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Abstract 

A combination of decision tree (DT) and fuzzy logic techniques was used to develop a fuzzy model for differentiating 
peanut plant from weeds. Color features and wavelet-based texture features were extracted from images of peanut 
plant and its three common weeds. Two feature selection techniques namely Principal Component Analysis (PCA) and 
Correlation-based Feature Selection (CFS) were applied on input dataset and three Decision Trees (DTs) including J48, 
Random Tree (RT), and Reduced Error Pruning (REP) were used to distinguish between different plants. In all cases, the 
best overall classification accuracies were achieved when CFS-selected features were used as input data. The obtained 
accuracies of J48-CFS, REP-CFS, and RT-CFS trees for classification of the four plant categories namely peanut plant, 
Velvetleaf, False daisy, and Nicandra, were 80.83%, 80.00% and 79.17% respectively. Along with these almost low accu-
racies, the structures of the decision trees were complex making them unsuitable for developing a fuzzy inference 
system. The classifiers were also used for differentiating peanut plant from the group of weeds. The overall accuracies 
on training and testing datasets were respectively 95.56% and 93.75% for J48-CFS; 92.78% and 91.67% for REP-CFS; 
and 93.33% and 92.59% for RT-CFS DTs. The results showed that the J48-CFS and REP-CFS were the most appropri-
ate models to set the membership functions and rules of the fuzzy classifier system. Based on the results, it can be 
concluded that the developed DT-based fuzzy logic model can be used effectively to discriminate weeds from peanut 
plant in the form of machine vision-based cultivating systems.

Keywords:  Fuzzy logic, Image processing, Peanut, Wavelet transform, Weed detection

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Despite the remarkable progress made in agricultural 
industry in recent years, weed management is still a chal-
lenging and complex problem.

There are mainly three methods for weed control in 
agricultural fields, namely, manual removal, mechanical 
hoeing, and chemical weed control. Traditional manual 
removal of weeds is still a common practice in the peanut 
fields. Hand hoeing is a very effective operation which is 
carried out properly. However, it is a tedious, extremely 
labor-intensive and time consuming operation with 

adverse health effects. Furthermore, manual weeding 
through hand tools can only be employed in small-scale 
farming or in home gardens and it is not a good practice 
in large scale cultivation [1, 2].

Even though mechanical weeding using inter-row cul-
tivators is frequently used to remove the weeds between 
rows [3], the presence of weeds within crop rows and 
very closed to the main plant, makes it very difficult to 
eliminate intra-row weeds by mechanical cultivation 
implements where mechanical weed control in close 
proximity to the crop plant may damage the crop [4].

The most widespread method in weeds elimination 
is using herbicides. Conventionally, herbicides are uni-
formly applied to all parts of a farm even if there are no 
weeds in some certain parts of the farm. Increasing the 
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cost of agriculture, environmental pollution, and nega-
tive effect on the human health are the major draw-
backs associated with uniform application of herbicides 
[5, 6]. Variable rate application of herbicides, based on 
the presence and intensity of weeds in different parts of 
fields, can make it possible to optimally use chemicals, 
which leads to reduced cost and minimal environmental 
contamination.

Either mechanical destroying of intra-row weeds with-
out damaging to crop plants, or variable rate spraying, 
both primarily necessitate it to precisely detect and locate 
weeds in crop rows. Site-specific weed management is an 
essential part of the progress towards economically and 
environmentally sustainable weed management [7]. Pre-
cision weed control within a field majorly requires infor-
mation about weed distribution [8].

The first step towards determining weed distribution 
and density is to detect and segregate weeds from main 
crop. Computer vision and image processing techniques 
provide the capability to detect the desired objects in 
digital images or videos that are acquired from a scene. 
The acceptance and utilization of computer vision sys-
tems has been rapid and widespread. Along with other 
fields, the use of image processing techniques and 
image-extracted data for agro/food-informatics applica-
tions, have been widely investigated by researchers and 
reported in the literature [9–12]. Also, Studies on crop 
and weed detection using visible range image processing 
approaches has also been interested and conducted by 
many researchers [3, 13–16].

