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Bayesian approach for analysis 
of time‑to‑event data in plant biology
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Abstract 

Background:  Plants, like all living organisms, metamorphose their bodies during their lifetime. All the developmental 
and growth events in a plant’s life are connected to specific points in time, be it seed germination, seedling emer-
gence, the appearance of the first leaf, heading, flowering, fruit ripening, wilting, or death. The onset of automated 
phenotyping methods has brought an explosion of such time-to-event data. Unfortunately, it has not been matched 
by an explosion of adequate data analysis methods.

Results and discussion:  In this paper, we introduce the Bayesian approach towards time-to-event data in plant 
biology. As a model example, we use seedling emergence data of maize under control and stress conditions but the 
Bayesian approach is suitable for any time-to-event data (see the examples above). In the proposed framework, we 
are able to answer key questions regarding plant emergence such as these: (1) Do seedlings treated with compound 
A emerge earlier than the control seedlings? (2) What is the probability of compound A increasing seedling emer-
gence by at least 5 percent?

Conclusion:  Proper data analysis is a fundamental task of general interest in life sciences. Here, we present a novel 
method for the analysis of time-to-event data which is applicable to many plant developmental parameters meas-
ured in field or in laboratory conditions. In contrast to recent and classical approaches, our Bayesian computational 
method properly handles uncertainty in time-to-event data and it is capable to reliably answer questions that are 
difficult to address by classical methods.

Keywords:  Data analysis, Bayesian inference, Plant development, Statistics, Uncertainty, Time-to-event data, Survival 
analysis, Plant phenotyping
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Background
Reliable and robust tools for the analysis of high-
throughput experimental data are reported to be the 
current bottleneck in plant phenotyping, breeding, and 
agricultural research [1]. Despite the current replication 
crisis and the dawning of  “post p < 0.05 era”, this task is 
still not reflected enough in plant biology [2, 3]. There is 
overwhelming literature on how to analyze time-to-event 

data, mostly based on seed germination datasets. Ranal 
et  al. [4] report that the number and diversity of math-
ematical expressions measuring various aspects of the 
germination process make any comparison difficult. They 
list a table of 19 parameters that have been used in the 
domain of germination assays only.

Most of the statistical treatment proceeds as follows [4, 
5]: suppose we want to compare the median time to ger-
mination (t50) in two seed populations, A and B. We pre-
pare five trays of seeds from population A (100 seeds per 
tray) and five trays of seeds from population B (100 seeds 
per tray). We collect the data and fit a parametric growth 
model (e.g., a logistic curve) to the data. Thus, we obtain 
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five values for t50 for the seeds from population A and 
five values of t50 for the seeds from population B. Then 
we perform a t-test to compare whether the t50 value for 
the seeds from population A differs from the correspond-
ing value for the seeds from population B. Notice that 
this procedure is independent of the number of seeds in 
each tray! The test has the same power, irrespective of 
whether each tray contains ten seeds or a million seeds. 
This is clearly inadequate, and yet this type of data evalu-
ation is used more often than not [5].

One way out of this problem is to use the confidence 
intervals of the parameter estimates from the nonlinear 
regression [6]. It is clear that the width of the confidence 
intervals reflects the number of seeds in the tray. How-
ever, growth curve fitting by means of nonlinear regres-
sion is not appropriate for time-to-event data because 
the regression models assume a different underlying 
mechanism (see the Additional file  1 for a full explana-
tion). Several authors noticed the inadequacy of nonlin-
ear regression for growth models, most notably [7–10]. 
McNair et  al. [7] correctly report that confidence inter-
vals, a hypothesis test for parameter values, and a com-
parison of parameters for two or more groups that 
are provided by standard statistical software must be 
disregarded.

As has been reported previously, the correct approach 
is to embrace survival analysis methods for time-to-event 
data [7, 8, 10]. However, even survival analysis comes in 
two flavors: Classical (frequentist) and Bayesian. We offer 
a novel, general-purpose, easy-to-understand and flex-
ible Bayesian tool to analyze any type of time-to-event 
data and to answer the most common scientific questions 
regarding this type of data.

Over the last century, survival analysis has provided us 
with many tools [11–13] to analyze time-to-event data 
(see also [7, 8] for a review). Most of them can readily be 
used in plant biology to analyze emergence or germina-
tion assays. In our case, the primary quantity of interest 
is the emergence function F(t), which denotes the prob-
ability that a plant will emerge before time t. In practice, 
we often perform experiments to quantify the effect of 
the stressor (or a stimulant). To this end, a regression 
model must be used. The Cox proportional hazards (PH) 
model is the obvious candidate and the one that is used 
almost exclusively but it has a very strong assumption: it 
assumes that the effect of the predictor (e.g., a stressor) 
is constant in time. It is very likely that this assumption 
does not hold in many biological settings [14], especially 
in seedling emergence, which is connected with pho-
tomorphogenesis, one of the most dramatic periods in 
the life of plants. Moreover, we point out that none of 
the classical methods used for survival analysis is able to 

answer questions of type 2 above. To do that, we have to 
turn to Bayesian methods.

