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Abstract 

Background:  Photosynthetic pigments participating in the absorption, transformation and transfer of light energy 
play a very important role in plant growth. While, the spatial distribution of foliar pigments is an important indicator of 
environmental stress, such as pests, diseases and heavy metal stress.

Results:  In this paper, in situ quantitative visualization of chlorophyll and carotenoid was realized by combining 
the Raman spectroscopy with calibration model transfer, and a laboratory Raman spectral model was successfully 
extended to a portable field spectral measurement. Firstly, a nondestructive and fast model for determination of chlo-
rophyll and carotenoid in tea leaf was established based on confocal micro-Raman spectrometer in the laboratory. 
Then the spectral model was extended to a real-time foliar map scanning spectra of a field portable Raman spectrom-
eter through calibration model transfer, and the spectral variation between the confocal micro-Raman spectrometer 
in the laboratory and the portable Raman spectrometer were effectively corrected by the direct standardization (DS) 
algorithm. The portable map scanning Raman spectra of the tea leaves after the model transfer were got into the 
established quantitative determination model to predict the concentration of photosynthetic pigments at each pixel 
of the tea leaves. The predicted photosynthetic pigments concentration of each pixel was imaged to illustrate the 
distribution map of foliar pigments. Statistical analysis showed that the predicted pigment contents were highly cor-
related with the real contents.

Conclusions:  It can be concluded that the Raman spectroscopy was applicable for in situ, non-destructive and rapid 
quantitative detecting and imaging of photosynthetic pigment concentration in tea leaves, and the spectral detec-
tion model established based on the laboratory Raman spectrometer can be applied to a portable field spectrometer 
for quantitatively imaging of the foliar pigments.
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Quantitative analysis, Raman spectroscopy
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Background
Tea is one of the world’s three major beverages. The 
world’s tea production exceeds 4 million tons per year 
and more than 2 billion people consume tea [1]. Tea, 
which contains high levels of antioxidants and can pre-
vent many diseases including cardiovascular and can-
cer, has received more and more attention from people 
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[2]. Photosynthesis is the determinant of productivity 
and the basis of plant growth and development, and an 
important source of carbon in plants. The photosynthe-
sis of tea leaves is closely related to the quality and yield 
of tea. Photosynthetic pigments including chlorophyll a 
(Chl-a), chlorophyll b (Chl-b), and total carotenoids (Car) 
play a very important role in plant growth. Furthermore, 
the spatial distribution of foliar pigments is an important 
indicator of environmental stress, such as pests, diseases 
and heavy metal stress [3, 4]. In addition, the color and 
lustre of tea plays an important role in the consumption 
and production of tea, and the pigment concentration 
of tea is also an important factor affecting the color of 
tea. Therefore, developing a method for nondestructive 
detection and quantitative visualization of foliar photo-
synthetic pigment content is an important task for plant 
protection, cultivation and tea processing [5].

Most of the existing imaging studies on photosynthetic 
pigments concentration are based on visible-near infra-
red hyperspectral imaging technology. Previous stud-
ies have investigated crops such as cucumber leaf [6, 7], 
spinach [8], pepper leaf [9], tomato [10] and so on, and 
have achieved good results. Zhao et al. [11] used visible-
near infrared hyperspectral technology to extract the cor-
responding feature parameters and built models based 
on 7 algorithms. The chlorophyll concentration was pre-
dicted by the models and the distribution map of chlo-
rophyll concentration was drawn. Raman spectroscopy 
is a non-destructive analytical technique, which is based 
on the scattering interaction between light and chemical 
bond in materials. It can provide detailed information of 
chemical structure, phase and morphology, crystallinity 
and molecular interaction of samples. Compared to vis-
ible-near infrared hyper-spectrum, Raman spectroscopy 
has the advantages of high resolution, which can provide 
more spatial information for pest and heavy metal detec-
tion, and help to further study the mechanism of pests 
and heavy metal stress.

There are a lot of studies on the use of Raman spec-
troscopy to identify and visualize chemical compounds. 
Schulz et  al. [12] used a NIR-FT-Raman spectrometer 
to detect carotenoid in various fruits and vegetables 
such as carrot, tomato, and nectarine, and found Raman 
spectral fingerprint peaks of carotenoid in plants. The 
characteristic peaks were used to image the carotenoid 
distribution inside the plants. Qin et al. [13] developed a 
bench-top point-scan Raman chemical imaging system to 
detect and visualize the internal distribution of lycopene 
in postharvest tomato, and established a Raman chemical 
image to visualize the spatial distribution of lycopene at 
different stages of maturity. Yang et al. [14] used a custom 
row-scan Raman hyperspectral imaging system to detect 
and display the main chemical components of maize 

seeds. The characteristic peaks associated with corn 
starch, mixture of oil and starch, zeaxanthin, lignin and 
oil were found. Each single band image corresponding to 
the characteristic band successfully represents the spatial 
distribution of chemical components in seeds.

