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Abstract 

Background:  Image processing techniques have been widely used in the analysis of leaf characteristics. Earlier tech-
niques for processing digital RGB color images of plant leaves had several drawbacks, such as inadequate de-noising, 
and adopting normal-probability statistical estimation models which have few parameters and limited applicability.

Results:  We confirmed the skewness distribution characteristics of the red, green, blue and grayscale channels of 
the images of tobacco leaves. Twenty skewed-distribution parameters were computed including the mean, median, 
mode, skewness, and kurtosis. We used the mean parameter to establish a stepwise regression model that is similar to 
earlier models. Other models based on the median and the skewness parameters led to accurate RGB-based descrip-
tion and prediction, as well as better fitting of the SPAD value. More parameters improved the accuracy of RGB model 
description and prediction, and extended its application range. Indeed, the skewed-distribution parameters can 
describe changes of the leaf color depth and homogeneity.

Conclusions:  The color histogram of the blade images follows a skewed distribution, whose parameters greatly 
enrich the RGB model and can describe changes in leaf color depth and homogeneity.
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Background
In recent years, high-throughput techniques for pheno-
type identification in greenhouses and fields have been 
proposed in combination with non-invasive imaging, 
spectroscopy, robotics, high-performance computing 
and other new technologies, to achieve higher resolution, 
accuracy and fast [1, 2]. With the increasing maturity 
of digital image technology and the rising popularity of 

high-resolution camera equipment, research is becoming 
more feasible on qualitative and quantitative descriptions 
of phenotypic traits of plant appearance using digital 
imaging techniques [3–6]. Digital cameras can record 
spectral leaf information in visible color bands, with high 
resolutions and low costs [7]. In addition, digital color 
images contain rich information of plant morphology, 
structure, and leaf colors. So, leaf digital images are often 
exploited to identify changes in leaf color [8–10].

The most commonly used color representation for 
digital color images is the RGB color model. For an 
RGB color image, three color sensors per pixel can be 
used to capture the intensity of light in the red, green, 
and blue channels, respectively [11]. Existing software 
tools, such as MATLAB is used to process the obtained 
digital pictures [12]. The study of RGB color models of 
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plant leaves has a long history [13]. After decades of 
development, the RGB color information of plant leaves 
has been exploited for the determination of chlorophyll 
content and indicators of changes in this content [14]. 
To exploit the data further, researchers suggested a 
number of RGB-based color features for the determina-
tion of chlorophyll levels in potato, rice, wheat, broc-
coli, cabbage, barley, tomatoes, quinoa and amaranth 
[15–23]. Many formulas have also been suggested to 
determine leaf chlorophyll content based on RGB com-
ponents such as (RMean − BMean)/(RMean + BMean),GMean/
(RMean + GMean + BMean), RMean/(RMean + GMean + BMean), 
GMean/RMean, RMean + GMean + BMean, RMean-BMean, 
RMean + BMean, RMean + GMean, log sig ((GMean − RMean/3 
− BMean/3)/255) [20]. However the problem of the small 
amount of information still persists. This information 
scarcity has become a bottleneck in the application of 
RGB models, greatly limiting their use.

In the analysis of RGB data of leaf images, the cumu-
lative frequency distributions of the RMean, GMean and 
BMean components have been generally assumed to fol-
low a normal distribution. However, recent studies have 
reported that the cumulative frequency distributions 
of leaf colors follow skewed distributions. For exam-
ple, Wu et  al. found that the cumulative frequency of 
tea leaf color has a skewed distribution, and that the 
deviations with new and old leaves had clear differ-
ences [21]. Also, the moisture condition in maize leaves 
is related to the deviation of the grayscale values in the 
RGB blade model [22]. The asymmetry of a skewed 
distribution can be described by the partial frequency 
distributions of the skewed distribution curve. Several 
parameters can be derived from a skewed distribution 
including the mean, median, mode, skewness, kurtosis, 
and others.