Lately, various machine learning (ML) methods have 
emerged in all fields that collect large amounts of data. 
It is natural to ask whether ML methods may be useful 
for answering the questions in the abstract. However, 
state-of-the-art ML methods deal with regression or 
classification (which are usually further used for predic-
tion), but they have no tools to address the uncertainty 
of the result. Without the accompanying uncertainty, 
one cannot answer how probable it is that the classifica-
tion offered by a ML tool is correct. From the point of 
view of statistics, ML method provide sophisticated 
but only point estimates. For most of the methods, esti-
mates of variability are not yet available. Thus ML meth-
ods address a fundamentally different question than this 
article.

Results
We illustrate the approach through a maize emergence 
experiment (see “Methods” for details). Let us first con-
centrate on a single tray of 110 seeds to introduce the 
Bayesian framework. The tray was observed every 2  h 
for 12 consecutive days. The number of plants that did 
not emerge at all is denoted by M. For each plant that 
emerged, we recorded during which 2-h interval it hap-
pened. Thus, for each interval [ti, ti+1], we know the num-
ber Ni of plants that emerged during this interval. Here 
t0 = 0, t2 = 2, t3 = 4, …, t144 = 288 because 288  h corre-
spond to 12 days. Obviously

where T = 144 denotes the number of 2-h intervals dur-
ing the 12 days of the experiment. Let us denote the prob-
ability that a plant emerges before time t by F(p, t), where 
by p we stress that the function depends on some param-
eters. If we fix the value of the parameters p, it is easy 
to write down the probability of the observed data. This 
probability (called the likelihood function) is a product of 
110 terms because we assume that the emergence times 
of the individual plants are independent. For each plant 
that did not emerge at all, we multiply the likelihood by 
the term [1 – F(p, tT)], which gives the probability that a 
plant will not emerge before the end of the experiment. 
If a plant emerged between ti and ti+1, we multiply the 
likelihood by the term [F(p, ti+1) – F(p, ti)], which gives 
the probability that a plant will emerge before ti+1 but not 
before ti. Altogether, the likelihood function can be writ-
ten as

T−1
∑

i=0

Ni = 110−M,
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Note that the product runs over all the intervals, not 
all the plants that have emerged. Any interval with Ni = 0 
will produce a unity and thus not alter the value of the 
product. Formula (1) is interpreted as the probability of 
the observed data, given the values of the parameters. Let 
us now change the point of view: consider the set of all 
possible values of the parameters. To each point in this 
parameter space, formula (1) assigns the probability of 
the observed data given these particular values of the 
parameters. Thus, formula (1) can be viewed as a func-
tion over the parameter space. Low values of L indicate 
values of parameters that are unlikely to produce the 
observed data. High values of L reveal the parameters 
which are likely to produce the observed data.

Here, a minor departure from standard parametric 
Bayesian models is needed. Let us assume that there are, 
in fact, two types of seedlings: those that would eventually 
emerge if we observed them for long enough, and those 
that would never emerge. Let us use alpha to denote the 
probability that a seedling will emerge eventually (i.e., (1-
alpha) is the probability that it will never emerge). Then 
the probability that a seedling will emerge before time t 
can be written as

Here F(t) again stands for a standard parametric 
growth model, e.g., the Gompertz distribution. The 
likelihood function (1) has to be altered accordingly: for 
each seedling which was not observed until the end of 
the experiment, we multiply the likelihood by the term

This captures the probability that we did not see the 
plant emerge either because it was dead (the term (1—
alpha)) or because it was alive but would have emerged 
after the end of the experiment (the term alpha * (1 
– F(p, tT))). If a plant emerged between ti and ti+1, we 
multiply the likelihood by the term

which gives the probability that the plant was alive and 
emerged before ti+1 but not before ti. Altogether, the like-
lihood function becomes

(1)

L(p) = [1− F(p, tT )]
M

T−1
∏

i=0

[F(p, ti+1)− F(p, ti)]
Ni

prob
(

seedling emerges before t
)

= prob
(

seedling emerges before t | it is dead
)

prob
(

it is dead
)

+ prob
(

seedling emerges before t | it is alive
)

prob
(

it is alive
)

= 0 ∗
(

1− alpha
)

+ F(t) ∗ alpha

(1− alpha) + alpha ∗ (1− F(p, tT ))

alpha ∗ [ F(p, ti+1)− F(p, ti) ],

We will be ready to answer questions 1 and 2 once we 
understand how to treat the uncertainty of the param-
eter estimates provided by (2). Let us use the Gompertz 
model, which assumes