While there are literature reporting successful applica-
tion of multi/hyper spectral image analysis for crop and 
weed detection [17–19], high quality non-visible spec-
trum imaging systems are generally more expensive and 
not-affordable to access—rather than visible ones—for 
researchers and farmers [20, 21]. Therefore, Optimiz-
ing the RGB image processing techniques for weed/crop 
detecting, is still a challenge. Some of the visible range 
image processing techniques are color, texture, and wave-
let-based multi-resolution analysis.

Discrete Wavelet Transform (DWT) is a multiresolu-
tion image analysis tool which decomposes images into 
low and high frequency subbands by applying successive 
high-pass and low-pass filtering [22]. By implementing 
DWT on an image, approximation and details coeffi-
cients are obtained. Approximation coefficient subimages 
contain low frequencies which express the whole global 
trend of the image, whereas the detail coefficient subim-
ages contain higher frequencies that express the local 
steep changes. Therefore, DWT is one of the powerful 
texture feature analysis techniques [23, 24]. Comprehen-
sive information about wavelet transform and its appli-
cations in images, are provided by Vyas et  al. [25] and 

Kolekar et  al. [26]. Applications of DWT were reported 
for several agro-food related areas [11, 24, 27, 28].

By using a suitable classifier, different objects in images 
can be distinguished into separate groups based on 
extracted features. Decision trees and Fuzzy logic models 
are two of the popular learning techniques in computer 
vision systems.

DTs are hierarchical classifiers that predict class mem-
bership by heuristically selecting the most relevant attrib-
utes and searching for if-then-else rules that best split the 
samples into correct classes [29, 30]. DTs have shown to 
obtain classification performance close to or even out-
performing other state-of-the-art methods [31].

On the other side, fuzzy logic theory, which was origi-
nally introduced by [32], is a problem solving tool that 
deals with approximate reasoning rather than fixed and 
exact reasoning [33]. Thus, distinct from conventional 
techniques, fuzzy sets are capable of dealing with vague, 
ambiguous and imprecise data [34]. The basic idea of 
fuzzy logic is to replace the “crisp” truth values 1 and 0 
by a degree of truth in the interval of 0 to 1 [35]. Fuzzy 
logic can help in the site-specific application of herbi-
cides based on outputs from an image processing system, 
either in the real time or by the image-based weed maps 
[36]. Herrera et al. [37] applied a fuzzy decision-making 
method for discrimination between grasses and broad-
leaved weeds based on shape descriptors. The best clas-
sification accuracy was reported to be 92.9%. An equal 
accuracy of fuzzy classifier was reported by Sujaritha 
et al. [38] for classification of sugarcane crop among nine 
different weed species based on leaf textures.

It should be also noted that, in most cases of weed/
crop classification processes, due to close similarity of 
weeds and main crop, very different image-based infor-
mation must be investigated to find those set of features 
that satisfactorily differentiate between plant types. Fur-
thermore, due to exponentially increasing the number 
of fuzzy logic rules by increasing the input variables, it is 
difficult to adjust fuzzy rules when there is a large amount 
of input variables [39]. Moreover, depending on the result 
of human adjustment, there is no guarantee to yield the 
optimal solution [40]. Therefore, if the use of fuzzy sys-
tem for such a complex problem is intended, there is a 
need for invoking strategies to effectively incorporate 
numerous types of image-extracted features into the 
fuzzified weed detection system. By combining the DT 
and fuzzy logic approaches, the automatically selected 
features and generated rules by DT can be applied for 
constructing and tuning fuzzy classifier.

Combination of fuzzy learning algorithms with DT-
based approaches takes advantages of the smooth deci-
sion that is obtained by a fuzzy classifier. Application 
of DT based fuzzy models benefits from advantages of 
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fuzzy systems while still maintaining the benefits of DT 
classifiers such as comprehensibility and interpretability. 
It was stated by Ayed et al. [41] that the non-fuzzy deci-
sion trees are noise sensitive, and the process of decision 
depends on the border values, meanwhile, the fuzzy deci-
sion trees are more robust to the noise, and eliminate the 
border problems because of having linguistic outputs. 
DT-based fuzzy systems have been used for classification 
problems in agriculture-related studies [34, 42, 43].