The SPAD leaf chlorophyll meter is one of the most 
widely used hand-held meters for rapid and non-destruc-
tive assessment of the chlorophyll content in many crops 
[23]. In this paper, we analyzed the frequency distribu-
tions of the red, green, blue and grayscale channels in 
RGB leaf images and confirmed the skewed character-
istics of these distributions. By extracting relevant dis-
tribution parameters, models are established for the 
correlation of the color characteristic parameters and the 
SPAD chlorophyll concentration values. When the skew-
ness parameter was exploited, we found that both the 
fitting degree and the prediction accuracy were greatly 
improved. The proposed spatial model could predict the 
SPAD values more accurately, and explain the physiologi-
cal significance of the leaf color changes. We hope that 
this work would provide researchers with a new method 
for the analysis of blade color patterns in RGB digital 
images.

Materials and Methods
Experimental design
In this work, the tobacco was planted in pots on 
November 25, 2017 at Shanghang County Township, 
Fujian, China (24°57′N,116°30′E). The 50-day-old seed-
lings were transferred to the field. Then, tags were 
made for 400 new tobacco leaves which exhibited con-
sistent normal growth and leaf color, as well as no signs 
of pests and diseases after 15 days. A total of 100 leaves 
were collected at 40, 50, 60 and 65  days of leaf age, 
respectively. For each leaf, the SPAD value was meas-
ured at 10 AM. Then, the leaves were picked and sent to 
a dark room to take photos for them immediately.

Leaf image collection
On the same day of plant sampling, tobacco leaves were 
transferred to one platform in a dark room. The plat-
form used for image acquisition is a rectangular desk-
top of a 300-cm length, a 200-cm width, and an 80-cm 
height. The desktop bottom plate is a white matte scrub 
countertop. Images were captured using a high-reso-
lution camera (CANON EOS-550D, Canon Company, 
Japan) with a resolution of 3840 × 5120 pixels. The 
camera was mounted on atripod at the nadir position 
with a constant height of 1 m above the top of the plat-
form. The light sources are two 20-W strip white LED 
lamps with a color temperature of 4000  K. To ensure 
light uniformity, the lamp suspension positions in the 
platform are at 1/4th, and 3/4th of the 200 cm distance 
to the fixed digital camera.

Leaf image segmentation, denoising and color feature 
extraction
The commercial image-editing software, Adobe Photo-
shop CS, was used to manually cut each original image, 
save the PNG image as a transparent background, and 
adjust the image size to 1000 × 1330. The MATLAB 
2016R computing environment was used for the extrac-
tion and analysis of the color image data. First, the 
imread and rgb2gray functions were respectively used 
to read each color image and obtain its gray-level infor-
mation. Then, the double function was used to convert 
each gray-level array into a double-precision array. The 
mean, median, mode, skewness and kurtosis functions 
were respectively used to analyze and obtain the mean, 
median, mode, skewness, kurtosis, and other parame-
ters of the double-precision arrays of the red, green and 
blue channels as well as the gray-level image for each 
color leaf image.
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Color cumulative histogram construction and normality 
testing
The imread and rgb2gray functions are used to read 
each color image and obtain its gray-level counterpart. 
Then, using the image histogram functions, the cumu-
lative histograms of the double-precision arrays of the 
red, green, blue and gray-level data were obtained. The 
Lilliefors and Jarque–Bera tests were used to test the 
distribution normality.

Chlorophyll concentration measurement
For measuring the chlorophyll concentration, a chloro-
phyll meter (SPAD-502, Zhejiang Topuiunnong Tech-
nology Co., Ltd., China) was used to obtain the SPAD 
values for 50 pieces of fully-expanded tobacco leaves 
at 40, 50, 60 and 65 days of age, respectively. Each leaf 
blade was measured at five points: one on the upper 
part, two at the middle part, and two at the petiole of 
both sides of the leaf. The measurement process was 
designed to ensure that the sample completely covers 
the receiving window, avoid the veins only, and deter-
mine the leaf meat tissue. For each blade, the SPAD 
value is the mean value of the 5 measured points.

