of plant physiol-
ogy domain knowledge and machine learning technical 
expertise. A deep learning practitioner can focus on the 
selection and optimisation of a general purpose neural 
network architecture whilst root experts encode their 
domain knowledge into annotated data-sets created 
using image editing software.

CNNs have now established their dominance on 
almost all recognition and detection tasks [42–45]. They 
have also been used to segment roots from soil in X-ray 
tomography [46] and to identify the tips of wheat roots 
grown in germination paper growth pouches [41]. CNNs 
have an ability to transfer well from one task to another, 
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requiring less training data for new tasks [47]. This gives 
us confidence that knowledge attained from training on 
images of roots in soil in one specific setup can be trans-
ferred to a new setup with a different soil, plant species or 
lighting setup.

The aim of this study is to develop an effective root seg-
mentation system using a CNN. For semantic segmen-
tation tasks CNN architectures composed of encoders 
and decoders are often used. These so-called encoder-
decoder architectures firstly transform the input using 
an encoder into a representation with reduced spatial 
dimensions which may be useful for classification tasks 
but will lack local detail, then a decoder will up-sample 
the representation given by the encoder to a similar 
resolution as the original input, potentially outputting 
a label for each pixel. Another encoder-decoder based 
CNN system for root image analysis is RootNav 2.0 [48] 
which is targeted more towards experimental setups with 
the entire root system visible, where it enables extrac-
tion of detailed root system architecture measurements. 
We use the U-Net CNN encoder-decoder architecture 
[49], which has proven to be especially useful in contexts 
where attaining large amounts of manually annotated 
data is challenging, which is the case in biomedical or 
biology experiments.

As a baseline machine learning approach we used the 
Frangi vessel enhancement filter [50], which was origi-
nally developed to enhance vessel structures on images 
of human vasculature. Frangi filtering represents a more 
traditional and simpler off-the-shelf approach which typ-
ically has lower minimum hardware requirements when 
compared to U-Net.

We hypothesize that (1) U-Net will be able to effectively 
discriminate between roots and soil in RGB photographs, 
demonstrated by a strong positive correlation between 
root length density obtained from U-Net segmentations 
and root intensity obtained from the manual line-inter-
sect method. And (2) U-Net will outperform a traditional 
machine learning approach with larger amounts of agree-
ment between the U-Net segmentation output and the 
test set annotations.

Methods
We used images of chicory (Cichorium intybus L.) taken 
during summer 2016 from a large 4 m deep rhizotron 
facility at University of Copenhagen, Taastrup, Denmark 
(Fig.  1). The images had been used in a previous study 
[51] where the analysis was performed using the manual 
line-intersect method. As we make no modifications to 
the hardware or photographic procedure, we are able 
to evaluate our method as a drop-in replacement to the 
manual line-intersect method.

The facility from which the images were captured 
consists of 12 rhizotrons. Each rhizotron is a soil filled 
rectangular box with 20 1.2 m wide vertically stacked 
transparent acrylic panels on two of its sides which are 
covered by 10 mm foamed PVC plates. These plates 
can be removed to allow inspection of root growth at 
the soil-rhizotron interface. There were a total of 3300 
images which had been taken on 9 different dates dur-
ing 2016. The photos were taken from depths between 
0.3 and 4 m. Four photos were taken of each panel in 
order to cover its full width, with each individual image 
covering the full height and 1/4 of the width (For fur-
ther details of the experiment and the facility see [51]). 
The image files were labelled according to the specific 
rhizotron, direction and panel they are taken from with 
the shallowest which is assigned the number 1 and the 
deepest panel being assigned the number 20.

Line-intersect counts were available for 892 images. 
They had been obtained using a version of the line-
intersect method [18] which had been modified to use 
grid lines [19, 52] overlaid over an image to compute 
root intensity. Root intensity is the number of root 
intersections per metre of grid line in each panel [20].