Reviewing the literature, although good accuracies 
have been reported for weed/crop classification when 
applying several techniques [15, 44–46], however these 
researches don’t provide information about rules, mem-
bership functions, and antecedent, to be useful for devel-
oping a fuzzy weed detection system. Therefore, the aim 
of this study was to investigate the capability of DT-based 
fuzzy logic system for classification of some broadleaf 
plants in peanut fields using image extracted color and 
wavelet information.

Material and methods
Image acquisition
Images of peanut plant (Arachis hypogaea) and three 
common broadleaf weeds in peanut fields namely 

Velvetleaf (Abutilon theophrusti), False daisy (Eclipta 
alba), and Nicandra (Nicandra physalodes) were acquired 
using an affordable cell phone camera having a resolution 
of 2240 × 1344 pixels. The images were captured verti-
cally downwards from a distance of 40 cm above the crop 
rows. A white cotton sunshade was used to let the image 
acquisition scene be illuminated by diffused sunlight and 
to prevent leaf shadows on each other. A total number of 
100 images were prepared for this study. Figure 1 shows 
sample images of the studied plants.

Feature extraction
I order to extract image wavelet information of four men-
tioned plant types, fifty blocks of 100 × 100 pixels were 
manually cropped from images of each of plant (totally; 
50 × 4 = 200 image blocks) using Photoshop CS6 soft-
ware (Adobe Systems, USA). Original field-captured 
Images were loaded in Photoshop and the blocks were 
extracted carefully from different regions of the desired 
plants using “marquee tool” in the Photoshop toolbar, 
without any change in resolution and color values of 
images. Region of interest selection using different region 
selection tools of Photoshop software have been reported 
in several image processing related researches [44, 47, 

Fig. 1  Sample images of studied plants; a Peanut and Velvetleaf, b Peanut and False daisy, c Peanut and Nicandra
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48]. The cropped blocks were introduced into image pro-
cessing toolbox of MATLAB software version 2018a (The 
MathWorks, USA).

The prepared image blocks were transferred from RGB 
into HSV and L*a*b color spaces using conversion func-
tions of “rgb2hsv” and “rgb2lab” in MATLAB software 
[27, 49, 50], and the average and standard deviation val-
ues of Red, Green, Blue, Hue, Saturation, Value, Lumi-
nance, a* and b* color components were extracted.

In this study, Gray-Level Co-occurrence Matrix 
(GLCM) algorithm, which is a statistical texture analysis 
approach, was employed for extracting texture features 
from images. In order to extract such features, the color 
blocks were converted to gray-scale images using “rgb2g-
ray” function and the Gray Level Co-occurrence Matrices 
(GLCMs) were contracted from gray blocks. GLCM rep-
resents the distribution of co-occurring values at given 
offset over an image. In this study, GLCMs were calcu-
lated for a spatial distance of one pixel in four different 
directions (0°, 45°, 90°, and 135°). Average of four result-
ing GLCM was calculated and used for feature extrac-
tion from the related-grayscale image. In this study 16 
different GLCM-based texture features namely; entropy, 
energy, inertia, correlation, homogeneity, dissimilar-
ity, sum of squares, sum of averages, sum of variances, 
sum of entropies, difference variance, difference entropy, 
cluster shade, cluster prominence, inverse difference 
moment, and maximum probability were calculated from 
GLCMs and used for plant classification. These features 
have been previously described in detail and used by sev-
eral researchers [44, 51–55].

In the other part of the study, one-level two-directional 
Haar wavelet transform was applied on the gray-scale 
images of blocks and four sub-images were derived. 
The resulted subimages were approximation, horizontal 
details, vertical details, and diagonal details which are 
also called LL (Low–Low), LH (Low–High), HL (High–
Low), and HH (High–High) sub-bands respectively. Haar 
wavelet, which is a same wavelet as Daubechies db1, 
known as the first, the simplest, and the fastest wavelet 
type [56].