Model building and goodness‑of‑fit testing
We mainly used the IBM SPSS Statistics22 software 
to analyze the blade features at ages of 40, 50, 60 and 
65  days, and establish multivariate linear regres-
sion models, F1 and F2, by stepwise regression. In the 
F1 model, we got the parameters (RMean, GMean, BMean) 
using the mean function for three color channels. Then, 
we used each of these three parameters and ten combi-
nations of them (namely (RMean + GMean + BMean), RMean/
(RMean + GMean + BMean), GMean/(R Mean + GMean + BMean), 
BMean/(RMean + GMean + BMean), RMean − BMean, 
RMean − GMean, GMean − BMean, RMean + BMean, 
RMean + GMean, BMean + GMean) to establish a multivari-
ate linear regression model by stepwise regression. The 
parameter equation with the highest prediction accu-
racy was used to construct the F1 model. Similarly, all 
20 parameters (namely RMean, RMedian, RMode, RSkewness, 
RKurtosis, GMean, GMedian, GMode, GSkewness, GKurtosi, BMean, 
BMedian, BMode, BSkewness, BKurtosis, YMean, YMedian, YMode, 
YSkewness and YKurtosis) were used to establish a multi-
variate linear regression model by stepwise regression. 
The parameter associated with the highest prediction 
accuracy was used to construct the F2 model. Using 
the MATLAB software, the data was fit with Fourier 
and spatial functions based on all 20 parameters of 
40, 50, 60 and 65  days of blade age, to establish two 

multivariate linear regressionmodelsF3 and F4. Then, 
goodness-of-fit testing was performed.

Computer equipment
In this work, images and data were processed using a vir-
tual private server. The hardware resources included Intel 
Xeon CPU E5-2640 2.5 GHz with 2 DDR4 8 GB RAMs. 
This server type can perform billion double-precision 
real-time floating-point operations.

Results
Distribution characteristics and normality verification 
of color gradation cumulative frequency of leaf‑color RGB 
model
In previous studies, the histogram of RGB leaf colors was 
mostly assumed to follow a normal distribution [24–27]. 
However, the validity of this assumption was contested 
by some reports. To verify the suitability of the proposed 
method, we designed an experiment that involves tobacco 
leaf images with different sample sizes and growth peri-
ods. We found that the tobacco leaves gradually decayed, 
and that the leaf color changed from green to yellow after 
40 days. All histograms of single-leaf RGB images at dif-
ferent leaf ages (40, 50, 60, and 65 days) had skewed dis-
tributions (Fig.  1). No one RGB color distribution (red, 
green, blue or grayscale) was completely normal and the 
skewness changed regularly with the increase in the leaf 
age. To further confirm our histogram-based findings, 
we performed the Lilliefors and Jarque–Bera normality 
test using color gradation data of 50 leaves. The results 
showed that the normal distribution hypothesis value 
was1, and the p value was 0.001 (< 0.05). That means the 
leaf color distribution follows a skewed distribution, not 
a normal one.

Correlation between skewed‑distribution parameters 
and SPAD values
We have shown that the leaf RGB color distribution is a 
skewed distribution. Using skewed-distribution analysis 
in MATLAB, we got 20 parameters including the mean, 
median, mode, skewness and kurtosis for the red, green, 
blue and grayscale channels, respectively. In the individ-
ual-leaf color distribution, the parameters of the skew-
ness and kurtosis represent the state of the leaf color 
distribution (Table  1). The skewness showed obvious 
changes with different leaf ages and decreased from posi-
tive to negative values. This also indicates that the color 
distribution of tobacco leaves is skewed throughout their 
lifetime. The SPAD values showed increasing and then 
decreasing trends.
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We performed correlation analysis using the mean 
parameters (RMean, GMean, BMean) and their com-
binations (namely (RMean + GMean + BMean), RMean/
(RMean + GMean + BMean), GMean/(R Mean + GMean + BMean), 
BMean/(RMean + GMean + BMean), RMean − BMean, 
RMean − GMean, GMean − BMean, RMean + BMean, RMean + GMean, 
BMean + GMean) while earlier studies only used the param-
eters in Table 2. In Table 3, we carried on correlation anal-
ysis using 20 RGB skewed-distribution parameters with 
200 leaves of four leaf ages. The results showed 17 out of 
20 parameters were significantly correlated with the SPAD 
values at the 0.01 level. This means the change of the chlo-
rophyll content was highly correlated with the change 
of the leaf color. While the chlorophyll distribution area 
is not uniform, it is numerically related to the increase in 
skewness.

