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METHODOLOGY

Accurate machine learning‑based 
germination detection, prediction and quality 
assessment of three grain crops
Nikita Genze1,2, Richa Bharti1,2, Michael Grieb4, Sebastian J. Schultheiss5 and Dominik G. Grimm1,2,3* 

Abstract 

Background:  Assessment of seed germination is an essential task for seed researchers to measure the quality and 
performance of seeds. Usually, seed assessments are done manually, which is a cumbersome, time consuming and 
error-prone process. Classical image analyses methods are not well suited for large-scale germination experiments, 
because they often rely on manual adjustments of color-based thresholds. We here propose a machine learning 
approach using modern artificial neural networks with region proposals for accurate seed germination detection and 
high-throughput seed germination experiments.

Results:  We generated labeled imaging data of the germination process of more than 2400 seeds for three different 
crops, Zea mays (maize), Secale cereale (rye) and Pennisetum glaucum (pearl millet), with a total of more than 23,000 
images. Different state-of-the-art convolutional neural network (CNN) architectures with region proposals have been 
trained using transfer learning to automatically identify seeds within petri dishes and to predict whether the seeds 
germinated or not. Our proposed models achieved a high mean average precision (mAP) on a hold-out test data set 
of approximately 97.9%, 94.2% and 94.3% for Zea mays, Secale cereale and Pennisetum glaucum respectively. Further, 
various single-value germination indices, such as Mean Germination Time and Germination Uncertainty, can be com-
puted more accurately with the predictions of our proposed model compared to manual countings.

Conclusion:  Our proposed machine learning-based method can help to speed up the assessment of seed germina-
tion experiments for different seed cultivars. It has lower error rates and a higher performance compared to conven-
tional and manual methods, leading to more accurate germination indices and quality assessments of seeds.
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Background
Seeds are essential for human society as a food source 
and serve as starting material for crops. The yield of 
crops is not only highly dependent on environmental fac-
tors but also on the quality of the seed. Therefore, assess-
ment of seed germination is an essential task for seed 

researchers to measure the performance of different seed 
lots in order to improve the efficiency of food chains [1]. 
In fact it has become imperative as the global crop pro-
duction must be doubled in order to supply a rising pop-
ulation by 2050 [2].

Conventional seed testing measures, especially seed 
vigor tests, are not widely used due to cumbersome and 
time intensive protocols [3]. In addition, most seed tests 
developed by the International Seed Testing Association 
(ISTA) are evaluated manually using standardized proce-
dures that differ for different crops [4].
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In order to reduce the number of manual steps in seed 
testing, which is highly error-prone, many research-
ers have proposed methods to automate this pro-
cess. Recently, modern image analysis techniques have 
been applied to detect seeds, because they can be eas-
ily automatized and provide unbiased and quantitative 
measurements with minimal errors [5–8]. However, 
most of the reported algorithms just use color-based 
thresholds on images and estimate factors to describe 
the seed, such as area, perimeter, length, width, round-
ness and color values [9]. GERMINATOR is a software that 
measures the area and the difference in position between 
points in time of images as an indicator for germination 
in Arabidopsis thaliana [10]. Importantly, for different 
seeds, several parameters require modifications and the 
system is most likely to fail with changes in illumination 
or partial occlusion of the seeds.

Similarly, Seed Vigor Imaging System 
(SVIS) processes RGB pixel values of digitally scanned 
images using a flatbed scanner to calculate the length 
of seeds [11]. On the one hand, when using a scanner 
instead of a camera, illumination settings are standard-
ized, which improves performance. On the other hand, 
this method requires manual imaging of seeds and the 
researcher needs to be present throughout the germina-
tion experiment in order to assess the seeds.

Previously, assessment of multiple machine learn-
ing algorithms, Naive Bayes Classifier (NBC), k-Nearest 
Neighbour (k-NN), Decision Trees, Support Vector 
Machines (SVM) and Artificial Neural Networks (ANN) 
for comparing seed germination suggested higher per-
formance and accuracy of ANN models [12]. Therefore 
the authors extracted 11 features using image processing, 
which is another manual step in germination tests.