In total four different grids were used. Coarser grids 
were used to save time when counting the upper pan-
els with high root intensity and finer grids were used 
to ensure low variation in counts from the lower panels 
with low root intensity. The 4 grids used had squares of 
sizes 10, 20, 40 and 80 mm. The grid size for each depth 
was selected by the counter, aiming to have at least 50 
intersections for all images obtained from that depth. 
For the deeper panels with less roots, it was not pos-
sible to obtain 50 intersections per panel so the finest 
grid (10 mm) was always used.

Fig. 1  Chicory (Cichorium intybus L.) growing in the rhizotron facility
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To enable comparison we only used photos that had 
been included in the analysis by the manual line-intersect 
method. Here photos containing large amounts of equip-
ment were not deemed suitable for analysis. From the 
3300 originals, images from panels 3, 6, 9, 12, 15 and 18 
were excluded as they contained large amounts of equip-
ment such as cables and ingrowth cores. Images from 
panel 1 were excluded as it was not fully covered with 
soil. Table 1 shows the number of images from each date, 
the number of images remaining after excluding panels 
unsuitable for analysis and if line-intersect counts were 
available.

Deeper panels were sometimes not photographed as 
when photographing the panels the photographer worked 
from the top to the bottom and stopped when it was clear 
that no deeper roots could be observed. We took the 
depth distribution of all images obtained from the rhi-
zotrons in 2016 into account when selecting images for 
annotation in order to create a representative sample 
(Fig. 2). After calculating how many images to select from 
each depth the images were selected at random.

The first 15 images were an exception to this. They had 
been selected by the annotator whilst aiming to include 
all depths. We kept these images but ensured they were 
not used in the final evaluation of model performance 
as we were uncertain as to what biases had led to their 
selection.

Annotation
We chose a total of 50 images for annotation. This num-
ber was based on the availability of our annotator and the 
time requirements for annotation.

To facilitate comparison with the available root inten-
sity measurements by analysing the same region of the 
image as [51], the images were cropped from their origi-
nal dimensions of 4608× 2592 pixels to 3991× 1842 

pixels which corresponds to an area of approximately 300 
× 170 mm of the surface of the rhizotron. This was done 
by removing the right side of the image where an overlap 
between images is often present and the top and bottom 
which included the metal frame around the acrylic glass.

A detailed per-pixel annotation (Fig.  3) was then cre-
ated as a separate layer in Photoshop by a trained agron-
omist with extensive experience using the line-intersect 
method. Annotation took approximately 30 min per 
image with the agronomist labelling all pixels which they 
perceived to be root.

The number of annotated root pixels ranged from 0 to 
203533 (2.8%) per image.

Data split
During the typical training process of a neural network, 
the labelled or annotated data is split into a training, vali-
dation and test dataset. The training set is used to opti-
mize a neural network using a process called Stochastic 
Gradient Descent (SGD) where the weights (parameters) 
are adjusted in such a way that segmentation perfor-
mance improves. The validation set is used for giving an 
indication of system performance during the training 
procedure and tuning the so-called hyper-parameters, 
not optimised by SGD such as the learning rate. See the 
section U-Net Implementation for more details. The test 
set performance is only calculated once after the neural 
network training process is complete to ensure an unbi-
ased indication of performance.

Firstly, we selected 10 images randomly for the test set. 
As the test set only contained 10 images, this meant the 
full range of panel heights could not be included. One 
image was selected from all panel heights except for 13, 
17, 18 and 20. The test set was not viewed or used in the 

Table 1  Number of images from each date

Not all images are included as they may contain large amounts of equipment

Date Total images Included Line-
intersect 
counts

21/06/16 192 168 Yes

27/06/16 296 180 No

04/07/16 320 196 Yes

11/07/16 348 216 No

18/07/16 396 248 Yes

25/07/16 420 268 No

22/08/16 440 280 Yes

05/09/16 440 276 No

21/09/16 448 280 No

Fig. 2  The number of images selected for annotation from each 
panel depth
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computation of any statistics during the model devel-
opment process, which means it can be considered as 
unseen data when evaluating performance. Secondly, 
from the remaining 40 images we removed two images. 
One because it didn’t contain any roots and another 
because a sticker was present on the top of the acrylic. 
Thirdly, the remaining 38 images were split into split into 
training and validation datasets.