Construction of the correlation models between the SPAD 
and leaf color parameters
The correlation model can be established by the leaf 
color parameters based on the skewed distribution and 
the SPAD value. In previous studies, researchers gener-
ally used stepwise regression methods based on ordinary 
least squares (OLS) to construct the association model. 
For comparison with previous models, we used the mean 
parameters RMean, GMean, BMean and their combinations 

to establish multivariate linear regression models by 
stepwise regression, then chose the best combination as 
the model F1 (Table 4). We also extended the parameter 
range and adopted 20 parameters to establish multivari-
ate linear regression models by stepwise regression, then 
chose the best as the model F2. We found that the leaf 
color parameters changed linearly with increasing leaf 
ages, while the SPAD value was characterized by first 
increasing and then decreasing. Since different color gra-
dations represent different wavelengths of light, we were 
inspired to use the Fourier functions to fit and get the 
model F3 (Fig.  2). The leaf color showed different kinds 
of change, both in depth and in heterogeneity at differ-
ent positions, with non-planar characteristics. Therefore, 
to model the bidirectional changes of leaf color (i.e. the 
change of leaf color depth and distribution), we used the 
MATLAB Curve Fitting Toolbox to fit the polynomial F4 
that incorporates spatial bidirectional patterns (Fig. 3).

In order to assess the advantages and disadvantages 
of the four models, we compare their fitting perfor-
mance (Table  5). The models F2, F3 and F4 had higher 
R2. The model F4 increased 21% compared with the 
model F1. To evaluate the prediction accuracy of the 
four models, we collected another batch of leaf images 
with four values of leaf ages and 50 blades for each 
age value (Table  5). The models F2 and F4 had more 

Fig. 1  Color gradation cumulative frequency histograms for single-leaves at four different leaf ages. The leaves are picked at random. Color 
gradation cumulative frequency histograms of the red, green, and blue color channels as well as gray-level images are showed at 40, 50, 60 and 
65 days of leaf age. The X-axis is the cumulative frequency, and the Y-axis is the intensity level frequency
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accurate prediction, and the accuracy of F4 increased 
5% compared with F1. The SSE and RMSE metrics of 
the F4 model were superior to those of the other mod-
els. Therefore, the model F4 based on the spatial feature 
polynomial with the spatial bidirectional patterns is the 
optimal model.

Discussion
In the past, the use of the RGB models for leaf color 
analysis had obvious limitations. The biggest drawback 
of such model was that it had too few parameters to use, 
only the mean values of the red, green, blue, and gray-
scale intensities [24]. Although previous studies have 
proposed a variety of models based on combinations of 
these parameters, no plausible explanation was given 
for the physiological significance of these parameters in 
describing leaf color changes [21, 22]. The reason for this 
was that when RGB features were extracted from digital 
images, the descriptive statistics were based on a normal 
distribution. This normality assumption is only a con-
venience for finding approximate values, but it cannot 
reflect the distribution of leaf colors in a comprehensive 
and truthful way.

