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Progress and development on biological 
information of crop phenotype research applied 
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Abstract 

Background:  Variable-rate fertilization is crucial in the implementation of precision agriculture and for ensuring 
reasonable and efficient fertilizer application and nutrient management that is tailored to local conditions. The overall 
goal of these technologies is to maximize grain output and minimize fertilizer input and, thus, achieve the optimal 
input–output production ratio. As the main form of variable-rate fertilization, real-time variable-rate control technol-
ogy adjusts fertilizer application according to the growth status and nutrient information of crops and, as such, its 
effective application relies on the stable and accurate acquisition of crop phenotypic information.

Results:  Due to the relationship between crop phenotype and real-time fertilizer demand, phenotypic information 
has been increasingly applied in these contexts in recent years. Here, the establishment and characteristics of inver-
sion models between crop phenotypic information and nutritional status are reviewed. The principles of real-time 
monitoring applications, the key technologies relating to crop phenotypic biological parameters, and the existing 
challenges for real-time variable-rate fertilization technology are also evaluated. Future research directions are then 
discussed in the specific context of the need for sustainable development of modern agriculture in China.

Conclusion:  This paper provides a theoretical reference for the construction of scientific management technology 
systems aimed at reducing fertilizer application and maximizing output, and for the development of relevant tech-
nologies in the specific context of China.

Keywords:  Remote-sensing information, Crop phenotype, Precision agriculture, Real-time and online, Variable-rate 
fertilization
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Background
Scientific, rational, and effective fertilizer application 
plays an extremely important role in maximizing crop-
yield potential, promoting grain production, and ensur-
ing food security. It is, therefore, inevitably in demand 
for realizing the sustainable development of modern 
agriculture [1, 2]. Variable-rate fertilization, as a pivotal 
technology and the foundation of precision agriculture, 

has presented a new and effective way to meet the 
‘green planting’ demands of modern agricultural with 
on-demand input and balanced fertilization [3]. Chang-
ing the large-scale and extensive fertilization manage-
ment approach of traditional agriculture, variable-rate 
technology is supported by “3S” technology (i.e., remote 
sensing [RS], Geographical Information Systems [GIS], 
and the Global Positioning System [GPS]) to acquire 
real-time crop growth and nutrient gain–loss informa-
tion as the basis for on-demand and variable-rate ferti-
lizer inputs. In China, this modern approach is helping 
to balance soil fertility, overcome regional differences in 
biochemical parameters, improve fertilizer utilization 
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rates and crop productivity, obtain higher crop yields 
and economic gains [4, 5], and promote the sustainable 
mechanization and automation of modern agricultural 
production.

Since the concept of “precision agriculture” was 
advocated and implemented by American agricul-
tural producers in the 1980s, variable-rate fertilization 
technology has developed rapidly in the field of intel-
ligent agricultural equipment innovation in developed 
countries [6, 7]. The core control technology is largely 
based on two forms, i.e., prescriptive information and 
real-time parameters (Fig.  1) [8, 9]. The variable-rate 
fertilization control method based on prescriptive 
information (because of the limitations of the compli-
cated process, difficult operation and high economic 
costs) cannot apply in scientific and reasonable vari-
able fertilization according to the real-time nutrient 
demands during crop growth cycles [10]. However, var-
iable-rate fertilization control technology (VRT) based 
on real-time parameters avoids the above-mentioned 
intricacy process, can be used to address problems 
associated with uneven growth and unbalanced soil 
nutrients. By capitalizing on modern, real-time sensor 
equipment, soil nutrient parameters and crop growth 
information can now be monitored online to generate 

target fertilizer applications in real-time [11], and sci-
entifically guide the operation equipment to achieve 
on-demand, variable-rate fertilization.

The critical factor in the success of this modern 
approach (VRT) in the acquisition of stable, representa-
tive, and accurate field information including crop phe-
notypic information [12]. Studies have shown that there 
is a general relationship between real-time fertilizer 
requirements of crops and the phenotypic nutritional 
status of their corresponding growth stages, and that the 
real-time growth is closely related to the biological ele-
ments characteristics of leaves [13]. Crucially, the biolog-
ical characteristics of crops show significant correlations 
with canopy spectral reflectance information [14]. Thus, 
the reflectivity and spectral parameters of different wave-
lengths have different quantitative relationships with leaf 
nutrient elements (e.g., nitrogen, phosphorus, and potas-
sium content). The chlorophyll index (SPAD), leaf area 
index (LAI), ratio vegetation index (RVI), normalized 
difference vegetation index (NDVI), and other indexes 
can predict crop phenotypic parameters fairly well [15–
17] including reflecting real-time growth information, 
that can be used to guide scientific and reasonable top-
dressing operations. Therefore, the appropriate fertilizer 
applications required for crops can be estimated by the 
effective models of statistical analysis based on pheno-
typic, biological parameters [18, 19].