In contrast, Deep Learning, especially Convolutional 
Neural Networks (CNNs), is a novel method to process 
images [13]. CNNs automatically extract and learn rele-
vant features from raw images and have been applied to a 
large variety of image classification problems. One reason 
for their success is a lower dependency to different illu-
minations and obstructions, which leads to higher accu-
racy in computer vision tasks. CNNs have been already 
applied to automatically evaluate the germination rate of 
rice seeds [14]. However the images were only captured 
after the germination experiment was conducted, thus 
only the final germination percentage could be estimated 
with this approach.

The purpose of this study is to reduce the time-con-
suming and labor-intensive human visual inspections 
of seed germination experiments and to develop an 
improved germination prediction method that is (1) 
independent of custom color-based thresholds and thus 
can be applied to multiple seed cultivars and illumination 

settings and (2) can be used to better explore the dynam-
ics of seed germination by estimating not only the final 
germination percentage but additional indices like rate 
and uniformity.

We present a machine learning-based method, using 
modern convolutional neural networks with region pro-
posals, for an automated and high-throughput assess-
ment of seed germination experiments for various 
species. For this purpose, we generated a labeled dataset 
of seeds and their germination process with more than 
23,000 images for three different cultivars. We trained 
various deep learning models using transfer learning [15] 
in order to accurately detect seeds within an image, dis-
criminate between their germination states, and finally to 
compute commonly used germination indices to measure 
the quality and dynamics of the seed lot. The proposed 
method could be implemented for improving scalabil-
ity of automated seed germination assessments and to 
reduce errors in manual assessment of new seed lots.

Methods
Image acquisition
Seeds of either Zea mays, Secale cereale and Pennisetum 
glaucum were placed on petri dishes to capture a wide 
range of different germination states using digital imag-
ing. Within the petri dishes the seeds were placed on a 
black cloth to ensure a high contrast between the emerg-
ing radicle and the background. The cloth was watered 
with tap water and petri dishes were covered with a lid 
to lower the effect of water evaporation and the resulting 
dry out of seeds. In a few cases the lid led to reflections, 
such as reflections of the camera setup (different exam-
ples are shown in Additional file 1: Figure S1).

All images were taken in an office at room temperature 
with the same artificial light source (4000 K Cool White 
fluorescent light bulb), which was turned on through-
out the full capturing process (~ 48 h). For this purpose, 
twelve petri dishes were arranged in a 4 × 3 grid with an 
8 megapixel camera module (Imaging Platform: Crop-
Score Large-Scale Phenotyping System by Computom-
ics GmbH, incorporating Raspberry Pi Camera Module 
v2.1) above the grid to capture the germination process, 
as illustrated in Fig. 1a. Seed Germination was captured 
over a time span of approx. 2  days with a resolution of 
two images per hour (every 30 min).

Data preprocessing
Images were cropped into 624 × 624 pixel patches con-
taining only one petri dish, as indicated in Fig.  1a. The 
open source software CVAT (https​://githu​b.com/openc​
v/cvat) was used to draw bounding boxes around each 
seed for labeling it with its position and its germination 
state (germinated, non-germinated), as shown in Fig. 1b. 

https://github.com/opencv/cvat
https://github.com/opencv/cvat
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One seed was classified as germinated, if there was a 
radicle visible, that emerged from the seed coat. We used 
more than 800 seeds for each of the three species (total-
ing 2449 seeds for all three species) to train and validate 
the germination classifier. This resulted in approximately 
24,000 images of 2449 individual seeds, as summarized in 
Table 1. Between six and 12 seeds of a single species were 

placed on a single petri dish to capture the germination 
process for a maximum of 48 h after initial water contact. 
This resulted in a maximum of 97 longitudinal images per 
petri dish. However, the total number of images varied 
between petri dishes and species due to different tech-
nical reasons (e.g. germination was aborted due to dried 
out petri dishes). Additional summary statistics of the 