In this work, we verified through general normality 
tests that the RGB color gradation histogram followed 
a skewed distribution for tobacco leaves with different 
leaf ages. As a result, we extend the color gradation dis-
tribution parameters in the RGB model. These param-
eters include the mean, median, mode, skewness, and 
kurtosis. This gives a total of 20 parameters for 4 chan-
nels, while the common normal-distribution parameter 
is only the mean value.

Each of these parameters reflects some property or 
trait of leaf color. When the mean value is extracted 
based on a normality assumption, the leaf color hetero-
geneity is ignored. The mean can only describe the state 
of the leaf color depth quantitatively. This cannot fully 
reflect a real leaf color distribution at any leaf age. The 
description of the skewed distribution not only expands 
quantitative leaf color information but also systemati-
cally characterizes the leaf color depth and homogene-
ity. The skewness and kurtosis are features that mainly 
reflect the leaf color homogeneity. These features make 
it possible to accurately and quantitatively describe leaf 
color from different aspects.

Table 1  Parameters using skewed-distribution analysis 
and the SPAD values

The 20 parameters include the mean, median, mode, skewness and kurtosis 
with the red, green, and blue color channels as well as the gray-level images 
with MATLAB using 50 pieces of fully expanded tobacco leaves at 40, 50, 60 and 
65 days, respectively. The SPAD values also come from the 50 leaves for each leaf 
age. Each leaf blade was measured at five points: one on the upper part, two at 
the middle part and two at petiole of both leaf sides. Values without a common 
letter are significantly different according to the Duncan test (p < 0.05)

Parameter 40 days 50 days 60 days 65 days

SPAD 25.02b 32.45c 25.56b 10.95a

RMean 98.64a 102.38b 121.78c 154.62d

RMedian 94.96a 104.88b 123.68c 158.68d

RMode 88.32a 118.02b 131.64c 170.62d

RSkewness 0.46d − 0.04c − 0.19b − 0.59a

RKurtosis 0.14b 0.26b − 0.07a 0.12b

GMean 126.58a 126.98a 138.96b 149.80c

GMedian 123.02a 130.26b 141.30c 153.14d

GMode 114.72a 137.50b 146.60c 163.82d

GSkewness 0.35d − 0.29c − 0.36b − 0.59a

GKurtosis 0.37b 0.43b 0.06a 0.51b

BMean 32.60a 37.34b 39.65b 44.82c

BMedian 21.92a 34.48b 36.54b 41.74c

BMode 12.32a 24.82b 27.14b 34.28c

BSkewness 1.83b 1.48a 1.65ab 2.10c

BKurtosis 3.70a 7.13b 8.85b 13.32c

YMean 107.47a 109.38a 122.49b 139.28c

YMedian 103.14a 111.88b 124.16c 142.30d

YMode 95.08a 118.38b 127.96c 152.66d

YSkewness 0.54d − 0.09c − 0.20b − 0.44a

YKurtosis 0.39b 0.42b 0.05a 0.44b

Table 2  Correlation between the mean parameters and their combinations for tobacco leaves and the blade SPAD values

The mean parameters of the red, green, and blue color channels as well as the gray-level images were obtained using 50 pieces of fully expanded tobacco leaves at 
40, 50, 60 and 65 days, respectively. The SPAD values also come from 50 leaves at each leaf age. Each leaf blade was measured at the same five points mentioned in 
Table 2

** Indicates significant correlation according to a two-tailed test (p < 0.01)

* Indicates significant correlation according to a two-tailed test (p < 0.05)

RMean GMean BMean RMean + GMean + BMean RMean/
RMean + GMean + BMean

GMean/
RMean + GMean + BMean

BMean/
RMean + GMean + BMean

Pearson cor-
relation

− 0.763** − 0.711** − 0.402** − 0.737** − 0.723** 0.675** 0.150*

RMean − GMean RMean − BMean GMean − BMean RMean + GMean RMean + BMean GMean + BMean