In addition to the above qualitative analysis, Raman 
spectroscopy also has many applications in quantitative 
detection. Baranska et al. [15] detected lycopene and car-
otene in tomato and its products by FT Raman spectros-
copy, and its modeling effect was better than that of near 
infrared spectrum but slightly lower than that of infrared 
spectrum. Bhosale et al. [16] and Dane et al. [17] detected 
the carotenoid concentration in kinds of fruits and veg-
etables (such as tomato, carrot, mango, etc.) using Raman 
spectroscopy. The result showed that there was a high 
correlation between the Raman spectrum signal intensity 
and the carotenoid concentration, and the correlation 
coefficient (R) was up to 0.9618. The above researches 
shows that Raman spectroscopy has great potential for 
quantitative detection of pigments, but the transferring 
of the quantitative model of Raman spectroscopy to port-
able devices, especially the field applicability of the labo-
ratory model, has not been studied so far.

In practical applications of spectral determination 
model, it is often encountered that a multivariate calibra-
tion model developed based on one instrument (Mas-
ter) cannot be used on another instrument (Slave) of the 
same type as the Master. Or there will be big biases in the 
prediction result. The poor adaptability of this spectral 
model greatly limits the application prospect of spectral 
detection technology, and the spectral models that took 
a lot of time and money to build in the laboratories are 
difficult to be used in field or production practice. A 
strategy of model transfer has been frequently adopted 
to solve this problem. The essence of model transfer is to 
overcome the inconsistency between the measured sig-
nals (or spectra) of samples on different instruments [18]. 
Chemometric techniques are used to correct the differ-
ences in instrumental response function and then making 
the existing model transferable [19]. Direct Standardi-
zation (DS) is the most widely used method among the 
calibration standardization methods. The DS method is 
usually preferred due to its ease of use in correcting the 
spectra [20]. In this method, the transformation matrix is 
achieved by modeling two batch spectra of standard sam-
ples dataset included on both instruments, and then cor-
rection between the new and original calibration datasets 
is performed, thereby predicting the transformed spectra 
of the new samples on the second instrument without 
loss of the accuracy of calibration models [21]. Linking 
the two instruments through model transfer not only can 
be applied in actual production, but also make the model 
more accurate. Ji et al. [22] used a direct standardization 
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(DS) model transfer algorithm to remove the environ-
mental factors from the field spectrum so as to effectively 
estimate the soil properties. Wang et  al. [23] proposed 
a model transfer algorithm based on genetic algorithm, 
which makes the partial least squares model of aviation 
fuel density successfully transferred from one instrument 
to another, and the accuracy of model prediction result 
is close to the calibration model and higher than the DS 
model.

Confocal micro-Raman spectrometer has high resolu-
tion and precision, and can capture more useful spatial 
information, but this instrument is too expensive and 
heavy to be used in field or in vivo plant detection. Port-
able Raman spectrometer is compact and convenient, and 
can be used for in  vivo or field detection, but it has the 
disadvantage of low resolution. In regards to field applica-
tions, Raman libraries are built and maintained on a more 
efficient laboratory instrument and then transferred to 
handheld/portable spectrometers. The need for a success-
ful multivariate calibration model transfer that minimizes 
prediction error for a Raman spectral library database, 
such as those available and successfully applied exten-
sively to near infrared (NIR) studies [24–27] has been a 
primary goal of the Raman spectroscopy measurements 
and has been the subject of some researches [28–31]. 
For instance, calibration transfer from an at-line to an in-
line acquisition of Raman spectra was performed for PLS 
regression models to predict the concentration levels of 
two ingredients in a liquid detergent composition [19].

Therefore, further studies are needed to explore the 
possibility of creating calibration models on a laboratory-
based Raman spectroscopy and transferring it to various 
field instruments. The calibration standardization pro-
cedures also provide the possibility for the building of 
standard free robust models. Nevertheless, little research 
on the measurement of photosynthetic pigments of tea 
leaf based on Raman spectroscopy was carried out, and 
there was no calibration transfer study in spatial distri-
bution of foliar pigments, especially calibration transfer 
between tea leaf samples with different positions.

Good results have been obtained in the previous litera-
tures, but the effect of model transfer method on the var-
iation correction of Raman spectrometers has not been 
reported. Here we are committed to building a high-
precision Raman spectral pigment measurement model 
based on high-performance instrument in the laboratory, 
and study the application of this spectral model to the 
portable field measurement equipment.