After obtaining the wavelet subbands, the above-men-
tioned texture features were also extracted from each 
of the subband images. Therefore 64 wavelet-texture 
features were extracted for each block (16 texture fea-
tures × 4 wavelet subimages) and used for classification 
of peanut and weeds.

Feature selection
There was a very large number of input features to be 
fed into the classifiers (18 color features + 16 texture 
features + 64 wavelet based texture features = 98 input 
features). Large dimension of input data can affect the 

performance of classifiers as the most of pattern recogni-
tion techniques are originally not designed to cope with 
large amounts of irrelevant features [57]. Therefore, two 
feature selection methods were applied to input feature 
dataset in order to identify the most relevant features 
(or feature vectors) and to eliminate the redundant to 
obtain a higher classification performance: Principal 
Component Analysis (PCA), which is an unsupervised 
feature selection method, and Correlation-based Feature 
Selection (CFS), which is a supervised feature selection 
method [58, 59].

Decision tree (DT)
Three types of DTs, including J48, Reduced Error Prun-
ing (REP), and Random Tree (RT), were applied for 
distinguishing different plants. The J48 DT-inducing 
algorithm is an implementation of the well-known C4.5 
DT in WEKA software [60]. The C4.5 tree which is 
known as one of top 10 data mining algorithms, chooses 
appropriate features and nodes based on the information 
gain ratios [61, 62]. REP tree classifier is a fast DT learner 
that builds a tree based on information gain with entropy 
and prunes it using reduced-error pruning [63]. RT is a 
DT that it’s nodes are constructed using randomly cho-
sen attributes and the class probabilities on each node are 
based on back fitting with no pruning [64].

DT Performance evaluation
The original datasets were splitted randomly into three 
subsets including training (60%), cross-validation (20%), 
and testing (20%) data. The most successful DT models 
were selected preliminary based on having the highest 
value of classification accuracy on training dataset. Clas-
sification accuracy shows that how close to the observed 
data are the predictions given by a classifier. This crite-
rion was calculated using Eq. 1 [65]. 

where TP, TN, FP, and FN denote, respectively, true 
positive, true negative, false positive, and false negative 
measures in the confusion matrix of the classifier. In this 
equation, true positive was the number of positive sam-
ples (e.g. peanut plant) that classified as positive. True 
negative was the number of negative samples (e.g. weeds) 
that classified as negative. False positive was the num-
ber of negative samples classified as positive, and false 
negative was number of positive samples classified as 
negative. The accuracy metric indicates the overall effec-
tiveness of the system considering positive and negative 
samples [66].

In addition to classification accuracy, two other sta-
tistics were calculated for DT models to be used in the 

(1)Accuracy =
TP + TN

TP + TN + FP + FN
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probable cases in which there were DT models hav-
ing similar classification accuracies. These two statisti-
cal indicators were Cohen’s kappa coefficient and Root 
Mean Squared Error (RMSE), that were measured on 
training dataset and used to evaluate the performance 
of the developed classifiers. Kappa is a  statistic  which 
measures  inter-rater agreement  for categorical items. It 
is generally thought to be a more robust measure than 
simple percent agreement calculation, as kappa takes into 
account the possibility of the agreement occurring by 
chance [67]. This criterion was calculated using Eq. 2;

 where po is the relative observed agreement among 
raters, and  pe  is the hypothetical probability of chance 
agreement. More detailed information about this equa-
tion is revealed by Bonhomme et  al. [68]. RMSE is a 
measure of the differences between the actually observed 
data and those predicted by the model [65, 69].

 where Yobs,i and Yobs,i are respectively the ith observed 
and predicted data from N total data. In cases of equal 
classification accuracies, the models that resulted in 
higher  kappa and lower RMSE values, were selected as 
the superior models.