Fig. 1  Illustration of image collection, annotation and dataset generation module. a Setup for capturing images of the germination process of 
seeds within petri dishes. Subsequently, images have been cropped to only contain one petri dish per image. b Example of annotated images, 
where seeds have been marked with a bounding box and a class label (non-germinated in orange, germinated in blue). c Longitudinal images of a 
custom seed for 48 h. Orange frames around the images indicate that the seed is not germinated, gray indicates a difficult to label transition phase 
and blue indicates that the seed is clearly germinated. d The dataset was randomly split into a training, validation and test set, stratified by petri 
dishes. This ensures that seeds of the same petri dish are either in the training, validation or test set. In addition, it also ensures that a petri dish at 
different time points only appears in one of the sets
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generated datasets for each of the species can be found in 
Additional file 1: Tables S1–S3.

Object detection and classification framework
Several neural networks have been proposed for object 
detection and classification, such as YOLO [16], SSD 
[17], R-CNN [18] and Faster R-CNN [19]. We selected 
Faster R-CNN in order to detect multiple seeds within an 
image and to classify whether a seed germinated or not. 
Faster R-CNN consists of two neural networks, a Region 
Proposal Network (RPN), to suggest Regions of Interest 
(ROIs) where objects (seeds) are most likely be located, 
and a convolutional neural network (CNN) to discrimi-
nate between germinated and non-germinated seeds. 
Algorithms with multiple stages, like Faster R-CNN, tend 
to take more time to compute, but have a higher accuracy 
compared to single-stage algorithms like YOLO and SSD 
[20]. Thus, we chose Faster-RCNN due to its higher accu-
racy and because real-time predictions are not necessary.

Transfer learning [15] was used to reduce the train-
ing time and to benefit from pre-computed image-based 
features. For this purpose, we investigated four differ-
ent pre-trained CNNs, that is ResNet50, ResNet101 
[21], Inception v2 [22] and Inception-ResNet v2 [23]. 
ResNet50/101 are two deep residual neural networks, 
which consists of 50 or 101 layers respectively. Residual 
networks use skipped connections between layers, which 
help in overcoming difficulties in learning, such as van-
ishing and exploding gradients which might lead to over-
fitting [21].

Inception v2 is a neural network architecture with a 
compact convolutional layer, where computations with 
different kernel sizes are done in a single layer, enabling 
more shallow networks. This reduces the number of net-
work parameters and thus lowers the computational cost. 
Inception-ResNet v2 is a hybrid architecture that inte-
grates parts from both inception networks and residual 
networks, which accelerates the training of these net-
works and improves the recognition performance.

Model training and hyperparameter optimization
First we split the labeled data into a 80% training, 10% vali-
dation and 10% testing set. To prevent overfitting towards 

known seeds (training instances), we performed a petri 
dish-based stratification of the data. This stratification 
strategy ensures that seeds within a single petri dish are 
either only available during training, validation or testing 
(Fig. 1d). This is especially important, because the germi-
nation status of a seed might not change between certain 
time points (e.g. between 4-32 h), as illustrated in Fig. 1c. 
Second, data augmentation was used to enrich the training 
data by rotating, flipping and resizing the training images. 
This is a commonly used technique to reduce the risk of 
overfitting and might help to boost the performance of a 
classifier [24].

For each seed type we then trained four neural networks 
separately, each with one of the four pre-trained convolu-
tional neural networks (ResNet50, ResNet101, Inception v2 
and Inception-ResNet v2), using an internal random search 
for hyperparameter optimization, a dropout regularization 
and the Adam optimizer [25]. During the learning phase 
two hyperparameters have been optimized using an inter-
nal random search [26], that is the learning-rate and the 
dropout-rate, as summarized in Additional file 1: Table S4. 
The validation data of each species was used to select the 
model with the best performing hyperparameter pairs for 
each of the four neural networks. Eventually, the best per-
forming models for each of the four networks and for each 
species were applied using the never used testing data to 
evaluate their performance and to estimate their generali-
zation abilities. All models have been implemented using 
Python 3.6 and Tensorflow’s Object Detection API [20] 
and have been trained and tested on a Ubuntu 18.04 LTS 
machine with 28 Intel CPU cores, 768 GB of memory, and 
four GeForce RTX 2080 TI graphics cards.