In order to solve the above problems, this paper aims 
to study the Raman spectral characteristics of tea leaf and 
establish an in  situ quantitative analysis model between 
the concentration of photosynthetic pigment and its con-
focal micro-Raman spectra in tea leaf. On this basis, the 

portable Raman mapping data after model transfer were 
brought into the established model, the concentration of 
each pixel was predicted, and the chemical imaging was 
carried out to obtain the distribution map of the concen-
tration of photosynthetic pigment in tea leaf at different 
position.

Materials and Methods
Materials and instruments
Material preparation
The tea variety is longjing 43 (Camelliasinensis(L.) 
O.Kuntze). In the summer of 2012, longjing 43 seedlings 
were obtained from the tea garden in Fuyang, Hangzhou, 
China. Tea seedlings were planted in pots in the agri-
cultural internet of things exhibition center of college of 
biosystems engineering and food science, Zhejiang Uni-
versity, receiving natural light and artificial watering.

Material 1: in total of 315 leaves including the first 
four leaves in shoot (as shown in Additional file  1: Fig. 
S1) were plucked for Raman spectral collection, then 
all the leaves were stored in the refrigerator within 4 ℃ 
immediately. Following, approximately 0.1  g of weighed 
leaf, excluding central vein was taken for reference 
measurement of concentration of chlorophyll and total 
carotenoids according to the Reference [8] based on the 
ultraviolet spectrophotometer with the unit mg·g−1. In 
detail, 10  mL pigment extraction solution (95% alcohol 
solution) was added to the cut and ground sample, and 
stored in a dark room for about 24 h.

Material 2: in total of 16 leaves including 4 leaves in 
each position (as shown in Additional file 1: Fig. S1) were 
collected for different four tea plants. And the photosyn-
thetic pigment concentration of the 16 leaves was meas-
ured in the same method as in the previous section.

Instrument
Master spot scanning: a laser confocal micro-Raman 
spectrometer (Renishaw, United Kingdom/Via-Reflex 
532/XYZ) was used for collecting Raman spectra of the 
Material 1. Specific parameters were as follow: the excita-
tion wavelength is 532 nm; the spectral collection range 
is 579–3062 Raman shift/cm−1 with a spectral resolution 
of 0.2 nm, the laser intensity is 50 mW, the exposure time 
is 1  s, and the objective lens multiple is 5. Each sample 
was collected at three points from top to base, and the 
average spectrum was used as the representative Raman 
spectrum of the sample. So, a total of 315 spectra were 
obtained.

Slave map scanning: a portable Raman spectrometer 
(Ocean optics QE Pro, United States) was used for spec-
tral collection of Material 2. Specific parameters were as 
follow: the excitation wavelength is 532  nm, the spec-
tral collection range is 77–2146 Raman shift/cm−1, the 
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laser intensity is 100 mW, the exposure time is 3  s, and 
the average time is 2 s. The 16 leaves were map scanned 
by the Raman spectrometer with horizontal and vertical 
spatial resolution of 1 mm.

In this experiment, the software WIRE 3.3 (Renishaw, 
United Kingdom) was used to collect and extract Raman 
spectral data. The pictures in this paper were drawn by 
Origin 9.0 (Originlab, United States) and Photoshop 
CS6 (Adobe, United States), and all the preprocessing 
and modeling methods were performed in Matlab 2013b 
(MathWorks, United States).

Spectral analysis methods
Spectral pretreatment
The obtained spectral information contains not only the 
chemical structure information of the sample, but also 
many background and noise signals from the interference 
source such as the instrument itself and the experimental 
operating environment. Therefore, in order to eliminate 
the influence of the extraneous and interfering signals 
on the sample signal, the original data can be preproc-
essed [32]. In this study, five data preprocessing methods 
were applied including multiplicative scatter correction 
(MSC), wavelet transform (WT), standard normal variate 
(SNV), rolling-circle filter (RCF) and adaptive iteratively 
reweighted penalized least squares (airPLS).

The full-band Raman spectrum contains a large amount 
of redundant information and noise [33]. These interfer-
ence signal not only affect the prediction performance of 
the model, but also are not conducive to further detect-
ing the Raman spectral response mechanism of chloro-
phyll. So, the competitive adaptive re-weighted algorithm 
(CARS) was used to extract the effective band for spec-
tral measurement of the photosynthetic pigments. Based 
on the effective bands from CARS, the computational 
complexity of the spectral modeling can be reduced. Fur-
thermore, the Raman spectral response mechanism of 
photosynthetic pigment may be discovered based on the 
assignment of these characteristic bands.

Sample division
The 315 samples from master spot scanning were divided 
into a training set and a test set based on 2:1 ratio. First, 
the samples were arranged in ascending order according 
to their concentrations of Chl-a, Chl-b and Car, and each 
three is one set in turn. Then, the second sample in each 
set is divi3ded into the test set, and the rest are set as the 
training set. So, 210 training set samples and 105 test set 
samples were obtained. The statistical information of the 
sample sets were shown in Table 1.