We used the root pixel count from the annotations to 
guide the split of the images into a train and validation 
data-set. The images were ordered by the number of root 
pixels in each image and then 9 evenly spaced images 
were selected for the validation set with the rest being 
assigned to the training set. This was to ensure a range of 
root intensities was present in both training and valida-
tion sets.

Metrics
To evaluate the performance of the model during devel-
opment and testing we used F1 . We selected F1 as a met-
ric because we were interested in a system which would 
be just as likely to overestimate as it would underestimate 
the roots in a given photo. That meant precision and 
recall were valued equally. In this context precision is the 
ratio of correctly predicted root pixels to the number of 
pixels predicted to be root and recall is the ratio of cor-
rectly predicted root pixels to the number of actual root 
pixels in the image. Both recall and precision must be 
high for F1 to be high.

The F1 of the segmentation output was calculated using 
the training and validation sets during system develop-
ment. The completed system was then evaluated using 
the test set in order to provide a measure of performance 
on unseen data. We also report accuracy, defined as the 
ratio of correctly predicted to total pixels in an image.

In order to facilitate comparison and correlation with 
line-intersect counts, we used an approach similar to [53] 
to convert a root segmentation to a length estimate. The 
scikit-image skeletonize function was used to first thin 
the segmentation and then the remaining pixels were 
counted. This approach was used for both the baseline 
and the U-Net segmentations.

For the test set we also measured correlation between 
the root length of the output segmentation and the man-
ual root intensity given by the line-intersect method. We 
also measured correlation between the root length of 
our manual per-pixel annotations and the U-Net output 
segmentations for our held out test set. To further quan-
tify the effectiveness of the system as a replacement for 
the line-intersect method, we obtained the coefficient of 
determination ( r2 ) for the root length given by our seg-
mentations and root intensity given by the line-intersect 
method for 867 images. Although line-intersect counts 
were available for 892 images, 25 images were excluded 
from our correlation analysis as they had been used in 
the training dataset.

(1)F1 = 2 ·
precision · recall

precision+ recall

Fig. 3  Sub region of one of the photos in the training data. a Roots and soil as seen through the transparent acrylic glass on the surface of one of 
the rhizotrons and b is the corresponding annotation showing root pixels in white and all other pixels in black. Annotations like these were used for 
training the U-Net CNN
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Frangi vesselness implementation
For our baseline method we built a system using the 
Frangi Vesselness enhancement filter [50]. We selected 
the Frangi filter based on the observation that the roots 
look similar in structure to blood vessels, for which the 
Frangi filter was originally designed. We implemented 
the system using the Python programming language (ver-
sion 3.6.4), using the scikit-image [54] (version 0.14.0) 
version of Frangi. Vesselness refers to a measure of tubu-
larity that is predicted by the Frangi filter for a given pixel 
in the image. To obtain a segmentation using the Frangi 
filter we thresholded the output so only regions of the 
image above a certain vesselness level would be classified 
as roots. To remove noise we further processed the seg-
mentation output using connected component analysis to 
remove regions less than a threshold of connected pixels. 
To find optimal parameters for both the thresholds and 
the parameters for the Frangi filter we used the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) 
[55]. In our case the objective function to be minimized 
was 1−mean(F1) where mean(F1) is the mean of the F1 
scores of the segmentations produced from the thresh-
olded Frangi filter output.