Evaluation metrics
Different evaluation metrics have been implemented 
to evaluate the performance of the trained models. The 
mean Average Precision (mAP) is a commonly used met-
ric for comparing the performance of computational 
object detection methods. The mAP can be used to com-
pare different computational object detection methods 
regardless of their underlying algorithm [27]. A predic-
tion (proposal of a region with an object) is considered as 
a true positive (TP), if the overlap between the bounding 
boxes of the prediction and the ground truth exceeds a 
certain threshold and if both boxes share the same label. 
The overlap is measured by the Intersection over Union 
(IOU), as illustrated in Fig. 2a. The IOU is also known as 
Jaccard index and is defined as:

where GT  is the bounding box of the ground-truth, and 
PD the bounding box of the prediction.

IOU(GT ,PD) =
|GT ∩ PD|

|GT ∪ PD|
=

AreaoftheOverlap

AreaoftheUnion
,

Table 1  Summary of  the  annotated datasets used in  this 
study

Petri dishes Seeds Images

Pennisetum glaucum 82 824 7954

Secale cereale 81 811 7695

Zea mays 84 814 8148

Sum 247 2449 23,797
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The precision is the ratio of true positives among all 
positively predicted ones, while the recall is the ratio of 
true positives among all positives. The Precision-Recall-
Curve (PR-curve) shows the trade-off between precision 
and recall for different thresholds of the confidence score. 
The average precision (AP) is the area under an interpo-
lated PR-Curve, as illustrated in Fig. 2b. Finally, as the AP 
is calculated for each class, the average of the AP values is 
taken for all classes to calculate the mAP.

Germination indices
A (cumulative) germination curve summarizes the ger-
mination process of multiple seeds (seed lot) over time 
(as illustrated in Fig.  6). Due to manual labor—that is 
mainly manual counting of germinated seeds at fixed time 
points—the resolution of data points might be sparse 
which limits germination curves-based assessments. 
Therefore, a number of single-value germination indices 
can be extracted from this curve to describe characteristics 
and measure the quality of a seed lot as well as to compare 
different seed lots [28]. We used the R package germi-
nationmetrics [29] and focused on four indices, 
final germination percentage ( g ), mean germination time 
( MGT  ), median germination time ( t50 ) and germination 
uncertainty ( U ), which are summarized in the following 

(23 additional indices have been computed and reported in 
the Additional file 1: Supplemental Material).

Final germination percentage (g)
The final germination percentage g measures the num-
ber of seeds that have been germinated at the end of the 
experiment, e.g. after a certain time interval, that is.

where Ng is the number of germinated seeds and Nt is 
the total number of seeds at time t after the start of the 
experiment [4].

Median germination time (t50)
t50 is the time passed until 50% of the seeds germinated 
and has been defined by Coolbear [30] or Farooq [31]. 
In this work we compute t50 by Coolbear (results usings 
Farooq’s method can be found in the Additional file  1: 
Supplemental Material), that is

where N  is the final number of germinated seeds, Ni 
and Nj are the total number of seeds germinated in adja-
cent counts at time point Ti and Tj respectively, when 
Ni <

N+1
2

< Nj.

Mean germination time (MGT)
MGT  [32–35] estimates the weighted mean of the ger-
mination time across all observations, where the number 
of seeds germinated in one-time interval is used as the 
weight. It is defined as

where Ti is the time from the start of the experiment to 
the i-th interval, Ni is the number of seeds germinated in 
the i-th time interval, and k is the total number of time 
intervals.