In recent years, with the continuous development of com-
puter science and remote sensing (RS) technologies, new 
ideas and methods for real-time, non-destructive nutrient 
detection during crop growth have been developed [20]. 
Thus, portable high-throughput phenotypic monitoring 
platforms combining agricultural RS technology and crop 
growth bio-indexes have emerged [21]. By carrying differ-
ent types of real-time sensors, it is now possible to quickly, 
accurately, and non-destructively obtain multi-source RS 
data from which crop information can be quickly derived 
[22, 23]. At present, many well-developed products are 
widely applied in real-time variable-rate spreading opera-
tions [24, 25], including MSR-16 radiometers produced by 
American Cropscan Company, Crop Circle ACS-470 crop 
canopy sensors from the Holland Scientific Company in 
the United States, and GreenSeeker spectral sensors jointly 
developed by the American Trimble Company and Okla-
homa State University. Considerable exploratory research 
has also been carried out in China [26].

In this context, this review combines current inter-
national research progress in variable-rate fertilization 
based on crop phenotypic information [27–29] with 
research on this technology being undertaken by our 
research group in China [30–32]. Specifically, the char-
acteristics of inversion models between crop phenotypic 
information and nutritional status are evaluated, and Fig. 1  Technical flowchart of the variable-rate fertilization process
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real-time monitoring principles and key technologies 
associated with crop phenotypic parameters are identi-
fied. We also evaluate and discuss trends in the applica-
tion and development of these technologies. Current 
limitations in the development and application of real-
time variable-rate fertilization based on crop phenotypic 
information are highlighted, and feasible suggestions are 
made to provide a theoretical basis for future develop-
ment in the specific context of China.

Transmission mechanism of crop biological information
Remote sensing as an advanced, practical detection tech-
nology has the unique advantages of being rapid, non-
destructive, multi-platform, multi-resolution (time and 
space), and providing access to ground and terrain infor-
mation across large areas [33]. Since its inception in the 
early twentieth century, there has been rapid and on-going 
development of RS technology and it has been widely used 
in many fields, among which agricultural production is 
one of the most important areas. Agricultural RS technol-
ogy plays an important role in agricultural resource sur-
veys, biological yield estimations, and agricultural disaster 
prediction and assessment. Especially in recent years, the 
advantages of agricultural RS technology (i.e., offering the 
means to acquire timely, objective, and accurate informa-
tion on crop area, growth, and yield) have been particu-
larly important in China in view of the regional complexity 
and dispersion of crop distributions [34].

At present, agricultural RS technology has been widely 
used to measure land cover and crop biomass, and in par-
ticular, for the extraction of key crop biological and phys-
icochemical parameters. The theoretical basis of RS is the 
targeted detection of spectral characteristics differences 
of electromagnetic waves based on crop phenotypes 
[35, 36]. Research has found that when exposed to elec-
tromagnetic waves, the spectral reflectance, absorption, 
transmission, and emission characteristics responding in 
different wavebands differ between crops [37]. Especially 
in the visible-near-infrared spectrum bands, reflectivity 
is mainly affected by phenotypic pigments, cell struc-
ture, water content as well as other biological parameters. 
There are strong absorption characteristics in the visible 
red light wavebands and strong reflection characteristics 
in the near-infrared wave bands, which are often used for 
monitoring crop growth, production yield and quality, 
and pests and diseases [38]. Generally, spectral reflectiv-
ity is the ratio of the reflected energy of an object to the 
incident energy at a particular wavelength interval. When 
the solar spectrum with a wavelength of λ is projected 
into the crop canopy in parallel, Lambertian reflectance 
occurs [39], thus the reflection model of crop phenotype 
conforms to Lambert’s cosine law, as follows:

where φλ is the radiant flux (i.e., the radiant energy pass-
ing through a section per unit time); Lλ is the radiation 
luminance of the crop canopy; A is the projection area of 
crop canopy; Ω is the solid angle; and θ is the reflection 
angle.

Using Eq.  1, the total radiated power per unit area of 
crop canopy to the hemispherical space can be calcu-
lated. That is, the radiant exitance (Me) and the relation-
ship between reflection radiation luminance (Lλ) of the 
crop canopy can be derived as follows:

If the radiant flux of the solar spectrum with a wave-
length of λ parallel to the unit area of crop canopy is Eλ, 
then the spectral reflectivity (ρλ) of the crop canopy with 
respect to the solar spectrum is derived as follows:

Real-time variable-rate fertilization technology applies 
these radiation transmission mechanisms to obtain bio-
logical information about crop phenotype, nutrient use, 
and production yield quality. This approach depends on 
accurate determination models for different nutrient and 
biological elements inversed by RS technology, such as 
the nitrogen/chlorophyll concentration, nitrogen/chloro-
phyll accumulation, leaf area index, biomass, and canopy 
density [40]. Furthermore, along with expert decision 
systems built into variable-rate fertilization equipment, 
scientific and rational nutrient regulation and fertilizer 
management can be enabled. This effectively solves the 
problems associated with regional differences of bio-
chemical parameters of field crops, improves fertilizer 
utilization efficiency and crop production capacity, and 
can support precision agriculture modernization and 
sustainable development.

Inversion between crop phenotypic information 
and nutritional status
With the continuous development of agricultural RS 
technology, it has increasingly been applied in crop phe-
notypic monitoring and the diagnosis of plant nutri-
tional status in large-scale agricultural production. This 
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includes growth detection and yield prediction of wheat, 
corn, rice, cotton, and other staple crops [41, 42]. The 
inversion of crop growth information (i.e., plant nutri-
tional status) can be acquired by monitoring crop can-
opy biological characteristics [43, 44]. This relies on the 
internal relationships between crop features (e.g., canopy 
geometry, leaf biochemical composition, and internal tis-
sue components) and canopy spectral reflectance charac-
teristics [45, 46]. Data are obtained through spectral data 
mining (e.g., statistical discriminant, correlation analy-
sis, and regression modeling) to establish corresponding 
algorithm and metrics, such as the crop nitrogen nutri-
tion index (NNI), ratio vegetation index (RVI), and leaf 
nitrogen accumulation (LNA) [47].