DT‑based fuzzy system
In order to define fuzzy membership functions and 
fuzzy rules implementation, it was necessary to enter 
the obtained DT structures into the fuzzy model. For 
designing the antecedent and consequent parts of the 
fuzzy rules, the branching of DTs was considered. The 
most suitable trees were selected based on two factors; 
the highest accuracy, and the simplest structure. Simple 
structure of DT is very important in defining the rules 
and membership functions of DT-based fuzzy system. 
The input variables and their membership functions were 
defined according to the nodes and their related thresh-
old values on DTs structure.

(2)kappa =
po − pe

1− pe

(3)RMSE =

[

1

N

N
∑

i=1

(Ypred,i − Yobs,i)
2

]0.5

A Mamdani fuzzy model was designed and imple-
mented based on the structure of the selected DT. The 
antecedent and consequent parts of the fuzzy rules were 
developed and adjusted according to the branches and 
leaves of the DT, respectively. Also, the nodes and thresh-
old values of the DT were set as the input variables and 
those related membership functions in the fuzzy system. 
The classification model was designed and implemented 
in the fuzzy toolbox of MATLAB software.

Results
Results of feature selection methods
The large number of input variables encouraged to apply 
feature selection/reduction methods to extract the most 
prominent input vector. The CFS method selected 12 fea-
tures as the input feature vector for prediction of plant 
type (4 target classes). In the case of crop/weed classifica-
tion (2 target classes), there were 9 features that selected 
by CFS algorithm as the input vector. The selected fea-
tures are presented in Table 1.

The PCA method produced 18 principal components 
from the original features for prediction of plant type (4 
target classes) as well as for crop/weed classification (2 
target classes). Because the PCA method is unsupervised, 
the principal component don’t vary by the number of tar-
get classes.

Results on DT structure
Training and testing results of J48, REP and RT classifiers 
for simultaneously classification of four different plants 
(4 classes including peanut and three weeds) based on 
visual characterization are shown in Table  2. The high-
est classification accuracy (80.83%) for plant type detec-
tion in training dataset was obtained when using J48 tree 
as the classifier in which the CFS selected features were 
used as inputs. The RMSE and kappa statistics of this tree 
on training dataset were 0.74 and 0.2855, respectively. 
The classification accuracy, RMSE and kappa statistics 
of J48-CFS tree were respectively obtained as 80.56%, 
0.2947, and 0.73, when the tree was evaluated on test 
dataset. The next most successful classifier was REP tree 
with CFS-selected features. The overall structure of J48-
CFS and REP-CFS trees are presented in Fig. 2.

The performance statistics of different DTs for clas-
sification of peanut plant from weeds (2 classes) are 

Table 1  Number of selected features by CFS and PCA feature selection methods

Classification Selected features

Plant type detection (4 target classes) std_R, ave_H, ave_S, std_S, ave_As, std_As, ave_Bs, difference_entropy, cluster_prominence_LL, cluster_
shade_LL, entropy_HL, sum_entropy_HH

Crop/weed classification (2 target 
classes)

ave_H, ave_S, ave_As, std_As, ave_Bs, correlation_LL, cluster_shade_LL, homogeneity_HL, sum_entropy_HH
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given in Table  3 for training and testing datasets. As 
shown, the J48 DT when using CFS method, was the 
most accurate tree for classification of peanut plant 
from group of weeds. The classification accuracy, RMSE 
and kappa values of this tree were 95.56%, 0.1942, and 
0.91, respectively. This tree resulted accuracy of 93.75%, 
a RMSE of 0.1968, and a kappa value of 0.088, when 

evaluated by the test data. The next four most accurate 
classifier DTs were J48 without feature selection (J48-
all), RT-CFS, REP-CFS, and REP-all trees with clas-
sification accuracies of 93.89%, 93.33%, 92.78%, and 
92.22%, respectively.