U‑Net implementation
Architecture
We implemented a U-Net CNN in Python (version 3.6.4) 
using PyTorch [56] which is an open source machine 
learning library which utilizes GPU accelerated tensor 
operations. PyTorch has convenient utilities for defining 
and optimizing neural networks. We used an NVIDIA 
TITAN Xp 12 GB GPU. Except for the input layer which 
was modified to receive RGB instead of a single channel, 
our network had the same number of layers and dimen-
sions as the original U-Net [49]. We applied Group norm 
[57] after all ReLU activations as opposed to Batch norm 
[58] as batch sizes as small as ours can cause issues due 
to inaccurate batch statistics degrading the quality of 
the resulting models [59]. The original U-Net proposed 
in [49] used Dropout which we avoided as in some cases 
the combination of dropout and batch normalisation can 
cause worse results [60]. He initialisation [61] was used 
for all layers.

Instance selection
The network takes tiles with size 572× 572 as input and 
outputs a segmentation for the centre 388× 388 region 
for each tile (Fig.  4). We used mirroring to pad the full 
image before extracting tiles. Mirroring in this context 
means the image was reflected at the edges to make it 
bigger and provide some synthetic context to allow seg-
mentation at the edges of the image. In neural network 

training an epoch refers to a full pass over the training 
data. Typically several epochs are required to reach good 
performance. At the start of each epoch we extracted 
90 tiles with random locations from each of the training 
images. These tiles were then filtered down to only those 
containing roots and then a maximum of 40 was taken 
from what ever was left over. This meant images with 
many roots would still be limited to 40 tiles. The removal 
of parts of the image which does not contain roots has 
similarity to the work of [62] who made the class imbal-
ance problem less severe by cropping regions contain-
ing empty space. When training U-Net with mini batch 
SGD, each item in a batch is an image tile and multiple 
tiles are input into the network simultaneously. Using 
tiles as opposed to full images gave us more flexibility 
during experimentation as we could adjust the batch size 
depending on the available GPU memory. When train-
ing the network we used a batch size of 4 to ensure we 
did not exceed the limits of the GPU memory. Validation 
metrics were still calculated using all tiles with and with-
out soil in the validation set.

Preprocessing and augmentation
Each individual image tile was normalised to 
[−0.5,+0.5] as centering inputs improves the conver-
gence of networks trained with gradient descent [63]. 
Data augmentation is a way to artificially expand a 

Fig. 4  U-Net receptive field input size (blue) and output size (green). 
The receptive field is the region of the input data which is provided 
to the neural network. The output size is the region of the original 
image which the output segmentation is for. The output is smaller 
than the input to ensure sufficient context for the classification of 
each pixel in the output
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dataset and has been found to improve the accuracy of 
CNNs for image classification [64]. We used color jit-
ter as implemented in PyTorch, with the parameters 
0.3, 0.3, 0.2 and 0.001 for brightness, contrast satura-
tion and hue respectively. We implemented elastic 
grid deformation (Fig.  5) as described by [65] with 
a probability of 0.9. Elastic grid deformations are 
parameterized by the standard deviation of a Gauss-
ian distribution σ which is an elasticity coefficient and 
α which controls the intensity of the deformation. As 
opposed to [65] who suggests a constant value for σ and 
α , we used an intermediary parameter γ sampled from 
[0.0,  1.0) uniformly. γ was then used as an interpola-
tion co-efficient for both σ from [15,  60] and α from 
[200,  2500]. We found by visual inspection that the 
appropriate α was larger for a larger σ . If a too large α 
was used for a given σ then the image would look dis-
torted in unrealistic ways. The joint interpolation of 
both σ and α ensured that the maximum intensity level 
for a given elasticity coefficient would not lead to over 
distorted and unrealistic looking deformations. We fur-
ther scaled α by a random amount from [0.4, 1) so that 
less extreme deformations would also be applied. We 
consider the sampling of tiles from random locations 
within the larger images to provide similar benefits to 
the commonly used random cropping data augmenta-
tion procedure. The augmentations were ran on 8 CPU 
threads during the training process.