Currently, the commonly used inversion methods are 
mainly divided into two categories [34, 48]. First, the 
empirical statistical method is based on the relation-
ships between crop phenotype biological parameters 
and spectral reflectivity or other spectral characteristics 
in sensitivity bands. This is a relatively simple approach; 
however, established empirical relationships rely exces-
sively on specific conditions, such as the measurement 
instrument, measurement time, crop variety, and envi-
ronmental environment, meaning that applicability can 
be limited [49]. Second, the radiation transmission model 
inversion method is based on RS monitoring process, 
commonly used numerical optimization algorithms, the 
partial least-squares method, principal component analy-
sis (PCA), support vector machine training sets, and the 
artificial neural networks. These techniques are applied 
to simplify the derivation process and improve inver-
sion efficiency, which has a stronger universality [50, 51]. 
The application of these methods in research on high-
throughput biological monitoring and nutrient status 
discrimination of crop phenotypes has included multiple 
scales, from crop populations to plant tissues and organs, 
and has yielded rich and diverse results [52].

Crop canopy cover is a phenotypic parameter that 
quantitatively describes the dynamic differences in 
growth and development between genotypes. It is an 
important indicator to characterize and evaluate crop 
nutritional status (such as nitrogen status, early vitality, 
senescence state, and surface biomass) and has impor-
tant applications in monitoring crop growth [53]. Cur-
rently, there are many indexes that are closely related 
to crop canopy cover, of which the NDVI and the LAI 
are the most well-developed [54, 55]. The NDVI can 
be monitored in real-time and has been applied as an 
objective means of (indirectly) assessing variations in 
the characteristics of wheat under stress and seasonal 
nitrogen demand [56]. It can also be used to estimate 
crop nitrogen content, surface nitrogen distribution, and 
crop nitrogen utilization efficiency. The close correlation 

between NDVI and crop physiological characteristics can 
also be used to explain the diversity impact factors on 
crop production, such as changes in moisture and nitro-
gen regimes during different growth stages [57, 58]. Li 
et  al. [59] discussed the relationship between the NDVI 
and crop LAI using Thematic Mapper (TM) imagery 
and directly used the inversed LAI as the growth grad-
ing standard to monitor the growth of winter wheat in 
Xinghua City, Jiangsu Province, China. Their study also 
assessed indexes of crop nitrogen content and nitrogen 
demand application to guide scientific and rational vari-
able application of nitrogen fertilizer on demand, this 
improves the level of fertilizer utilization efficiency and 
produces significant economic benefits.

Nitrogen nutritional status and nitrogen demand appli-
cation are central in the monitoring and diagnosing of 
crop growth (and the important mainstay for making 
management decisions of field production), and provide 
the necessary technical basis for achieving the moderni-
zation and sustainable development of precision agricul-
ture [60, 61]. Through experimental studies, Shibayama 
et  al. [62] showed that the nitrogen content per unit 
area of crop leaves had strong regression relationships 
with reflectivity in spectral bands R400, R620, R760, and 
R880, which were not affected by crop type or variety. 
Liu et  al. [63] used the characteristics of the reflection 
peak at 1690  nm to invert the carbon–nitrogen ratio of 
wheat canopies at each growth stage. This enabled a seg-
mented RS inversion model of leaf and stem-sheath to be 
established for the rise and milk stages, and the accuracy 
of estimating the nitrogen content in fresh leaves using 
spectral analysis method was improved to > 85%. Cho 
et al. [64] proposed a linear extrapolation method to cal-
culate red edge position information about crop canopy 
reflectance spectra, and established models for predict-
ing the nitrogen concentrations of wheat plants, maize 
leaves, and mixed pasture plants. Chen et al. [65] showed 
that the dual-peak canopy nitrogen index (DCNI) elimi-
nates the interference of leaf area changes with respect to 
the diagnosis of nitrogen concentrations and, thus, ena-
bles the accurate detection of plant nitrogen concentra-
tions. Furthermore, Chen et  al. [66] were able to derive 
the nitrogen nutrition index (NNI) of winter wheat and 
maize using RS techniques, which could well determine 
the nitrogen nutrition status.

With the advancement of research on crop pheno-
types and nitrogen nutrition, increasing attention has 
been paid to the heterogeneity of vertical distribution 
of nitrogen in crop canopies, nitrogen content at dif-
ferent height of the crop canopy plays an important 
implications for scientific guidance of variable-rate 
fertilization and field management [67, 68]. For exam-
ple, Wang et al. [69] used a partial least-squares (PLS) 
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algorithm to invert the nitrogen concentration of 
leaves at different canopy levels based on the vertically 
observed canopy spectra of winter wheat. Wang [70] 
also estimated the nitrogen density of different leaf lay-
ers using the difference vegetation index (DVI) of win-
ter wheat combined with the interception of luminous 
energy at each canopy level. Zhao et  al. [71] achieved 
higher accuracy estimates by constructing an inver-
sion index of chlorophyll concentrations in the upper, 
middle, and lower leaf layers of winter wheat based on 
multi-angle canopy reflectance spectra. Based on field 
experiments and RS, Ma et al. [72] further analyzed the 
correlation between nitrogen concentrations and the 
spectral and fluorescence characteristics of leaves at 
different vertical heights, which provided a new idea for 
exploring the RS method to determine the vertical dis-
tribution of crop canopy nitrogen.