Germination uncertainty (U)
The germination uncertainty U estimates the synchroni-
zation of the germination across all timepoints measured 
[35–37] and is defined as

where, fi is the relative frequency of germination (esti-
mated as fi = Ni∑k

i=1Ni
 ), Ni is the number of seeds germi-

g =
Ng

Nt
∗ 100

t50 = Ti +
(N+1

2
− Ni)(Tj − Ti)

Nj − Ni
,

MGT =

∑k
i=1NiTi

∑k
i=1Ni

,

U = −
∑k

i=1
filog2fi,

Fig. 2  Key steps in mAP calculation for each model. a The IOU is 
the area of the overlap between the bounding box of the ground 
truth (GT) and the prediction (PD) divided by their union. b A typical 
Precision-Recall-Curve is shown in blue, the interpolated curve is 
shown in orange. The AP is the area under the curve, indicated in 
yellow
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nated on the i-th time interval, and k is the total number 
of time intervals. U = 0 indicates that the germination is 
perfectly synchronized at each time interval (no uncer-
tainty), while higher values of U indicate less synchroni-
zation across time points.

Results
In this work we performed two experiments to validate 
the performance of the deep learning models. The aim 
of the first part is to evaluate the germination detection 
and prediction abilities of various deep learning archi-
tectures. Therefore, we used the mAP as a performance 
metric, which is calculated based on the whole test set 
for different cultivars. In the second part we estimate ger-
mination curves for each cultivar in the test set for the 
ground truth, the predictions and manual assessments 
for different time intervals. Based on the germination 
curves we then compare various seed germination indi-
ces, including g , t50,MGT  and U .

Germination detection and prediction
First, we evaluated the seed detection and germination 
classification abilities for three different species using 
Faster R-CNN and transfer learning with four different 
pre-trained convolutional neural network architectures 
(ResNet50, ResNet101, Inception v2 and Inception-
ResNet v2). For each species and architecture, we 
selected the best performing model (measured by mAP, 
as summarized in “Evaluation Metrics”) on the valida-
tion set and estimated the performance on the hold-
out test set. After hyperparameter optimization on the 
training set, Faster R-CNN with Inception-ResNet v2 
was the best performing model for any species on both, 
the validation and the test set, as shown in Table  2. 
For Zea mays, Secale cereale and Pennisetum glau-
cum the models achieved a mAP (with an IOU > 50%) 
of 97.90%, 94.25% and 94.21% on the complete test set, 
respectively. Additional file  1: Supplementary Tables 
S5–S7 summarize the model performances for differ-
ent hyperparameter combinations for each architecture 
and species.

We computed a confusion matrix for each test set 
between the ground-truth and the predicted seeds. 
Duplicates with an IOU > 0.5 have been removed and 
the confusion matrix was normalized by the number of 
detected instances. An additional class bg (background) 
is introduced to assess localization errors, as shown in 
Fig.  3. In addition to misclassifications (yellow), two 
kinds of localization errors could be observed. First, the 
background was wrongly localized and classified as a 
seed (orange), resulting in one seed being detected mul-
tiple times. Second, one seed was missed (not localized) 
and thus not classified (red), resulting in two neighboring 
seeds detected as one. A total of 2522 out of 26,010 seeds 
have been misclassified among all three species using 
the Inception-ResNet v2. Using the confusion matrix, it 
is possible to estimate the difficulty to detect the germi-
nation state of different seed types. Figure 3a shows the 
normalized confusion matrix for Zea mays with a clas-
sification error of 4.1% (yellow) and a localization error 
of 0.9% (orange + red). The model for Secale cereale mis-
classified the germination state more often (12.1%), but 
had a low localization error of 0.4%, as shown in Fig. 3b. 
Pennisetum glaucum was misclassified with an error rate 
of 9.1% and wrongly localized with a rate of 2.2% (Fig. 3c).

In Fig.  4a we show a positive example of correctly 
detected and classified seeds of Zea mays. Figures 4b and 
3c illustrate examples when the model failed to correctly 
identify and predict individual seeds. In Fig. 4b four indi-
vidual seeds have been misclassified as germinated (as 
indicated by the green arrows). In Fig.  4c one seed was 
not detected (localization error), as indicated by the 
green arrow.