Loss
Loss functions quantify our level of unhappiness with 
the network predictions on the training set [66]. During 
training the network outputs a predicted segmentation 
for each input image. The loss function provides a way 
to measure the difference between the segmentation 
output by the network and the manual annotations. The 
result of the loss function is then used to update the 
network weights in order to improve its performance 
on the training set. We used the Dice loss as imple-
mented in V-Net [67]. Only 0.54% of the pixels in the 
training data were roots which represents a class imbal-
ance. Training on imbalanced datasets is challenging 
because classifiers are typically designed to optimise 
overall accuracy which can cause minority classes to be 
ignored [68]. Experiments on CNNs in particular have 
shown the effect of class imbalance to be detrimental 
to performance [69] and can cause issues with conver-
gence. The Dice loss is an effective way to handle class 
imbalanced datasets as errors for the minority class will 
be given more significance. For predictions p, ground 
truth annotation g, and number of pixels in an image N, 
Dice loss was computed as:

The Dice coefficient corresponds to F1 when there are 
only two classes and ranges from 0 to 1. It is higher for 
better segmentations. Thus it is subtracted from 1 to con-
vert it to a loss function to be minimized. We combined 

(2)DL = 1−
2(p ∩ g)

p ∪ g
= 1−

2
∑N

i pigi
∑N

i pi +
∑N

i gi

Fig. 5  a Elastic grid applied to an image tile and b corresponding 
annotation. A white grid is shown to better illustrate the elastic grid 
effect. A red rectangle illustrates the region which will be segmented. 
Augmentations such as elastic grid are designed to increase the 
likelihood that the network will work on similar data that is not 
included in the training set
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the Dice loss with cross-entropy multiplied by 0.3, which 
was found using trial and error. This combination of loss 
functions was used because it provided better results 
than either loss function in isolation during our prelimi-
nary experiments.

Optimization
We used SGD with Nesterov momentum based on the 
formula from [70]. We used a value of 0.99 for momen-
tum as this was used in the original U-Net implementa-
tion. We used an initial learning rate of 0.01 which was 
found by using trial and error whilst monitoring the vali-
dation and training F1 . The learning rate alters the mag-
nitude of the updates to the network weights during each 
iteration of the training procedure. We used weight decay 
with a value of 1× 10−5 . A learning rate schedule was 
used where the learning rate would be multiplied by 0.3 
every 30 epochs. Adaptive optimization methods such 
as Adam [71] were avoided due to results showing they 
can cause worse generalisation behaviour [72, 73]. The F1 
computed on both the augmented training and validation 
after each epoch is shown in Fig. 6.

Results
We succeeded in getting both the U-Net and the Frangi 
filter system to segment roots in the images in the train 
and validation datasets (Table  2) as well as the held 
out test set (Table  3). As F1 , recall and precision is not 
defined for images without roots we report the results 
on all images combined (Table  3). We report the mean 

and standard deviation of the per image results from 
the images which contain roots (Table  4). When com-
puting these per image statistics we can see that U-Net 
performed better than the Frangi system for all metrics 
attained.

Fig. 6  F1 on training and validation data sets. F1 is a measure of the system accuracy. The training F1 continues to improve whilst the validation F1 
appears to plateau at around epoch 40. This is because the network is starting to fit to noise and other anomalies in the training data which are not 
present in the validation images

Table 2  Best U-Net model results on  the  train set 
and the validation set used for early stopping

These train set results are calculated on data affected by both instance selection 
and augmentation

Training Validation

Accuracy 0.996 0.996

Precision 0.758 0.674

Recall 0.780 0.712

F1 0.769 0.692

Table 3  Metrics on  all images combined for  the  held 
out  test set for  the  Frangi and  U-Net segmentation 
systems

Frangi U-Net

Accuracy 0.996 0.997

F1 0.462 0.701

Precision 0.660 0.659

Recall 0.355 0.748

Prediction mean 0.002 0.006

True mean 0.005 0.005
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Train and validation set metrics
The final model parameters were selected based on the 
performance on the validation set. The best validation 
results were attained after epoch 73 after approximately 
9 h and 34 min of training. The performance on the train-
ing set was higher than the validation set (Table  2). As 
parameters have been adjusted based on the data in the 
training and validation datasets these results are unlikely 
to be reliable indications of the model performance on 
new data so we report the performance on an unseen test 
set in the next section.