Modeling and evaluation methods
Partial least squares regression (PLSR) was adopted to 
establish a quantitative relationship between the concen-
tration of photosynthetic pigments and Raman spectra 
of leaf. The PLSR has the advantages of simplicity, accu-
racy, convenience and wide applicability. It is the most 
commonly used and most effective multivariate statistical 
method in chemometric modeling analysis [34]. The per-
formance of the PLSR model was evaluated by the follow-
ing indicators including coefficient of determination (R2) 
and root mean square error (RMSE) [35]. In detail, the 
R2

C, R2
CV, R2

P and RMSEC, RMSECV, RMSEP represent the 
determination coefficient and root mean square error of 
calibration, cross validation and prediction, respectively.

Considering the subsequent model transfer, the spec-
tral bands of the two instruments need to be unified. 
The common band range of the two spectrometers is 
579–2146  cm−1, but there are obvious high-frequency 
noise signals at the both ends. So the spectral range of 
792–1961 cm−1 was selected for modeling.

Model transfer
In order to test the prediction result of the model, the 
sample after the scanning should measure 3 photosyn-
thetic pigments concentration, and compare the actual 
value with the predicted value. Scanning takes a long 
time, and if it is detected in vitro, it will inevitably affect 
the accuracy of photosynthetic pigment concentration. 
Although the master also has a scanning function, its 
structure is complicated and impossible to perform living 
body detection of tea leaves. The slave is small, portable, 
simple in structure, and can perform scanning without 
removing the tea leaves. Therefore, the slave is used to 
scan four leaves of different leaf positions.

The direct standardization (DS) method was adopted 
to improve the adaptability of the spectral model, which 

Table 1  The statistical information of the sample set

Max maximum value, Min minimum value, SD standard deviation, Num number 
of samples

Max (mg·g−1) Min (mg·g−1) Mean ± SD Num

Car

 Training set 1.4917 0.1901 0.8461 ± 0.2282 210

 Test set 1.4786 0.2557 0.8465 ± 0.2267 105

Chl-a

 Training set 10.4111 1.877 5.6513 ± 1.4116 210

 Test set 10.4111 2.3599 5.6559 ± 1.4191 105

Chl-b

 Training set 5.7826 0.6288 2.2675 ± 0.6804 210

 Test set 5.7826 0.9380 2.2785 ± 0.7128 105
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is a multivariate full-spectrum model transfer algorithm 
[36]. The advantage is that the principle is simple, the 
difference between the standard spectral data and the 
spectral data to be corrected can be compared, and each 
wavenumber is sequentially corrected by the full band to 
realize the transfer of the model [23].

The common spectral range of 579–2146  cm−1 of the 
two Raman spectrometers was selected, and to remove 
the high-frequency noise signals at both ends, the 
range of 792–1961 cm−1 was selected for further model 
transfer. Since the spectral resolutions of the two spec-
trometers are different, interpolation processing was per-
formed to form a uniform number of spectral variables. 
It is important for model transfer to choose representa-
tive samples to define the differences between the master 
and slave instruments. For the slave instrument, the aver-
age spectrum of all pixels for each leaf (minus the back-
ground) map scanning was taken as the representative 
spectrum of the leaf, so a total of 16 spectral profiles were 
obtained. And 4 representative spectra were selected by 
the Kennard-Stone (KS) algorithm from the 16 spectra. 
While, for the master instrument, 4 spectra were also 
selected by KS algorithm from the 315 spectra of master 
spot scanning. Model transfer was performed by select-
ing 4 spectra (including all of the leaf positions) from the 
master and slave instrument.

The flow of the DS algorithm is as follow [37, 38]. 
The spectral matrices of master and slave are Xm, Xs, 

respectively. Both Xm and Xs have size m × p, where 
m represents the number of representative transfer 
spectra (4 in this case) and p represents the number of 
wavenumbers.

where E is the transfer matrix with size p × p of unknown 
parameter, which accounts for the variation in both Xm 
and Xs, and B is the background correction matrix [22].

The spectrum Ss of sample to be tested measured on 
the slave can be used for analysis after conversion: 

The spectral data Ss,std represents the corrected slave 
spectra through transferred by the DS algorithm, which 
will be transmitted to the photosynthetic pigments deter-
mination model developed by the master. And the pre-
diction accuracy of the model for the slave sample is the 
performance of model transfer.