Comparison of germination indices between predicted 
and manual measurements
In the second experiment we estimated germination 
curves for each cultivar in the test set and compared 
different germination indices between predicted germi-
nation curves and manual assessments. Therefore, we 
removed outliers from the test data, which were seeds 
that dried out shortly after germinating and introduced 

Table 2  mAP for the validation and test sets for different model architectures

Results (in %) on the validation set are indicated by val and results on the test set are indicated by test. Italic values indicate the model with the highest mAP for each 
seed type

ResNet50 ResNet101 Inception v2 Inception-ResNet 
v2

val test val test val test val test

Pennisetum glaucum 85.80 93.66 87.62 93.66 86.16 93.06 88.91 94.25

Secale cereale 89.99 91.83 91.58 92.70 90.07 91.48 92.67 94.21

Zea mays 96.21 96.29 96.54 96.69 95.81 95.62 97.48 97.90
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an additional post-processing step to filter incorrect pre-
dictions of the best performing model.

Different errors could appear when predicting if a seed 
is germinated or not, as summarized in Fig.  5. First, a 
simple misclassification of the germination state (Fig. 5a) 
occurred, mostly when the radicle was about to pro-
duce the seed coat. Misclassifications (yellow in Fig.  3) 
could be detected based on the time series of images of 
an individual seed, that is when a seed gets predicted 
as germinated but is classified as non-germinated in 

images captured shortly before and after. Second, one 
seed was often detected multiple times (orange in Fig. 3), 
which is shown with overlapping bounding boxes for 
one seed (Fig.  5b). These errors could be detected by 
calculating the IOU between all detections and remov-
ing the intersecting one. The last type of error happened 
rarely, if two seeds were placed too close to each other. 
The model predicted one bounding box for both seeds, 
effectively not detecting one of them (Fig.  5c). These 
errors (red in Fig. 3) could not reliably be detected in the 

Fig. 3  Normalized confusion matrix of test sets in percent for Inception-ResNet v2. True germination state as rows, predicted state as columns 
for the respective Inception-ResNet v2 model. Germinated seeds are denoted as “g”, non-germinated as “ng” and seeds which are not localized or 
classified by the model are denoted as “bg” (background). Green: Correct classification of the seed germination state. Yellow: Misclassification of the 
germination state. Orange: Incorrect localization of background as a seed (incorrect region proposal) resulting in seeds being detected multiple 
times. Red: Incorrect detection of a seed as background resulting in less detections than seeds present in the petri dish. a Zea mays (8809 detected 
instances) with a classification error of 4.1% and localization error of 0.9%. b Secale cereale (8564 detected instances) with a classification error of 
12.1% and a localization error of 0.4%. c Pennisetum glaucum (8826 detected instances) with a classification error of 9.1% and a localization error of 
2.2%

Fig. 4  Examples of predictions on test datasets. Ground Truth is shown in dark colors (orange: non-germinated, blue: germinated) and predictions 
are shown in bright colors (yellow: non-germinated, cyan: germinated) a All seeds were correctly detected and predicted. b Four seeds were 
misclassified as germinated, as indicated by the green arrows. These errors can be rectified in the post processing step c Failed detection of one 
seed. as indicated by the green arrow. These time series were omitted when calculating germination indices
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post-processing step and were omitted in this experi-
ment. In order to estimate germination curves, we first 
selected the best performing model for each species and 
classified the germination state of seeds within the first 
48 h of the germination phase.

In Fig. 6a–c we plotted the germination curves for all 
seeds in the test sets for both, the ground truth and the 
predictions for each species. The orange area indicates 
that the deviation between the ground-truth and predic-
tions is rather low and that the predictions are a good 
approximation of the true germination curves.