Using field-based equipment, observation towers, and 
hand-held sensors as carriers (according to the acquired 
phenotypic biological information and inversed nutri-
ent evaluation models), rational on-demand nitrogen 
application and regulation management can be achieved. 
Such equipment includes radiometers (e.g., the MSR-16), 
nitrogen sensors (e.g., the Yara N-sensor), crop canopy 
sensors (e.g., the Crop Circle ACS-470), spectral sen-
sors (e.g., GreenSeekers), and non-imaging spectrom-
eters (e.g., the ASD Fieldspc FR2500) [73–75]. Specific 
examples include Kitchen et  al. [76], who applied the 
green channel NDVI (GNDVI) obtained using the ‘Crop 
Circle’ device to monitor crop nitrogen deficiency, and 
then guided the variable-rate fertilization. Their results 
showed that the method could be used to reduce the 
nitrogen application and improve the crop yield. Peng 
et  al. [77] also proposed a means of real-time nitrogen 
management (RTNM) based on measured crop SPAD 
values to rapidly determine nitrogen nutritional status. 
Scarf et al. [78] estimated the nitrogen nutritional status 
of maize in an unfertilized area based on the difference 
in corn greenness values between a saturated and control 
fertilization area, and used this as a basis for variable-rate 
fertilization management. Lukina et  al. [79] used can-
opy NDVI to invert the nitrogen accumulation of win-
ter wheat to estimate potential yield under variable-rate 
fertilization management. Their research was developed 
further by Chen et al. [80], who used field object spectral 
data to improve the universality of the nitrogen applica-
tion optimization algorithm. Zhao et al. [81] also estab-
lished a variety of variable-rate fertilization algorithms 
for winter wheat based on the optimized soil-adjusted 
vegetation index (OSAVI) and chlorophyll (SPAD) val-
ues. Their results showed that the economic and eco-
logical benefits of variable-rate fertilization based on the 

spectral data are superior to other traditional fertilization 
algorithms based on the soil fertility.

Real‑time variable fertilization systems based on crop 
phenotypic information
Based on the continuous development of computer sci-
ence and RS technologies, and the agronomic require-
ments of different types of crops, detection platforms 
for the acquisition of biological information from crop 
canopies have been increasingly applied in real-time 
variable-rate fertilization [40]. According to canopy bio-
logical parameters obtained using real-time monitor-
ing systems, expert decision-making systems are then 
used to determine the target fertilizer application online. 
Once determined, the core controller adjusts the actua-
tor, which controls the actual application of fertilizer to 
the crop. Relative to traditional approaches to fertilizer 
application, such set-ups improve fertilizer utilization 
efficiency, increase crop yields and economic gains, and 
improve ecological standards. In accordance with the 
different application carriers, phenotypic monitoring 
platforms are mainly divided into two types: (1) aviation-
based and (2) ground-based approaches (Fig.  2). Com-
mon aviation-based phenotypes monitoring technologies 
are divided into satellite-borne and airborne types, and 
ground-based technology can be divided into hand-held 
and vehicle-mounted types [82].

Multi-source satellite images acquired using the sat-
ellite-borne platforms can be used to extract crop phe-
notypic parameters; however, due to the limited time 
and spatial resolutions of data acquisition, it is diffi-
cult to apply over small-area test regions and for high-
frequency dynamic monitoring [83]. In comparison, 
airborne phenotypic monitoring platforms (e.g., heli-
copter or unmanned aerial vehicle [UAV]) carrying mul-
tiple sensors simultaneously, can acquire multi-source 
image information for entire test sites in a relatively short 
period of time [84–86]. This approach has been applied 
to measure the canopy temperatures and lodging situa-
tions in thousands of field plots as well as canopy struc-
ture at various test sites [87, 88]. UAVs or drones are 
now used to carry multispectral cameras (such as the 
Mini-MCA6), hyperspectral cameras (such as the Cubert 
UHD185) and active non-imaging sensors (such as the 
RapidSCAN) that enables the derivation of the LAI, 
aboveground biomass, and nitrogen nutrient status for 
crops such as wheat, rice, cotton, and corn [89–91]. For 
example, in Japan, TM-based RS data has been used to 
monitor nitrogen, amylose, amylopectin, and other qual-
ity indicators in rice, which has been used to guide the 
application of nitrogen fertilizer [92]. This reduced the 
nitrogen content of rice grains in a larger experimental 
area from 7.7 to 7.3% and thereby improved crop quality 
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economic gains. However, airborne platforms involve 
higher costs, require more technical maintenance effort, 
and the RS information obtained by individual sensors is 
often limited. Multi-sensor coordination and data fusion 
are, therefore, required. Moreover, canopy disturbance 
effects become problematic when acquiring high-resolu-
tion images at low altitudes [93–95]. Ground-based phe-
notypic platforms usually involve common agricultural 
equipment adapted with a series of phenotypic sensors 
and a GPS for positioning and navigation [96, 97], these 
platforms can simultaneously acquire multi-source infor-
mation (such as multispectral, hyperspectral, and ther-
mal infrared images). As different sensor groups can vary 
greatly at different test points and under variable envi-
ronmental conditions, therefore, means of calibrating 
sensor groups are required to ensure reliability and com-
parability, which is the main technical challenge when 
using this vehicle-based phenotype platform [98].