Pearson correla-
tion

− 0.750** − 0.743** − 0.545** − 0.755** − 0.735** − 0.650**
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We found 17 of the 20 parameters to be significantly 
correlated with the SPAD value at the 0.01 significance 
level. We try to model the chlorophyll content and dis-
tribution of leaves with these parameters. In earlier 
studies, the mean parameters of the R, G, and B com-
ponents as well as their combinations were generally 
used with a normality assumption to establish models 
by stepwise regression. We also used this method to 

get the model F1. After comparing the models F2, F3 
and F4 with F1 using skewed-distribution parameters, 
we found that the model based on the median and 
the skewness could better fit the SPAD value. More 
parameters increased the accuracy of the RGB model 
description and prediction, and extended its applica-
tion range. When we used the Fourier method in the 
model F3, we found that the fitting degree was higher 
than that in the model F1, indicating that the numeri-
cal SPAD distribution was more in line with the curve 
distribution. Predicting the SPAD value with the mean 
value only didn’t work well. This means that the depth 
of the leaf color cannot describe the leaf color accu-
rately. When introduced the skewness, and found that 
both the fitting degree and the prediction accuracy 
were greatly improved. So, these skewed-distribution 
parameters can describe changes in leaf color depth 
and homogeneity.

To sum up, the color distribution histogram of blade 
images follows a skewed distribution, whose param-
eters (such as the mean, median, mode, skewness, and 
kurtosis) greatly enrich the RGB model. We hope that 
this work will provide researchers with a new method 

Table 3  Correlation between the skewed-distribution parameters and the blade SPAD values of the tobacco leaves

The 20 parameters with the red, green, and blue color channels as well as the gray-level images were obtained with MATLAB using 50 pieces of fully expanded 
tobacco leaves at 40, 50, 60 and 65 days, respectively

** Indicates significant correlation according to a two-tailed test (p < 0.01)

* Indicates significant correlation according to a two-tailed test (p < 0.05)

RMean RMedian RMode RSkewness RKurtosis GMean GMedian GMode RSkewness RKurtosis

Pearson correlation − 0.763** − 0.728** − 0.592** − 0.458** − 0.007** 0.711** 0.637** − 0.480** 0.312** − 0.109

BMean BMedian BMode BSkewness BKurtosis YMean YMedian YMode YSkewness YKurtosis

Pearson Correlation − 0.402** − 0.337** − 0.341** − 0.268** − 0.300** − 0.744** − 0.680** − 0.526** 0.339** − 0.078

Table 4  Constructed correlation models between the SPAD value and the leaf color parameters

F1: Using the mean parameters RMean, GMean, BMean and their combinations with a normality assumption to establish multivariate linear regression models by stepwise 
regression, then choosing the best model. F2: Using all 20 parameters to establish multivariate linear regression models by stepwise regression, then choosing the 
best model. F3: Using the Fourier function to fit and obtain the model. F4: Using the MATLAB Curve Fitting Toolbox to fit the polynomial F4 that incorporates spatial 
bidirectional patterns

Model Fit type

F1=59.733 − 0.304 × RMean Linear regression

F2 = 76.134 − 0.441 × RMean − 11.203 × YSkewness − 1.516 × GKurtosis Linear regression

F3 = 19.38 + 7.972 × cos (1.314 × RMedian) − 6.747 × sin (1.314 × RMedian) Fourier fitting

F4 = 0.3344 + 0.8709 × RMean − 1 77.3 × RSkewness − 0.005536 × R2
Mean

+2.8 76 × RMean × RSkewness + 8.515 × RSkewness
2 − 0.0122 7 × R2

Mean × RSkewness − 0.1398 × RMean × RSkewness
2 + 7.301 × RSkewness

3
Polynomial fitting

Fig. 2  SPAD Fourier-based nonlinear fitting model. The fitting curve 
(F3)was obtained by the MATLAB Curve Fitting Toolbox
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for the analysis of blade color patterns in RGB digital 
images. This work shall also inspire the extraction and 
exploitation of novel leaf color descriptors for plant 
monitoring and treatment.
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