There are three parameters to be estimated: the emer-
gence yield alpha, emergence uniformity B, and emer-
gence half-time C. Bayesian inference makes us spell out 
what we think about these parameters before we perform 
the experiment. Thus, each of the parameters is assigned 
a prior distribution which quantifies our degree of belief 
in the parameter’s values. Since alpha must lie in the 
interval [0,1], we assume its prior distribution to be the 
beta distribution, e.g., with the parameters [1, 9]. B and 
C are assumed to have a Gaussian prior with muB = 2, 
stdB = 0.5, and muC = 5, stdC = 2. Figure 1a shows a hun-
dred samples of emergence curves drawn from this prior 
distribution.

After the data are observed, the prior distribution is 
updated according to Bayes’s Law, which states that

The posterior represents the distribution of our degree 
of belief in the values of the parameters after observing 
the experimental data. The posterior directly quantifies 
the uncertainty of the values of the parameters together 
with the correlation among the parameters. Once the 
posterior is computed, all questions of the type 1 and 
2 can easily be answered. The likelihood function in 
Eq.  (3) has already been introduced and it is given by 
Eq.  (2). The evidence in the denominator of (3) repre-
sents a normalization factor that is independent of the 
parameters and which need not be computed. Omitting 
the denominator, one computes an un-normalized pos-
terior which is then rescaled to represent a probability 
density function (i.e., it is rescaled to a unit integral over 
the parameter space).

Let us now use Eq.  (3) together with the likelihood 
function given by (2) to obtain the posterior. Figure  1b 
shows 100 emergence curves with parameters drawn 
from the posterior given by (3). We can observe that our 
vague initial belief in the shape of the emergence curve 
(shown in Fig. 1) was updated by the data and resulted in 
a fairly precise estimate of the emergence curve.

(2)

L(p) = [1− αF(p, tT )]
M

T−1
∏

i=0

[αF(p, ti+1)− αF(p, ti)]
Ni

F(t) = exp [− exp (B(t − C))]

(3)
Posterior(p) = prior(p) ∗ likelihood(p, data)/

evidence(data).
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Discussion
Let us now return to questions 1 and 2 from the intro-
duction to illustrate practical application of Bayesian 
approach.

1.	 Do seedlings treated with compound A emerge earlier 
than the control seedlings?

	 We have two sets of data, one for the control seeds 
and one for the primed seeds. We observe the emer-
gence times and find the posterior distribution for 
the parameter C in both cases. Then we draw, e.g., a 
thousand samples of C from the posterior of the con-
trol (C1

1 – C1
1000) and a thousand samples of C from 

the posterior of the treated seeds (C2
1 – C2

1000). The 
number of times C1 is less than C2 provides the esti-

Fig. 1  a Hundred samples of the possible emergence curves drawn from the prior distribution of the parameters. The data are shown in black but 
unused at this stage. Note that all the curves are increasing—this is a prior knowledge built into the model. b One hundred samples of the possible 
emergence curves drawn from the posterior. The difference between a and b shows how much our belief about the parameters of the emergence 
curve changed as a result of observing the data (shown in black). c Comparison of two emergence curves by means of sampling from the posterior. 
One hundred samples shown for each variant. See “Methods” for a description of the experimental design



Page 5 of 7Humplík et al. Plant Methods           (2020) 16:14 	

mate of the probability of seedlings from the primed 
seeds emerging earlier than seedlings from the con-
trol seeds. Figure 1c shows 100 emergence curves for 
both sets of data (data provided in the template file 
for the online evaluation web application described 
in the Additional file 1). The probability that C1 is less 
than C2 was estimated to be p = 0.01, i.e., there is a 
more than 99% probability that seedlings from popu-
lation A will emerge earlier than seedlings from the 
control population in the given conditions.

2.	 What is the probability of compound E increasing 
seedling emergence in salinity (NaCl) by at least 5 
percent with respect to compound F?

	 Here we need to estimate the probability that the 
parameter alpha is at least 5 percent higher in the 
seeds primed with E than in the seeds primed with 
F, sown both into NaCl containing substrate (see 
Fig.  1). We draw, e.g., a thousand samples (alpha1

1 
– alpha1

1000) from the posterior of the group F and 
a thousand samples (alpha2

1 – alpha2
1000) from the 

posterior of the group E. We compute the number of 
times alpha2 ≥ 1.05*alpha1. This shows that there is 
a 73 percent probability that compound E increases 
seedling emergence by at least 5 percent with respect 
to compound F in the given conditions.