Test set results
The overall percentage of root pixels in the test data was 
0.49%, which is lower than either the training or valida-
tion dataset. Even on the image with the highest errors 
the CNN is able to predict many of the roots correctly 
(Fig.  7). Many of the errors appear to be on the root 

boundaries. Some of the fainter roots are also missed by 
the CNN. For the image with the highest (best) F1 the 
U-Net segmentation appears very similar to the origi-
nal annotation (Fig.  8). The segmentation also contains 
roots which where missed by the annotator (Fig.  8d) 
which we were able to confirm by asking the annotator 
to review the results. U-Net was also often able to seg-
ment the root-soil boundary more cleanly than the anno-
tator (Fig. 9). False negatives can be seen at the top of the 
image where the CNN has failed to detect a small section 
of root (Fig. 8d).

The performance of U-Net as measured by F1 was 
better than that of the Frangi system when computing 
metrics on all images combined (Table  3). It also had a 
closer balance between precision and recall. The U-Net 
segmentations have a higher F1 for all images with roots 
in the test data (Fig.  10). Some segmentations from the 
Frangi system have an F1 below 0.4 whilst all the U-Net 
segmentations give an F1 above 0.6 with the highest being 
just less than 0.8. The average predicted value for U-Net 
was over twice that of the Frangi system. This means 
U-Net predicted twice as many pixels to be root as Frangi 
did.

The slight over estimation of total root pixels explains 
why recall is higher than precision for U-Net. The accu-
racy is above 99% for both systems. This is because accu-
racy is measured as the ratio of pixels predicted correctly 
and the vast majority of pixels are soil that both systems 
predicted correctly.

For the two images which did not contain roots each 
misclassified pixel is counted as a false positive. The 
Frangi system gave 1997 and 1432 false positives on these 

Table 4  Mean and standard deviation of results on images 
containing roots

These are computed by taking the mean of the metrics computed on each of 
the 8 images containing roots. The 2 images without roots are excluded as for 
these F1 , precision and recall are undefined

Frangi U-Net

F1 mean 0.463 0.705

F1 standard deviation 0.085 0.040

Recall mean 0.361 0.749

Recall standard deviation 0.081 0.042

Precision mean 0.660 0.666

Precision standard deviation 0.087 0.043

Fig. 7  Original photo, annotation, segmentation output from U-Net and errors. To illustrate the errors the false positives are shown in red and the 
false negatives are shown in green. This image is a subregion of a larger image for which U-Net got the worst (lowest) F1
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images and the U-Net system gave 508 and 345 false 
positives. The Spearman rank correlation for the corre-
sponding U-Net and line-intersect root intensities for the 
test data is 0.9848 ( p = 2.288× 10−7 ). The U-Net seg-
mentation can be seen to give a similar root intensity to 
the manual annotations (Fig. 11).

We report the root intensity with the segmented root 
length for 867 images taken in 2016 (Fig. 12). The two 

measurements have a Spearman rank correlation of 
0.9748 (p < 10−8) and an r2 of 0.9217. Although the 
two measurements correlate strongly, there are some 
notable deviations including images for which U-Net 
predicted roots not observed by the manual annotator. 
From this scatter plot we can see that the data is het-
eroscedastic, forming a cone shape around the regres-
sion line with the variance increasing as root intensity 
increases in both measurements.