At present, data acquisition technology providing 
phenotypic information for field crops (widely applied 
in real-time variable-rate fertilization for precision 

agriculture) is still dominated by ground-based and vehi-
cle-mounted operations. Vehicle-mounted phenotypic 
and omics platforms are simple to operate and can obtain 
high-resolution and continuous spectral data from close-
up observations. Sensors are mounted at different loca-
tions and heights of the platform depending on the crop 
type and growth period [99]. Related accessories include 
power systems, data acquisition terminals, GPS receivers, 
and encoders to ensure the running work of the vehicle. 
A high-performance terminal that can receive various 
sensor data is also needed. When equipped with a Beidou 
satellite, radar, GPS, gyroscope, and other sensors, vehi-
cle-mounted platforms can achieve automatic navigation, 
generate distribution maps of crop phenotypic features, 
and coordinate with the optimized expert decision sys-
tem to conduct reasonable field nutrient management 
[100, 101]. Currently, intelligent agricultural equip-
ment for variable-rate fertilizer application systems are 
relatively well-developed, and a wide range of technical 
equipment has been commercialized and applied inter-
nationally and at a large-scale.

 a Multi-level crop phenotype monitoring platform         b  UAV crop phenotype monitoring platform 

 c IoT distributed phenotype monitoring platform   d Mobile vehicle-mounted phenotype monitoring platform 
Fig. 2  Example phenotype monitoring platforms for field crops
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Zaman and colleagues [102] used a color camera (with 
wireless Bluetooth communication) to obtain biological 
data for wild blueberry canopies in Canada, which they 
used to respond to the corresponding control procedures 
to adjust fertilizer inputs. That achieve efficient, reliable, 
and accurate variable-rate fertilizer with corresponding 
economic and ecological benefits (Fig. 3). Dammer et al. 
[103] developed a fungicide variable sprayer in Germany 
based on the LAI of cereal crops, as shown in Fig. 4. In 
their system, crop biomass density is measured in real-
time by a portable spectral sensor (CROP-Meter) fixed at 
the front of a tractor. GPS information is then combined 
to generate a control signal for sterilization doses admin-
istered via an automated, adjustable hydraulic valve to 
achieve variable-rate spraying.

Ehlert et  al. [104] developed a variable-rate nitrogen 
fertilizer spreader for winter wheat based on a crop den-
sity detector with a mechanical pendulum (Fig.  5). In 
their system, an onboard computer continuously adjusts 
fertilizer application based on crop density parameters 
measured at a fixed point. Multiple field trials using 

calcium ammonium nitrate fertilizer (nitrogen fertilizer) 
under different seasons showed that this system could 
reduce fertilizer application by 10‒12% and improve 
crop yield and quality. To improve the utilization rate of 
nitrogen fertilizer during the cotton production process 
in Tennessee, USA, and to optimize the impact of soil 
reflection using the GreenSeeker sensor, Mariso [105] 
designed an optimization algorithm and an ultrasonic 
device to control spraying distance form cotton canopy, 
as shown in Fig. 6.

A variable-rate fertilization machine based on spectral 
detection technology was developed for maize by Lee and 
Searcy (Fig. 7) [106]. In their set-up, a spectrum monitor-
ing system including a halogen lamp and an N sensor was 
installed behind a tractor to monitor the nitrogen nutri-
tion status of corn in real-time. GreenSeeker sensors and 
Multiplex sensors have also been used to monitor the 
nutritional status of grapes in real-time and to guide field 
fertilizer management [107] (Fig. 8). In this case, the sys-
tem was able to obtain various field indices including the 
chlorophyll fluorescence index (SFR), nitrogen balance 
index (NBI), and flavonoid index (FLAV).

In China, research on precision agricultural produc-
tion and variable-rate fertilization technology has been 

Fig. 3  Variable-rate spreader for wild blueberry

Fig. 4  Variable-rate fungicide sprayer

Fig. 5  Variable nitrogen fertilizer of winter wheat

Fig. 6  Variable-rate fertilizer applicator for cotton
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relatively slow to progress and remains in its infancy. 
Recent developments have mainly resulted from the 
introduction of foreign advanced agricultural machin-
ery and their supporting control systems, although there 
remains a lack of systematic theoretical research and 
related experiments in this field [108]. In recent years, 
with the continuous development and improvement 
of relevant national policies including the ‘Application 
Reduction and Efficiency Increase’ policy, independent 

and innovative research in intelligent agricultural 
machinery and control systems has begun to progress 
rapidly with groping and exploring of precision agricul-
tural in succession.