It is difficult to imagine a relevant question which 
could not be answered in this straightforward way 
once the posterior is computed. The posterior distri-
bution of the parameters can be used to compare a 
certain trait across the whole experiment. For example, 
Fig. 2b shows the plot of the posteriors for emergence 
half-time (parameter C) across the entire popula-
tion that was tested. Sampling methods are needed to 
work with the posteriors but they are readily available 
nowadays in various software tools. We performed the 
sampling in Python [15, 16]. A free version of the sim-
ulation software is available at http://www.bayes​4plan​
ts.com and described in the Additional file 1. The full 
code is freely available here. 

Fig. 2  a Detail of empirical emergence curves for seeds primed with all the compounds that were tested. The significance of the differences 
among the curves are not obvious. b Posterior distributions for emergence half-time (parameter C in Table 1) across the entire population that was 
tested. The differences among the various compounds are clearly visible and can be quantified

http://www.bayes4plants.com
http://www.bayes4plants.com
https://gist.github.com/DostalJ/73d985576fdfac926b9053b29f1e772e
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Conclusion
Proper data analysis is fundamental task of general inter-
est in life sciences. Despite the current replication crisis 
and the dawning of “post p < 0.05 era” [2, 3], this task is 
still not reflected enough in plant biology. Here, we pre-
sent a novel and reliable method for the analysis of time-
to-event data which is applicable to many developmental 
parameters measured in field or indoor conditions, e.g. 
seed germination, seedling emergence, the appearance of 
the first leaf, heading, flowering, fruit ripening, wilting, 
or death. In contrast to recent and classical approaches, 
our Bayesian computational method properly handles 
uncertainty in time-to-event data and it is capable to reli-
ably answer questions that are difficult to address by clas-
sical methods.

Methods
Bayesian inference is general purpose method for han-
dling uncertainty in experimental datasets. It should 
replace insufficient or biased “classical” statistical meth-
ods to provide more reliable data for better evidenced 
conclusions. Here we present an algorithm allowing such 
statistical analysis for time-to-event-data. The computa-
tional method is described above, whereas here we pro-
vide information about design of seedling emergence 
experiment that served as source of time-to-event data. 
However, this is only example of time-related dataset, 

Bayesian survival analysis can be performed on similar 
data-type coming from very different conditions (field or 
indoor) or different developmental stage of studied plant 
population. The data were obtained from automated 
screening of maize emergence. Seeds of the maize (Zea 
mays L.) hybrid Koblens (KWS Osiva s.r.o., Czech Repub-
lic) were sown into TEKU JP 3050/160T nursery trays. 
Each tray was watered to the full water capacity with tap 
water or a solution of 150 mM NaCl. Afterwards, all the 
trays were watered using 0.5 l of tap water every third day 
until the end of the experiment. The trays were randomly 
assigned to the control or the salt stress groups at the 
beginning of the experiment.

Together with the salt stress, a second effector was 
introduced into the experiment. The seeds were primed 
either with water (control) or one of seven potential stim-
ulatory compounds (compounds A–G). The treatment 
was applied during the imbibition phase by soaking the 
seeds in the respective solution for 16  h before sowing. 
Each treatment was evaluated in control and in salt stress 
conditions. Thus 16 trays were evaluated, each containing 
110 seeds. The trays were placed into a controlled con-
dition chamber with a robotically driven arm holding an 
RGB camera [17]. Each tray was photographed every 2 h 
for 12 days. The images were stored in a database server 
and analyzed semi-automatically by an in-house image 
processing routine. For each maize seed, the time of its 
emergence (i.e., the moment of the appearance of the 
coleoptile above the soil) was recorded.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1300​7-020-0554-1.

Additional file 1.1. Inadequacy of fitting of growth curves.; 2. Software

Acknowledgments
The work was supported from the ERDF project "Plants as a tool for sustain-
able global development" (No. CZ.02.1.01/0.0/0.0/16_019/0000827). Authors 
thanks to Abradatas company for development of free online tool based on 
our mathematical model.

Authors’ contributions
JFH initiated a topic, tested and optimized mathematical model and partici-
pate in article writing. JD programmed mathematical model, generate visu-
alization of data and was responsible for development of web page using our 
algorithm. LU prepared and performed seedling emergence experiment. NDD 
designed seedling emergence experiment and discussed the manuscript. LS 
discussed the manuscript and was responsible for funding of the work. OV 
participate in important part of model development. TF developed the model 
and wrote the mathematical part of the article. All authors read and approved 
the final manuscript.

Funding
The work was supported from the ERDF project "Plants as a tool for sustain-
able global development" (No. CZ.02.1.01/0.0/0.0/16_019/0000827).

Table 1  Summary of  the  mean value (expectation) 
of the posterior distribution of all three parameters for all 
the compounds that were tested

The respective uncertainties are provided by the variance of the posterior 
distribution (see Fig. 2b for the uncertainty in parameter C)

Alpha B C
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C water 0.96 1.85 4.56
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