Results and discussion
Establishment of quantitative determination model
Raman spectral quantitative determination 
of photosynthetic pigments in tea leaf
As shown in Table  2, different pretreatment methods 
produced different results referring to the values of R2 
and RMSE, indicating that pretreatment has a great 

(1)Xm = Xs × E+ B

(2)Ss,std = Ss × E+ B

Table 2  PLSR modeling results of different pretreatment methods

Model Pretreatment Calibration Validation Prediction

RMSEC R2
C RMSECV R2

CV RMSEP R2
P

Car 1 Origin 0.082 0.843 0.107 0.732 0.140 0.614

2 MSC 0.080 0.847 0.106 0.738 0.134 0.650

3 SNV 0.080 0.848 0.105 0.744 0.135 0.642

4 RCF 0.122 0.653 0.142 0.532 0.131 0.662

5 WT 0.086 0.826 0.106 0.737 0.108 0.713

6 airPLS 0.123 0.646 0.140 0.549 0.199 0.227

Chl-a 7 Origin 0.463 0.870 0.577 0.798 0.900 0.597

8 MSC 0.557 0.812 0.692 0.712 0.867 0.626

9 SNV 0.834 0.650 0.898 0.600 0.886 0.609

10 RCF 0.535 0.827 0.653 0.745 0.599 0.800

11 WT 0.095 0.806 0.116 0.715 0.108 0.721

12 airPLS 0.622 0.773 0.820 0.615 1.078 0.421

Chl-b 13 Origin 0.240 0.854 0.300 0.774 0.342 0.718

14 MSC 0.284 0.784 0.339 0.695 0.366 0.677

15 SNV 0.282 0.789 0.343 0.690 0.353 0.701

16 RCF 0.295 0.810 0.347 0.717 0.330 0.734

17 WT 0.299 0.772 0.349 0.690 0.354 0.698

18 airPLS 0.247 0.844 0.340 0.707 0.385 0.644
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influence on the performance of the model. In regard 
of the Car, model 5 based on the WT preprocessing 
method is obviously better than model 1 based the origi-
nal data. In detail, the R2

p of the model 1 increased from 
0.614 to 0.713 of the model 5, and RMSEp of the model 
1 decreased from 0.140 to 0.108 of the model 5. For 
Chl-a and Chl-b, model 10 and model 16 respectively 
obtained the best results based on the optimal pretreat-
ment method of RCF. Comparing with the model 7 based 
on the original data, the R2

p of model 10 increased from 
0.597 to 0.800, and RMSEp of model 10 decreased from 
0.900 to 0.599. While, the R2

p and RMSEp of model 16 
were respectively 0.734 and 0.330, which were obviously 
better than the relevant parameters (0.718 and 0.342) of 
model 13. Furthermore, the difference among calibration, 
validation and prediction of the model 5, 10 and 16 was 
also relatively small, which indicates that the stability of 
these models is improved through pretreatment.

Selecting of characteristic bands for quantitative 
determination
In the present study, WT and RCF pretreatment meth-
ods have improved spectral data with higher R2

P value 
and lower RMSEP when compared to other meth-
ods (Table  2). The analysis of Raman spectra is usually 
involved with background problems caused by fluores-
cence effects.

Raman spectroscopy is a weak scattering signal, which 
intensity is about 1/10 million of that of Rayleigh scatter-
ing, that often accompanies it. And it is particularly easily 
interfered by the background fluorescence of plant tis-
sue, which makes it difficult to directly use the spectrum 
for reliable quantitative and positional analysis [39]. The 
background should be deleted because there is no chemi-
cal information in it. RCF is an easy-to-use and intuitive 
filter to eliminate background effects [40]. According to 
the results reported by [41–43], the background with 
minimum changes in the parameters of the Raman spec-
tra is effectively subtracted by the RCF method. Due to 
its advantages, this method was widely used and previ-
ous research results in the field of Raman spectroscopy 

proved that RCF is superior to other methods, which is 
consistent with the results obtained in this work.

WT is also a very powerful tool in compressing ana-
lytical signals [44, 45]. It transforms the raw data into the 
wavelet domain, so the information included in raw data 
can be compressed and explained by a small number of 
wavelet coefficients. WT was successfully applied and 
multivariate analytical problems were significantly sim-
plified by this method [46, 47].

Raman spectroscopy provides a wide range of spectral 
information. In this research, there are 1005 and 1044 
spectral variables from the master and the slave instru-
ments respectively. And, there are still remaining 448 
spectral variables after intercepting the common wave-
numbers and removing the two ends of the spectrum 
seriously disturbed by noise. The Raman spectra contain 
not only biological, physiological and structural infor-
mation related to detection objects, but also redundant 
information [33]. In order to explore the mechanism of 
the detection of photosynthetic pigment in tea leaves 
by Raman spectroscopy, a large number of redundant 
and interference information were excluded. Further-
more, selecting a small number of effective band can 
shorten the modeling time and improve the accuracy of 
the model. The CARS was adopted to extract the effec-
tive band for spectral measurement of the photosynthetic 
pigments based on the spectral data pretreated by the 
WT and RCF pretreatment, and the models based on 
the characteristic bands were established, and the mod-
eling results were shown in Table 3. It can be found that 
the RCF was better than the WT pretreatment for all the 
three pigments, and the models based on these charac-
teristic bands were better compared with the full-band 
models (as shown in Table 2).