These curves are used to compare the previously 
mentioned seed germination indices ( g ,MGT , t50,U  ) 

between manual and predicted measurements. Pre-
dictions have then been made for every time point for 
which imaging data was available in the test set (every 
30 min). Manual germination counts have been gener-
ated for an 6, 12 and 24 h interval. We then computed 
several germination indices, based on the ground 
truth, the predictions and the different counts from 
the manual assessments. The germination percent-
age g  measures the number of germinated seeds at 
the end of the experiments. Thus, g  is independent of 
the manual measurement rate and is the same as the 
ground-truth. The estimated germination percentage g 
for Zea mays had a small relative error of 2.9% between 

Fig. 5  Description of different prediction errors. Predicted bounding box shown in yellow a Misclassification of a germinated seed. b Detection of 
one seed multiple times. c Failed detection of one seed: multiple seeds are detected as one

Fig. 6  Germination curves for all three testsets. a Zea Mays, where the shape of the predicted curve resembles the ground truth curve, but is shifted 
because of misclassification of non-germinated seeds b ,  c The model does not only misclassify non-germinated, but also germinated seeds in 
Secale cereale (b) and Pennisetum glaucum (c)
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the ground-truth and prediction (Additional file  1: 
Table S8), that is 2 out of 90 Zea mays seeds were mis-
classified as non-germinated. Similar low error rates for 
g  could be observed for the other two species, as shown 
in Additional file 1: Tables S9–S10.

Figure 7 and Additional file 1: Figure S2 show the rel-
ative error between predictions and the ground-truth 
for Zea mays and the other two species respectively. For 
Zea mays the prediction based mean germination time 
( MGT  ) outperformed all manual measurements with a 
relative error of 7.0% compared to 9.7% error for a 6 h 
interval. The uncertainty U(based on the prediction) 
outperforms all manual measurements with a relative 
error of 3.8% compared to 55.8% error for intervals 
of 6  h. t50(based on the predictions) outperforms the 
24  h interval with a relative error of 11.3% compared 
to 14.5% but loses for the 6 and 12  h manual assess-
ment with a relative error of 0.3 and 2.1% respectively. 
However, as mentioned above, a finer interval for the 
manual assessment is more time-consuming and might 
be unrealistic in a real-world setting. These calcula-
tions are based on absolute values for MGT  , U  and t50 , 
which are summarized in Additional file  1: Table  S11. 
Estimates of MGT  and U  using the predictions con-
sistently outperformed estimates based on the manual 
counts for all three investigated seed species (see Fig. 7 
and Additional file 1: Figure S2). Only t50 showed better 
performances for the 6 h and 12 h interval compared to 
the predictions. However, counting germinated seeds 
manually every 6  h is time-consuming, cumbersome 
and a non-realistic scenario for most experiments. A 
detailed summary of a large variety of additional ger-
mination indices for each species can be also found in 
Additional file 1: Tables S8–S10.

Discussion
Assessment of seed germination is an essential task for 
seed researchers, e.g. to measure the performance of dif-
ferent seed lots in order to improve the efficiency of food 
chains. We proposed a machine learning model based on 
Faster R-CNN, that automatically detects seeds within a 
petri dish and predicts the germination state of individual 
seeds. The germination process can be automatically cap-
tured by low-cost camera modules with a high frequency. 
Our models achieved high mAP values for all 3 datasets 
(> 90%), suggesting significant predictive power. Thus, 
our proposed method will help researchers to obtain 
more accurate, comparable, reproducible and less error-
prone germination indices. This will enable researchers 
to perform various large-scale and high-throughput ger-
mination experiments with less effort, e.g. to systemati-
cally assess the effect of various abiotic and biotic factors. 
Further, accurately determining germination indices and 
other imaging-based metrics under different environ-
ments could be the basis for genome-wide association 
studies (GWAS). GWAS are an integral tool for studying 
genotype–phenotype relationships and to gain a better 
understanding of the genetic architecture of the under-
lying phenotypic variation [38,39]. These insights might 
help breeders to speed-up breeding cycles, which then 
might boost the development of plants that are e.g. more 
drought-resistant or produce more yield.