Fig. 8  Original photo, annotation, segmentation output from U-Net and errors. To illustrate the errors the false positives are shown in red and the 
false negatives are shown in green. This image is a subregion of a larger image for which U-Net got the best (highest) F1 . The segmentation also 
contains roots which were missed by the annotator. We were able to confirm this by having the annotator review these particular errors

Fig. 9  From left to right: Image, annotation overlaid over image in red, U-Net segmentation overlaid over image in blue, errors with false positive 
shown in red and false negative shown in green. Many of the errors are along an ambiguous boundary region between the root and soil. Much of 
the error region is caused by annotation, rather than CNN segmentation errors
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Conclusions
We have demonstrated the feasibility of a U-Net based 
CNN system for segmenting images of roots in soil and 
for replacing the manual line-intersect method. The suc-
cess of our approach is also a demonstration of the fea-
sibility of deep learning in practice for small research 
groups needing to create their own custom labelled data-
set from scratch.

Discussion
We have presented a method to segment roots from 
soil using a CNN. The segmentation quality as shown in 
Figs. 7c and 8c and the approximation of the root length 

given by our automated method and the manual line-
intersect method for the corresponding images as shown 
in Figs. 11 and 12 are a strong indication that the system 
works well for the intended task of quantifying roots.

The high correlation coefficient between the meas-
urements from the automated and manual methods 
supports our hypothesis that a trained U-Net is able to 
effectively discriminate between roots and soil in RGB 
photographs. The consistently superior performance of 
the U-Net system on the unseen test set over the Frangi 
system as measured by F1 score supports our second 
hypothesis that a trained U-Net will outperform a Frangi 
filter based approach.

The good generalisation behaviour and the success of 
the validation set at closely approximating the test set 
error indicate we would likely not need as many annota-
tions for validation on future root datasets. As shown in 
Fig. 12 there are some images for which U-Net predicted 
roots and the line-intersection count was 0. When inves-
tigating these cases we found some false positives caused 
by scratches in the acrylic glass. Such errors could be 
problematic as they make it hard to attain accurate esti-
mates of maximum rooting depth as the scratches could 
cause rooting depth to be overestimated. One way to fix 
this would be to manually design a dataset with more 
scratched panels in it in order to train U-Net not to clas-
sify them as roots. Another possible approach would be 
to automatically find difficult regions of images using an 
active learning approach such as [74] which would allow 
the network to query which areas of images should be 
annotated based on its uncertainty.

An oft-stated limitation of CNNs is that they require 
large scale datasets [75] with thousands of densely 
labelled images [76] for annotation. In this study we were 
able to train from scratch, validate and test a CNN with 
only 50 images which were annotated in a few days by a 
single agronomist with no annotation or machine learn-
ing experience. Our system was also designed to work 
with an existing photography setup using an ordinary 
off-the-shelf RGB camera. This makes our method more 
broadly accessible than methods which require a more 
complex multi-spectral camera system.

We used a loss function which combined Dice and 
cross entropy. In preliminary experiments we found this 
combined loss function to be more effective than either 
Dice or cross entropy used in isolation. Both [77] and [78] 
found empirically that a combination of Dice and cross 
entropy was effective at improving accuracy. Although 
[77] claims the combination of the loss functions is a way 
to yield better performance in terms of both pixel accu-
racy and segmentation metrics, we feel more research 
is needed to understand the exact benefits of such com-
bined loss functions.

Fig. 10  The F1 for the 8 images containing roots for both the Frangi 
and U-Net systems

Fig. 11  Normalised root length from the U-Net segmentations, 
manual annotations and the line-intersect counts for the 10 test 
images. The measurements are normalised using the maximum 
value. All three methods have the same maximum value (Image 6)
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Converting from segmentation to root length was 
not the focus of the current study. The method we used 
consisted of skeletonization and then pixel counting. 
One limitation of this method is that it may lead to dif-
ferent length estimates depending on the orientation of 
the roots [79]. See [79] for an in depth investigation and 
proposed solutions.