The spectral profiles before and after the RCF pretreat-
ment were shown in Fig. 1, it can be found that the RCF 
method eliminated the fluorescence background and 
increased the signal-to-noise ratio of spectra, this may be 
the reason why the RCF pretreatment can improve the 
performance of the spectral determination models. Oh 
et al. [48] used RCF pretreatment in real-time estimation 

Table 3  PLSR modeling results based on characteristic band

Model Number of 
characteristic bands

Pretreatment Calibration Validation Prediction

RMSEC R2
C RMSECV R2

CV RMSEP R2
P

Car 19 40 RCF 0.109 0.739 0.124 0.669 0.101 0.769

20 40 WT 0.125 0.702 0.133 0.661 0.123 0.706

Chl-a 21 37 RCF 0.586 0.793 0.623 0.767 0.517 0.852

22 37 WT 0.603 0.782 0.777 0.753 0.623 0.835

Chl-b 23 32 RCF 0.298 0.769 0.320 0.735 0.326 0.744

24 32 WT 0.343 0.746 0.443 0.708 0.389 0.726
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of glucose concentration in algae by Raman spectroscopy, 
and the result was also improved.

Scatter diagram of prediction values and real values 
of the models (model 19, 21 and 23) for training and 
test samples were shown in Fig.  2. It can be found that 
the models based on the characteristic wavenumbers 
had achieved better result than the model based on the 
full-band model (as shown in Table  2). In addition, low 
dimensional input variables of characteristic wavenum-
bers greatly reduce the complexity of the model and 
improve the calculation speed of the model. Zhao et  al. 
[11] used hyperspectral imaging technique to build the 
models to estimate the chlorophyll content in tea and 
obtained RMSEC, R2

C, RMSEP and R2
P of Chl-b model 

with the values of 9.918, 0.711, 8.601, and 0.693, respec-
tively, which is obviously worse than the result of our 
research. Therefore, the obtained results showed that it 
is feasible to predict the concentration of photosynthetic 
pigments based on Raman spectroscopy.

As the Raman spectroscopy can reflect the finger-
prints information of the composition and structure of 
substances, an assignment of these characteristic wave-
numbers was implemented to further explore the sub-
stance basis of quantitative determination of pigment by 
Raman spectroscopy. The Raman spectral characteristic 
bands for pigments detection were selected by the CARS 
algorithm and the selected wavenumbers were shown in 
Fig.  3 and Additional file  2: Table  S1. There were three 
distinct peaks in the figure, including the rocking vibra-
tion in the CH3 plane at 1008 cm−1, the C–C stretching 
vibration at 1159 cm−1, and C = C stretching vibration at 
1528  cm−1 which are the characteristic peaks of photo-
synthetic pigment [49, 50]. The assignment of these char-
acteristic wavenumbers was shown in Table  4, and the 

wavenumbers were connected to the composition and 
structure of substances based on the references. It can 
be seen that most of the wavenumbers were related to 
photosynthetic pigment, which explains the reason why 
models based on characteristic wavenumbers obtained 
good results.

In addition, several characteristic wavenumbers 
extracted in this study were also related to protein 
(1651 cm−1) and nucleic acid (1665 cm−1) [56], etc., this 
may be due to that the concentration of photosynthetic 
pigments is the percentage of the amount of pigment to 
the mass of dry matter in tea leaves, in other words, the 
quantity of other dry matter in tea will also affect the per-
centage of pigment, so the characteristic peaks of other 
dry matter in the tea will also be selected. Furthermore,

the wavelength selection algorithm based on data min-
ing may also select some bands without specific compo-
nent assignment as a benchmark for data processing.

Calibration model transfer
Direct standardization of spectral data from the master 
and slave instruments
The direct standardization (DS) method was adopted 
to standardize the Raman spectral responses from the 
slave instrument. It can be seen from the Fig. 1(a) and 
Fig.  4(a) that the spectral data measured by the two 
instruments all had distinct fluorescent background, 
and the trend of the fluorescent background was differ-
ent due to the different instruments. The spectra after 
removing the fluorescent background by using RCF was 
respectively shown in Fig. 1(b) and Fig. 4(b), it can be 
found that the RCF pretreatment greatly improves the 
signal to noise ratio of the spectra, which is conducive 

Fig. 1  Raman spectral profiles of tea leaf samples from master instrument. a original spectra; b spectra processed by the RCF
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to the subsequent analysis. Slave spectral after DS was 
shown in Fig. 4(c). Comparing with Fig. 1(b), it can be 
found that the spectra of slave instrument (as shown 
in Fig.  4(c)) after DS was similar to that of the mas-
ter instrument, indicating that the spectral variation 
between the master and slave Raman spectrometer can 
be effectively eliminated.