Figures 3 and 4 present the overall structures of J48-all, 
J48-CFS, REP-all, REP-CFS, RT-CFS decision trees for 

Fig. 2  The overall structure of a J48-CFS, and b REP-CFS, decision trees for classification of plants
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classification of peanut and weeds. As shown, different 
DTs have resulted in different structures because of their 
specific algorithm for implementation of trees. It can be 
observed that, when using either of the CFS and PCA fea-
ture selection algorithms, the structures of J48 and REP 
trees, were simpler compared with RT. The J48-CFS tree 
obtained with 7 branches, 6 nodes and 7 leaves; whereas 
J48-PCA tree has 6 branches, 5 nodes and 6 leaves, while 
the resulted REP-CFS tree had 3 branches, 2 nodes and 
3 leaves. Applying RT algorithm resulted in 13 branches 
with 12 nodes and 13 leaves.

Results on Fuzzy inference system
Figure 5 shows the overall form of fuzzy inference model 
which was obtained from the J48-CFS decision tree. The 
membership functions for the fuzzy model variables 
were defined according to the classifying features and 
their related threshold values on the branches of the DT. 

From Fig. 3b, it can be observed that five features includ-
ing ave_Bs, sum_entropy_HH, ave_S, correlation_LL and 
cluster_shade_LL were selected as defining factors to 
setup the structure of J48-CFS tree. Hence, these features 
were applied to design the antecedent part and to adjust 
the membership functions of the fuzzy model. Because 
the simplicity of the trapezoidal membership functions, 
these functions were used to set all of fuzzy variables. 
In the case of ave_S, since this feature appeared in two 
nodes of J48-CFS tree structure, two membership func-
tions were defined accordingly in the fuzzy model. The 
overall form of the designed membership functions is 
shown in Fig. 6.

The next step was to implement the rule base of the 
fuzzy model. The rules were defined in the form of ‘if–
then’ statements according to the branches of the J48-
CFS tree (Fig.  3b). The defied rules are presented in 
Table 4. The graphical view of the defined fuzzy rules is 

Table 2  Performance criteria of DTs for plant type identification

Bolditalic value indicates the most accurate DT classifier
a  No feature selection applied (classification using all input features)

DT Feature selection/
reduction method

Train Test

Kappa RMSE Accuracy (%) Kappa RMSE Accuracy (%)

J48 –a 0.70 0.3129 77.50 0.64 0.3483 73.61

CFS 0.74 0.2855 80.83 0.73 0.2947 80.56

PCA 0.39 0.4594 54.17 0.36 0.4859 52.77

REP –a 0.70 0.3135 77.50 0.60 0.3334 75.00

CFS 0.73 0.3007 80.00 0.72 0.3143 79.17

PCA 0.38 0.4121 53.33 0.34 0.4930 51.38

RT –a 0.62 0.3764 71.67 0.57 0.3953 68.75

CFS 0.72 0.3227 79.17 0.70 0.3371 77.27

PCA 0.40 0.4743 55.00 0.38 0.4556 54.17

Table 3  Performance criteria of DTs for peanut/weed classification

Bolditalic value indicates the most accurate DT classifier
*   No feature selection applied (classification using all input features)

DT Feature selection/
reduction method

Train Test

Kappa RMSE Accuracy (%) Kappa RMSE Accuracy (%)

J48 –* 0.88 0.2472 93.89 0.83 0.2791 91.67

CFS 0.91 0.1942 95.56 0.88 0.1968 93.75

PCA 0.63 0.4200 81.67 0.63 0.4210 81.48

REP –* 0.84 0.2679 92.22 0.82 0.2888 90.91

CFS 0.86 0.2557 92.78 0.83 0.2895 91.67

PCA 0.47 0.4653 73.33 0.48 0.4986 74.074

RT –* 0.70 0.3873 85.00 0.70 0.3849 85.18

CFS 0.87 0.2582 93.33 0.85 0.2722 92.59

PCA 0.46 0.5217 72.78 0.42 0.5401 70.83
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shown in Fig. 7. As shown, five features are used in the 
precedent part of the fuzzy rule base to make a rule. 
The sixth column in the Figure represents the member-
ship function of the output variable (plant type). The 
surface view of the fuzzy rules considering different 
combinations of input variables for peanut/weed classi-
fication using J48-CFS classifier is shown in Fig.  8. This 
figure presents the output value of the model considering 
ave_S and sum_entropy_HH features as input variables. 
Plant membership functions, the non-integer values in 
the model between 0–1 and 1–2 belong to Peanuts and 
Weeds classes, respectively. It can be observed that if the 
value of ave_S is greater than 0.36 (which is the threshold 
value of the mentioned variable on its related fuzzy mem-
bership function), the quality value would be 0 which 
represents Peanuts class. In the case of sum_entropy_HH 