Conventional image analysis methods often rely on 
manual adjustments of color-based thresholds, especially 
when the experimental setup changes or different seed 
species have to be detected and classified. Hence, these 
classical methods are not well suited for large-scale ger-
mination experiments. Also, manual assessments are still 
utilized although being time-expensive and error-prone. 
A number of single-value germination indices were pro-
posed in order to lower the frequency of assessments 
and to approximate germination curves. However, these 
approximations introduce errors that might lead to non-
comparable results during the seed assessment process.

The aim of the proposed method is to automate the 
process of germination assessment, and minimize the 
manual labour. This method still needs some manual 
steps in terms of generating annotations for an initial 
training set. Nevertheless, annotating an initial set of 
training images might outweigh the costs of manual 
assessment in large scale projects, especially due to the 
usage of transfer learning.

Furthermore, single value germination indices can 
be calculated with high temporal resolution. This yields 
more accurate germination indices than interpolating 
those indices with less frequent manual observations. In 
addition to a higher precision, the assessment is done 
automatically which further reduces manual errors.

Fig. 7  Relative error of assessment compared to the ground truth 
for 90 Zea mays seeds. Calculations based on predicted germination 
curves are shown in blue. Interpolations based on manual 
assessments are shown for 6, 12 and 24 h between each assessment 
and are colored in orange, green and red respectively
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Because germination is a function over time, other 
machine learning approaches might be able to utilize 
the time at which the picture was taken, such as Con-
volutional LSTM (Long Short Term Memory) networks 
[40] or Long-term Recurrent Convolutional Networks 
[41], which might lead to better models and a higher 
mAP. High prediction accuracies have been demon-
strated for similar research questions, such as seedling 
development detection [42]. In our work we only inves-
tigated petri dishes with uniform backgrounds for all 
seed types. Detecting the germination state for different 
greenhouse media might be more challenging and would 
require additional experiments. Further, a bounding box 
is just an approximation of the true location of an object, 
especially not well suitable for round shaped seeds. 
Using more modern methods for feature extraction, like 
Mask RCNN [43] (utilization of pixel-accurate locations 
instead of bounding boxes) could not only increase the 
precision, but also reduce the annotation cost. Finally, the 
precision of Faster R-CNN models tends to decrease for 
small objects [44], as indicated for the small sized seeds 
of Pennisetum glaucum (see Fig.  3). This issue could be 
solved by capturing the germination process with higher 
resolution cameras in combination with more sophisti-
cated feature extraction methods.

Modern deep learning techniques rely on the avail-
ability of GPUs. Usually, a workstation with one or 
more GPUs would be sufficient to retrain our proposed 
method using transfer learning on other seed types. 
Modern single-board-systems, such as the NVIDIA Jet-
son Nano (similar to a Raspberry Pi, which utilizes an 
onboard GPU) will enable the detection and assessment 
of germinated seeds on-device without transferring data 
to a powerful computation server. This is especially use-
ful when researchers plan to just apply pretrained mod-
els and might help to easily build up a high-throughput 
pipeline in greenhouses. Another alternative to physi-
cal machines could be cloud services like Amazon Web 
Services or Google Colab. This has the advantage that 
one can easily scale-up capacities if needed. The image 
acquisition setup in our experiments consisted of a low-
cost RGB camera module and a Raspberry Pi. However, 
images could also be captured using more sophisticated 
camera setups, for example hyperspectral or NoIR cam-
eras to investigate photoperiodism of different seeds.

Conclusion
Our proposed method utilized modern convolutional 
neural network architectures to detect individual seeds 
with high precision and to accurately discriminate 
between germinated and not-germinated seeds. The 
models achieve a mAP of over 97% for Zea mays and 
over 94% for Secale cereale and Pennisetum glaucum on 

a hold-out test set. Further, single-value germination 
indices can be computed more accurately with the pre-
dictions of our model compared to manual assessments. 
Thus, our model can help to speed up the seed annota-
tion process with lower error rates and a higher perfor-
mance for larger germination experiments compared to 
conventional and manual methods. Further, our method 
can be adjusted to other seed types, petri dish media 
or lighting conditions by utilizing transfer learning to 
retrain the already pretrained models.
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