Imaging photosynthetic pigment in tea leaf based on model 
transfer
Through the above analysis, the quantitative rela-
tionship between photosynthetic pigment concen-
tration in fresh leaves and there’re master Raman 
spectroscopy had been verified, and the quantitative 
determination models of chlorophyll and carotenoid 
concentration based on characteristic wavenumbers 
had been established. In order to realize the in situ and 
non-destructive imaging of chlorophyll and carotenoid 
concentration in fresh leaves of tea, the slave Raman 
spectra of material 2 after DS were transported into the 
established model 19, 21, 23, respectively in pixel-wise 
order, so the photosynthetic pigment concentration of 

each pixel in tea leaf was predicted. The predicted pho-
tosynthetic pigment concentration was imaged, and the 
image was subjected to filter filtering to obtain distri-
bution maps of photosynthetic pigments as shown in 
Fig. 5.

By imaging the photosynthetic pigments concentra-
tion, it can be found that the pigments concentration 
in the central vein and margin of the leaf is significantly 
lower than that in other region, which is related to the 
maximum efficiency of photosynthesis. These findings 
are consistent with the results found by [57].

Evaluation of performance of the calibration model transfer
After the map scanning spectra of the slave spectrometer 
were corrected, the spectrum at each pixel was brought 
into the quantitative determination model to predict the 
photosynthetic pigment concentration at that pixel. Then 
the photosynthetic pigment concentration of the foliar pix-
els was averaged to represent the pigment concentration of 
the leaf. Furthermore the predicted average value of pig-
ment concentration was compared with the actual value to 
evaluate the performance of this calibration model trans-
fer, in detail, the R2 and RMSE were shown in Additional 
file 3: Fig. S2. It can be found that the predicted value of 
the model for the foliar map scanning spectra is highly 
correlated with the actual value, which indicates that the 
pigment determination model based on the master instru-
ment can predict the spectrum of the slave instrument 
after calibration model transfer. The imaging of foliar pig-
ments results and the correlation analysis proved that the 
model transfer of the two spectrometers had achieved 
good results, and this method is feasible. Furthermore, the 
spectral calibration model constructed in the laboratory 
(master Raman spectrometer) can be used to measure the 
distribution of foliar pigment with portable instruments 
(slave) in the field through model transfer.

Fig. 2  PLSR model results achieved from the master instrument based on the CARS characteristic bands selection for a total carotenoids, b 
chlorophyll a, c chlorophyll b (Val validation set and Pre prediction set)

Fig. 3  Distributions of the characteristic wavenumbers selected 
based on CARS algorithm
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Table 4  Chemical assignment of Raman characteristic wavenumbers

Wavenumbers/cm−1 Assignment References

788/800/1046/1073/1114/1222/1553 Chlorophyll a [51]

971 β-carotene [τ(C11-C12)] [52]

988 Chlorophyll [53]

1026 β-carotene [ρ(9Me), ν(C8 − C9)] [52]

1068/1155/1165/1265/1392/1530/1555 Chlorophyll a [54]

1128/1160/1210/1380/1465/1523/1567/1644 Chlorophyll b [54]

1133 β-carotene [55]

1137 β-carotene [ν(C10 − C11)] [52]

1144 Chlorophyll [ν(CN), δ(CNC)] [53]

1145 Chlorophyll a [ν(CaN), δ(CaNCa)] [52]

1149 β-carotene [14 − 15, 15H, 15 = 15 ‘] [55]

1157 β-carotene [ν(C14 − C15), δ(C15 − H)] [52]

1172 β-carotene [5 − 4, 18r, 6 − 7] [55]

1186 Chlorophyll a [ν(CmC10), δ (CbH)] [52]

1187 β-carotene [10H, 11H, 8 − 9] [55]

1191 β-carotene [δ(C10 − H), δ(C11 − H)] [52]

1216 β-carotene [ν(C12 − C13), δ(C14 − H)] [52]

1225 Chlorophyll [δ(CH), δ(CH2)] [53]

1226 β-carotene [12 − 13, 14H, 15 = 15 ‘] [54]

1281 β-carotene [15H, 14H, CCC15b] [55]

1310 β-carotene [12H, 11 = 12, 15 = 15 ‘] [55]

1322 β-carotene [δ(C12 − H), ν(C11-C12)] [52]

1347 β-carotene [12H, 11 = 12, 15 = 15 ‘] [55]

1450 β-carotene [δas(9Me), δas(13Me)] [52]

1485 β-carotene [13 = 14, 11 = 12, 12H] [55]

1518 Lutein [C=C stretching vibration] [56]

1524 Chlorophyll a [ν(CbCb), ν(CaCb)] [52]

1528 Carotenoids [ν1(C=C)] [52]

1542 Chlorophyll a [ν(CbCb)] [52]

1552 Chlorophyll a [ν(CaCb), ν(CbCb)] [52]

1562 β-carotene [11 = 12, 15H, 12H] [55]