feature, if the value is less than 2.39, then the output value 
depends on the threshold value of correlation_LL feature. 
For sum_entropy_HH values higher than 2.36, the output 
value will be higher than 1 which corresponds to Weeds 
class.

The overall form of the fuzzy inference system for pea-
nuts and weeds using REP-CFS classification method 
is shown in Fig.  9. As can be seen, REP-CFS algorithm 
gave a simpler fuzzy model as compared with J48-CFS 
classifier. Here, the fuzzy inference system has only two 
input variables. The membership functions for the vari-
ables in the fuzzy model were obtained according to 
the defining features and their related threshold values 
on the branches of the REP-CFS classifier. The range of 
each membership function was set based on the maxi-
mum and minimum values of the related features in the 

Fig. 3  The overall structure of a J48-all, and b J48-CFS, decision trees for classification of peanut and weeds
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Fig. 4  The overall structure of a REP-all, b REP-CFS, and c RT-CFS decision trees for classification of peanut and weeds
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Fig. 5  The overall form of J48-CFS based fuzzy model for peanut/weed classification

Fig. 6  The overall form of fuzzy membership functions for peanut/weed classification using J48-CFS classifier: a ave_Bs; b sum_entropy_HH; c 
ave_S; d correlation_LL; and e cluster_shade_LL; f Peanut/weed

Table 4  Fuzzy rules for peanut/weed classification using J48-CFS classifier

1. If (ave_Bs is B1) and (sum_entropy_HH is SE1) then (Plant is Weed)

2. If (ave_Bs is B1) and (sum_entropy_HH is not SE1) and (ave_S is S2) then (Plant is Peanut)

3. If (ave_Bs is B1) and (sum_entropy_HH is not SE1) and (ave_S is not S2) and (correlation_LL is CM1) then (Plant is Peanut)

4. If (ave_Bs is B1) and (sum_entropy_HH is not SE1) and (ave_S is not S2) and (correlation_LL is not CM1) then (Plant is Weed)

5. If (ave_Bs is not B1) and (ave_S is S1) and (cluster_shade_LL is CS1) then (Plant is Peanut)

6. If (ave_Bs is not B1) and (ave_S is not S1) and (cluster_shade_LL is CS1) then (Plant is Weed)

7. If (ave_Bs is not B1) and (cluster_shade_LL is not CS1) then (Plant is Weed)
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Fig. 7  The graphical view of the defined fuzzy rules for peanut/weed classification using J48-CFS classifier

Fig. 8  Surface view of fuzzy rules considering different combinations of input variables for peanut/weed classification using J48-CFS classifier

Fig. 9  The overall form of REP-CFS based fuzzy model for peanut/weed classification
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classifying DT. Considering Fig. 4b, two features namely 
ave_Bs (average of a* chromatic component in L*a*b 
space) and cluster_shade_LL (the cluster shade feature 
extracted from approximation coefficient of the one-level 

wavelet decomposed image) were used in the structure 
of REP-CFS classifier. The combinations of these features 
and their related threshold values on the branches of 
REP-CFS classifying tree were used to set the antecedent 

Fig. 10  The overall form of fuzzy membership functions for peanut/weed classification using REP-CFS classifier: a ave_Bs; b cluster_shade_LL; c 
Peanut/weed
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part of the fuzzy model. The overall form of the designed 
fuzzy membership functions are presented in Fig. 10.

The rule base of the fuzzy model using REP-CFS classi-
fication method is shown in Table 5. According to Fig. 4b, 
three interconnections were created on the structure of 
REP-CFS tree to implement the fuzzy rule base.