Examples include Xu et al. [109] who used an MSR16R 
multispectral instrument to obtain canopy spectral 
reflectance information for soybean crops. They estab-
lished a nutrition diagnosis model to estimate the 
required levels of nitrogen for growth and an expert deci-
sion-making system for stable, variable-rate fertilization 
based on fuzzy control theory (Fig. 9). Zhang et al. [110] 
developed an online measurement variable-rate fertilizer 
applicator based on crop growth (Fig.  10). They used 
non-destructive, photoelectric inspection technology to 
obtain real-time NDVI data and a core processor con-
trolled different fertilizer applications based on a fuzzy 
control algorithm. Based on the correlation between crop 
canopy spectral reflectance and growth, their system 
achieved the real-time online ‘living diagnosis’ of com-
munity growth trends and the LAI across the whole crop 
growth period. Their system was able to guide reduced 
fertilizer application in areas of stronger crop growth, 
and more fertilization in areas with poor growth, thus 
enabling precise variable-rate fertilization according to 
crop growth.

Fig. 7  Variable-rate fertilizer applicator for corn

Fig. 8  Variable fertilizer applicator for grape vines

Fig. 9  Variable-rate fertilizer machinery for soybean crops

Fig. 10  Schematic of a variable-rate fertilizer machine based on crop 
growth
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Wang and colleagues [27] evaluated chemical (nitro-
gen) fertilizer demand based on NDVI values of winter 
wheat using real-time monitoring and implemented an 
intelligent control program for variable-rate fertilization 
(Fig.  11). At the same time, their decision-making tool 
provided real-time targeted top-dressing applications, 
realized the online adjustment of the fertilization amount 
[27, 28]. Furthermore, Shi et al. [29] developed a centrifu-
gal and high-efficiency variable-rate fertilizer spreader 
based on real-time growth information for rice (Fig. 12). 
In this case, a GreenSeeker spectral detection system 
obtained real-time DNVI values of rice canopies and was 
coupled with the previously established expert decision-
making system to generate target fertilizer requirement 
application, then real-time spreading application was 
adjusted online [30–32] to realize accurate variable-rate 
fertilizer spreading for rice.

It can be seen that real-time variable-rate fertilization 
technology based on the vehicle-mounted phenotype 
omics platform has great application potential in the 
research of crop phenotype bioinformation monitoring 
and variable-rate fertilization technology research of pre-
cision agricultural. Moreover, of course, other vehicles 
that can be mounted with sensors and high-throughput 

phenotypic acquisition tools include airships, parachutes, 
hydrogen balloons, and ground observation towers, but 
these are limited by their inflexibility (such as line spac-
ing, plant spacing, and crop height limitations) and cost, 
which makes them difficult to apply across different 
crops and at different growth stages. Furthermore, the 
image resolution, safety performance, and load capacity 
of these other approaches all need to be improved further 
[16, 40].

Results
In recent years, research into phenotypic information 
monitoring, precision agriculture, and variable-rate ferti-
lization technologies has progressed in China. However, 
real-time variable-rate fertilizer systems and its applica-
tion based on crop phenotype bioinformation are still at 
the experimental stage being currently limited from the 
following key challenges:

1.	 The study object, monitoring area and scope are rela-
tively limited. At present, research on variable-rate 
fertilization technology based on crop phenotypic 
biological information mainly focuses on specific 
field conditions and crop varieties. However, given 
that China has a relatively developed agricultural 
economy and a substantial cropping area, research 
into the application of precision agriculture that 
accounts for regional and local features is lacking, 
especially for multi-species crops in agricultural 
underdeveloped areas. For example, most of the 
existing research targets wheat, corn, rice, barley, and 
other cereal crops while very few studies have been 
reported for beans, potatoes, and other important 
commercial crops.

2.	 Obtained biological parameters of crop phenotypes 
are single. Each imaging technique has its own limi-
tations that are affected by temperature, illumina-
tion, and other complex field conditions. Some RS 
techniques are limited by their measurement accu-
racy, and spatial and spectral resolution are yield-
ing large measurement errors, and they cannot be 
widely applied. It is, therefore, necessary to explore 
the fusion of different phenotypic data sources, at 
different stages of data processing, to overcome or 
reduce detection error associated with single-source 
approaches. This is essential to improve the accuracy 
of crop phenotypic parameters and the stability of 
variable-rate fertilization equipment.

3.	 Rapid processing of the enormous RS data faces huge 
challenges. Hyperspectral imagers and Lidar sensors 
rapidly acquire large amounts of high-temporal reso-
lution information. The processing of these datasets 
is, therefore, limited by computer hardware perfor-

Fig. 11  Variable fertilizer based on canopy spectral reflectance

Fig. 12  Variable spreader for rice
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mance and processing power. It remains difficult, for 
example, to achieve rapid online processing of ‘big 
data’ in real-time, and the mixed spectra of crops at 
different growth stages along with variable soil com-
positions adds significant complexity. Indeed, the 
mixed spectra of field components are difficult to 
decompose, resulting in lower accuracy targeting of 
fertilizer requirements for inversion calculations.

4.	 Inversion models of fertilizer requirement is lacking 
in common methods. For practical application, when 
parsing phenotypic information for different crops 
and under different growth stages, modeled needs 
to be performed separately, which ignores the syner-
gistic influence of multiple physiological parameters. 
The applicability of models is also limited by envi-
ronmental conditions and variability and uncertain-
ties, such as the driving variables or parameters of RS 
inversion models, and uncertainty associated with 
error propagation. This leads to crop growth mod-
els and nutrient recommendation systems that can-
not be closely matched with variable-rate fertilization 
machinery and, hence, the cycle of expert-decision 
analysis in the system slows down.