Fig. 4  Raman spectral profiles of tea leaf samples from slave instrument. a original spectra; b spectra processed by the RCF; c spectra after DS
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It is worth noting that the values obtained for the mas-
ter instrument correspond to point scanning, and only 
three spectra are taken from each leaf. Although the spa-
tial resolution of the slave instrument is less than that of 
the master instrument, the slave spectra are obtained by 
surface scanning, with hundreds or thousands of spectral 
lines per leaf, so it more closely corresponds to the chlo-
rophyll in the leaf. In addition, slave spectra become very 
similar to master spectra through data processing meth-
ods such as model transfer.

As for the DS spectral correction method, a subset of 
samples that represented the entire experimental data-
set well was required to measure the difference in the 
response of spectra measured under different instru-
ments. Also, too few or too many samples in the transfer 
set can lead to under or over fitting, this implies that the 
predictive power of the model has not improved in terms 
of precision. So, further investigation with more samples 
in the calibration set or exploring another way to opti-
mize the parameters is necessary for reliable use of the 
proposed method. The better performance of the slave 
instrument compared to the master instrument in some 
of the models transferred is consistent with the previous 
literature [20, 25, 58].

The mean and variance of the actual and predicted 
value of photosynthetic pigment in four leaves of the 
same leaf location were calculated, as shown in Fig.  6. 
As can be seen from the Fig.  6, the trend of the actual 
value of photosynthetic pigment increase firstly and then 
decrease, this is consistent with the finding of Vicente 

et al. [59]. The concentration of pigments at the first leaf 
position is low due to poor photosynthesis. The level of 
photosynthetic pigments increases with an increase in 
leaf position (age) and growing leaves. The photosyn-
thesis rate reaches the highest value when the leaves are 
mature (third leaf position), and then decreases substan-
tially during senescence due to weakening in the ability 
of photosynthetic enzyme expression [9]. The result show 
that the model established in this paper also has a pros-
pect in the study of the leaf position and leaf age.

Conclusions
In the study, the potential of Raman spectroscopy for 
in situ, non-destructive and rapid quantitative detection 
and imaging of photosynthetic pigment concentration 
in tea leaves was proved. Based on the Raman spectral 
pretreatment method combined with the CARS charac-
teristic bands selection, the quantitative determination 
models of chlorophyll and carotenoid concentration were 
established by regression analysis. By comparison, it can 
be found that the best pretreatment RCF was most suit-
able to eliminate the fluorescence interference and other 
noise in Raman spectrum. And the Raman spectral char-
acteristic bands for pigments detection selected by CARS 
have been proved to be the Raman-active molecular 
vibration of pigment components.

In addition, model transfer method was applied to 
the master and slave spectrometers in order to obtain 
a model that can be available both in  vivo or in the 
field and with high prediction accuracy. This is the first 
attempt to establish a connection between the two types 
of instruments, and achieved good results. The foliar 
map scanning spectra after DS was brought to the pig-
ments determination model established based on mas-
ter instrument, and the concentration of photosynthetic 
pigment of each pixel in tea leaves could be predicted. 
Calculating the R2 between the predicted value and the 
actual value, the range was in the range of 0.752–0.866. 
The predicted chlorophyll and carotenoid concentra-
tion of each pixel were imaged to obtain the distribution 
map of photosynthetic pigment in tea leaves, illustrating 
that the concentration of photosynthetic pigment in the 
central vein and leaf margin was lower than other parts 
was obtained, which is consistent with other studies. In 
the future, this algorithm can be applied to calibration 
transfer in other plants with different types of samples, 
different geographical regions, and different varieties to 
establish more robust models with more physiological 
and biochemical indexes (e.g., moisture content, min-
eral elements, dry matter, etc.), which provide a techno-
logical basis for the effective detection of the growth and 
nutrient distribution in plants. Also, further studies will 
be related to the effect of the data size and optimization 

Fig. 5  Distribution maps of photosynthetic pigment concentration 
in different leaf positions based on the slave instrument after 
calibration model transfer
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sets on the model transferability and comparison of dif-
ferent model transfer algorithms to discuss the results of 
calibrations.

It is worth noting that we have successfully improved 
the applicability of the Raman spectral model for deter-
mination of photosynthetic pigments in tea leaf. Through 
the calibration model transfer, the tea pigment spectral 
detection model based on the laboratory spectrometer 
was successfully applied to the portable quantitative 
detection of leaf pigment in the field. The model trans-
fer method can effectively eliminate the spectral variation 
between the master and slave Raman spectrometers and 
improve the applicability of the spectral model, which 
will greatly promote the application process of the non-
destructive and fast spectra measurement technique.
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