Finding ways to improve annotation quality would 
also be a promising direction for further work. Fig-
ure  9 shows how even a high quality segmentation 
will still have a large number of errors due to issues 
with annotation quality. This makes the F1 given for a 
segmentation to not be representative of the systems’ 
true performance. [80] found significant disagreement 
between human raters in segmenting tumour regions 
with Dice (equivalent to our F1 ) scores between 74 and 
85%. We suspect a similar level of error is present in 
our root annotations and that improving annotation 
quality would improve the metrics. Improved annota-
tion quality would be particularly useful for the test 
and validation datasets as it would allow us to train the 
model to a higher performance.

One way to improve the quality of annotations would 
be to combine various annotations by different experts 
using a majority vote algorithm such as the one used by 
[80] although caution should be taken when implement-
ing such methods as in some cases they can accentuate 
more obvious features, causing an overestimation of per-
formance [81].

It may also be worth investigating ways to reduce the 
weight of errors very close to the border of an annotation, 
as seen in Fig.  9, these are often issues with annotation 
quality or merely ambiguous boundary regions where a 
labelling of either root or soil should not be detrimental 
to the F1 . One way to solve the problem with mislead-
ing errors caused by ambiguous boundary regions is the 
approach taken by [41] which involved having a bound-
ary region around each area of interest where a classifi-
cation either way will not affect the overall performance 
metrics.

We excluded an image not containing roots and an 
image containing a sticker from our training and valida-
tion data. During training we also excluded parts of the 
image where no roots were found in order to handle the 
severe class imbalance present in the dataset. A limita-
tion of this approach is that it may be useful for the net-
work to learn to deal with stickers and in some cases, 
images without roots could contain hard negative exam-
ples which the network must learn to handle in order for 
it to achieve acceptable performance.

For future research we aim to explore how well the 
segmentation system performance will transfer to pho-
tographs from both other crop species and different 
experimental setups. In our work so far we have explored 
ways to deal with a limited dataset by using data augmen-
tation. Transfer learning is another technique which has 
been found to improve the performance of CNNs when 
compared to training from scratch for small datasets [47]. 

Fig. 12  RI vs segmented root length for 867 images taken in 2016. The two measurements have a Spearman rank correlation of 0.9748 and an R2 of 
0.9217
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We can simultaneously investigate both transfer learn-
ing and the feasibility of our system to work with differ-
ent kinds of plants by fine-tuning our existing network on 
root images from new plant species. [82] found pre-train-
ing U-Net to both substantially reduce training time and 
prevent overfitting. Interestingly, they pre-trained U-Net 
on two different datasets containing different types of 
images and found similar performance improvements in 
both cases. Such results indicate that pre-training U-Net 
using images which are substantially different from our 
root images may also provide performance advantages. 
Contra to this, [83] found training from scratch to give 
equivalent results to a transfer learning approach, which 
suggests that in some cases training time rather than final 
model performance will be the benefit of a transfer learn-
ing approach. As shown in Fig. 7, the CNN would leave 
gaps when a root was covered by large amounts of soil. 
An approach such as [84] could be used to recover such 
gaps which may improve the biological relevance of our 
root length estimates and potentially facilitate the extrac-
tion of more detailed root architecture information.

As opposed to U-Net, the Frangi filter is included in 
popular image processing packages such as MATLAB 
and scikit-image. Although the Frangi filter was initially 
simple to implement, we found the scikit-image imple-
mentation too slow to facilitate optimisation on our data-
set and substantial modifications were required to make 
optimisation feasible.

Another disadvantage of the CNN we implemented is 
that as opposed to the Frangi filter, it requires a GPU for 
training. It is, however, possible to use a CPU for infer-
ence. [85] demonstrated that in some cases U-Net can be 
compressed to 0.1% of it’s original parameter count with 
a very small drop in accuracy. Such an approach could be 
useful for making our proposed system more accessible 
to hardware constrained researchers.
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