5.	 Currently, intelligent control systems have little sup-
porting research and limited development capa-
bilities. Many sensors remain expensive, vehicle-
mounted hyperspectral sensors, laser radar sensors, 
and chlorophyll fluorescence sensors must all cur-
rently be imported to China, resulting in high costs. 
This also means that the core technology of these 
sensors cannot be easily adapted, optimized, and 
upgraded, limiting the applicability under specific 
operational demands of the Chinese agricultural sec-
tor. Detection sensors for crop phenotypic monitor-
ing with independent intellectual property rights are 
also lacking, which restricts the extensive promotion 
and application of variable-rate fertilization equip-
ment based on crop phenotypic information in mod-
ern planting areas in China.

Discussion
Whilst still at the exploration stage, as an emerging trend 
in precision agriculture, real-time, variable-rate fertiliza-
tion technology based on crop phenotypic information 
will continue to develop in China into the future. Fur-
ther research and promotion are required, especially for 
high-throughput phenotypic data acquisition and the 
integration and application of real-time variable systems. 
Further technical development and research collabora-
tions are, therefore, needed. Building on the advanced 
experience of other countries and based on the specific 
machinery and agronomic requirements of Chinese 

agriculture, matching variable-rate fertilizer equipment 
with independent innovation should be targeted. This 
will reduce production costs and demonstrate and appli-
cability in modern agricultural areas, thereby fostering 
the effective and efficient utilization of fertilizer resources 
to achieve healthy and sustainable development. In the 
future, we believe that real-time variable-rate fertilization 
techniques based on crop phenotypic information will 
continue to receive attention under the key themes out-
lined in the following sections.

Continuously expanding the breadth and depth of crop 
phenotypic data acquisition, strive for the extraction 
of high‑latitude parameters, and multi‑scale analysis
The acquisition of crop phenotypic information based on 
RS technology has significant advantages and opportuni-
ties in the application of real-time variable-rate fertiliza-
tion. Its flexibility, timeliness, and high efficiency are key 
characteristics necessary for crop phenotype information 
extraction and real-time variable-rate fertilization. How-
ever, current research on data acquisition using vehicle-
mounted sensors mainly focuses on specific varieties of 
common grain crops while few have examined important 
commercial crops like beans and potatoes. The majority 
of existing studies are devoted to extracting or parsing 
single phenotypic parameters and lack the requirements 
of effective phenotypic identification and fertilizer 
requirement analysis in complex farmlands. In addition, 
the accurate description of crop nutrient status dur-
ing growth depends on the acquisition of multi-dimen-
sional data and its analysis at different scales. Therefore, 
it is necessary to continuously expand the breadth and 
depth of studies on parsing crop phenotypes using RS 
and devote effort to the extraction of high-latitude envi-
ronmental parameters and multi-scale analysis. This will 
establish a theoretical foundation and technical reference 
for promoting the application of crop phenotypic moni-
toring using near-earth RS technology as applied to real-
time variable-rate fertilization for precision agriculture.

Deeply interrogate and integrate multi‑source RS data 
to construct analytical models of high‑throughput 
phenotypic information
A large number of narrow-band and continuous crop 
hyperspectral images obtained by RS technology can more 
comprehensively represent the unique spectral charac-
teristics of crops and accurately derive their biophysical 
and biochemical states. Furthermore, hyperspectral data 
contains abundant information and requires a significant 
amount of data processing. However, at present, such data-
sets do not play an important role in growth state monitor-
ing. It is, therefore, necessary to strengthen research in the 
use of hyperspectral RS for the analysis of crop phenotypic 
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information. This includes the acquisition of data for crop 
three-dimensional size, biomass, and vegetation index as 
well as other indicators. Moreover, the majority of existing 
analysis models are constructed based on a single method, 
having limited wider applicability and poor inter-annual 
prediction stability. To increase the prediction accuracy of 
crop phenotypic information and improve nutrient inver-
sion models, it is necessary to combine multi-source RS 
information (such as color, depth, and spectral data) with 
environmental and crop physiology knowledge, and apply 
machine learning and deep learning algorithms at the pre- 
and post-processing stages. Such an approach based on a 
variety of methods will help secure versatile, stable, and 
high-precision analysis models for high-throughput phe-
notypic information and recommendation models for fer-
tilizer requirements application that can be subjected to 
systematic testing and verification.

Persistently accelerate the development 
of high‑resolution, low‑cost sensors with independent 
innovation tailored to China’s national conditions
High costs and low spatial and spectral resolution data 
remain critical bottlenecks for the promotion and appli-
cation of RS technology in crop phenotypic information 
detection. At present, most sensors, hyperspectral instru-
ments, thermal imaging cameras, and other equipment 
carried on vehicle-mounted RS platforms in China are 
imported from Europe or the USA. The price of these 
products is inevitably high and their applicability for crop 
varieties grown across China’s agricultural regions is lim-
ited. Furthermore, the key core technologies cannot be 
optimized and upgraded for Chinese crops, which seri-
ously restricts wider application. Therefore, in the course 
of future development, comprehensive strategy based on 
the actual planting, growth, and management character-
istics of different regions in China is required. This must 
be combined with new fertilizer application methods tai-
lored to the specific cropping requirements and fertilizer 
use of different regions. Developing the detection sensors 
with independent innovation ability for crop phenotypic in 
line with Chinese characteristics, and effectively promote 
the application of RS technology in phenotypic informa-
tion monitoring for crops. This will ensure the necessary 
infrastructure is in place for successful real-time variable-
rate fertilization systems that will facilitate the uptake of 
precision agriculture and green, healthy, and sustainable 
development.

Effectively promote multidisciplinary and multi‑field 
data‑sharing platforms for crop phenotypes and fertilizing 
decisions
Research of crop phenotypes and precise, variable-rate 
fertilization has relevance to the fields of plant science, 

information technology, biotechnology, agricultural tech-
nology, and engineering technology, is a composite sci-
ence and technology with multidisciplinary cross and 
multi-field integration. Multi-system, interdisciplinary 
authoritative expert knowledge and support decision-
making system are therefore required. Based on the nutri-
ent demands and balanced principle of different crop 
types and growth phases, combined with advanced tech-
nologies including network transmission, information 
perception, and data processing to complete the high-
precision, comprehensive, and efficient coverage, detec-
tion and collection of soil and crop nutrient information, 
as well as the digital nutrition decision management sys-
tems. In addition, effective systems must account for the 
effective nutrient requirements of crops, plant growth, 
water conditions, visible symptomatic diagnosis, target 
yields, and fertilizer methods, therefore, it is urgent to 
establish a set of database-sharing platforms for pheno-
type-based fertilization decisions with multi-disciplinary 
cross and multi-field joint, effectively promotes the deep 
cooperation between different fields of research, provides 
a much more efficient route to bringing new transforma-
tive technologies into practice, and can jointly promote 
the development of precision agriculture in China.

Profoundly intensify efforts to cultivate technical 
and practical talents for phenotypes detection 
and precision agriculture (real‑time variable‑rate 
fertilization)
The significant amounts of digital, spectral, and ther-
mal imaging data that can be obtained by RS platforms 
require a series of advanced processing stages, such as 
geometric calibration, radiation correction, and data 
modeling. This requires practitioners to have the appro-
priate scientific and cultural information available to 
them and the technical experience to use the relevant 
digital and mechanical equipment. However, at present, 
end-users lack data-processing skills and this can prove 
a challenge when adapting current practices. Therefore, 
it is necessary to strengthen expertise in agricultural sci-
ence and technology, to provide adequate financial sup-
port for agricultural research, and intensify efforts to 
cultivate high-quality applied experts in precision agri-
culture. Training, especially young and middle-aged 
farmers, is an important tool in promoting crop pheno-
typic research, the healthy development of precision agri-
culture, and for meeting the new challenges that the rest 
of the twenty-first century will present. At the same time, 
it is necessary to speed up the development and demon-
stration of full-process technical solutions that are easy 
to operate, and integrate different functional software 
that enables users to independently monitor crop growth, 
predict yields, and derive fertilization recommendations, 
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promote real-time variable-rate fertilization technology 
based on crop phenotypic biological information nation-
wide in China.

Conclusions
Since the concept of precision agriculture was advocated 
and implemented by American agricultural producers 
in the 1980s, variable-rate fertilization technology has 
developed rapidly in the field of intelligent agricultural 
equipment innovation. More recently, crop phenotypic 
information acquired using RS technologies has made a 
significant contribution to understanding crop growth, 
yields, and quality alongside environmental variables 
including natural disasters. This approach offers techni-
cal superiority in supporting the management of ferti-
lizer applications, water use, and crop damage, and has 
gradually obtained industry recognition, and accelerates 
the rapid and sustainable development of real-time varia-
ble-rate fertilization technology for precision agriculture. 
In China, crop phenotypic monitoring technology and 
real-time variable-rate fertilization technology (based on 
agricultural RS) is gradually shifting from being reliant 
on the experience of other countries to a new stage more 
tailored to the Chinese situation. There have been a series 
of creative achievements in research and application that 
have seen China establish itself as a world-leader in crop 
phenotypic monitoring and precision variable-rate fer-
tilization technology research. However, compared with 
other developed countries, several challenges and knowl-
edge gaps remain in some key core technologies.

Crop models based on RS technology are recognized 
in modern agricultural research as an important tool 
that helps transform agricultural production processes 
to be visualization, and from the theoretical to practi-
cal levels. There is, however, an urgent need to convert 
significant amounts of observational data into effective 
information for agricultural monitoring. It is also nec-
essary to construct analytical methods and decision-
making models for data acquisition, correction, and 
fusion throughout the whole growth period of a crop. 
Focuses on the research of ‘satellite-vehicle-ground’ 
multi-platforms collaborative synergy with precision 
acquisition, decision-making, and fertilization tech-
nologies are also required to improve independent 
innovation and technical reserve capacity. Ultimately, 
achieving these targets will promote the transforma-
tion of theoretical research into practice, and enhance 
the ability of agricultural information technology to 
drive developments in the agricultural industries. In 
addition, real-time variable-rate fertilization technol-
ogy based on crop phenotypic information is an impor-
tant route for realizing intelligent precision agriculture, 

and this will likely play a significant role in promoting 
China’s future agricultural modernization, sustainable 
development.
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