The surface view of the defined fuzzy rules for pea-
nuts and weeds classification using REP-CFS classifier 
is shown in Fig.  11. This figure gives a 3-D view of the 
fuzzy model and shows how different combinations of 
the input variables result in an output class. In Fig.  11, 
it can be seen that when the values of ave_Bs and clus-
ter_shade_LL features are respectively in the range of 
0–19.31 and 0–822.1, the output value of the model is 
greater than 1 which shows the plant is weed. As corre-
lation_LL value exceeds 822.1, the product grade value 
lies between 0 and 1 that is the range corresponding to 
Peanuts. The same result is obtained when the value of 
ave_Bs feature surpasses 19.31.

Discussions
Considering the results obtained for plant type identifi-
cation by DT (Table  2), DTs have achieved low classifi-
cation accuracies for plant type identification making 

them unsuitable to be applied for development of a fuzzy 
classifier. On the other side, since different species of 
weeds are there in the peanut fields, it is required for a 
weeding robot to classify main crop from weeds. There-
fore, the capability of DT was investigated for crop/weed 
classification purpose. In this case, DTs with CFS feature 
selection method resulted in the highest classification 
accuracies making them the most suitable trees for fuzzy 
classifier development.

Consequently, it can be concluded from Fig.  2b that 
the REP-CFS tree provides a more simple structure for 
data classification compared with RT-CFS and J48-CFS 
tree. Whereas, J48 tree when combined with CFS feature 
selection method (J48-CFS) gave the highest accuracy. 
Although simplicity is not a criterion to be considered 
for comparing the performance of DT classifier, but, from 
the point of view of fuzzy model development based on 
DT structure, the simplicity of DT structure is a promis-
ing option that can help to achieve a simpler fuzzy model. 
Regarding that development of automated plant weeding 
system is one of the most important practical fields of 
fuzzy models, the use of a less complex DT-based fuzzy 
system, provided that the desired accuracy is guaranteed, 
can result in a higher performance for automatic weeding 
systems. Therefore, considering two important criteria 
of DT simplicity and overall classification accuracy, two 
DT structures of J48-CFS (because of having the highest 
accuracy) and REP-CFS (because of having the simplest 
structure and satisfactory accuracy) were selected for 
developing fuzzy models.

The J48-CFS tree has a very complex structure (Fig. 2a) 
which makes it inappropriate for developing a fuzzy 

Table 5  Fuzzy rules defined for peanut/weed classification 
using REP-CFS classifier

1. If (ave_Bs is B1) then (Plant is Peanut)

2. If (ave_Bs is not B1) and (cluster_shade_LL is CS1) then (Plant is Peanut)

3. If (ave_Bs is not B1) and (cluster_shade_LL is not CS1) then (Plant is 
Weed)

Fig. 11  Surface view of fuzzy rules considering different combinations of input variables for classification of peanuts and weeds using REP-CFS 
classifier
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system for plant type identification. The REP-CFS has 
very simpler structure (Fig.  2b) than J48 tree. The REP-
CFS structure has 5 branches, 4 nodes and 5 leaves; while 
the J48-CFS tree obtained with 11 branches, 11 nodes 
and 10 leaves.

For all of the three evaluated DTs, applying PCA fea-
ture selection method has resulted in lowest classifica-
tion accuracy. Therefore, DTs with PCA feature selection 
method were not used in further steps of fuzzy model 
implementation.

In the structure of J48-CFS decision tree, five features 
including ave_Bs (average of b* chromatic component in 
L*a*b space), sum_entropy_HH (Summation of entropy 
values extracted from diagonal subband of the one-level 
wavelet decomposed image), ave_S (average of Satura-
tion component in HSV space), correlation_LL (the cor-
relation feature extracted from approximation subband 
of the one-level wavelet decomposed image) and clus-
ter_shade_LL (the cluster shade feature extracted from 
approximation subband of the one-level wavelet decom-
posed image) were appeared in the nodes positions. Pea-
nuts and weeds were classified according to combination 
of these features, the related threshold values, appear-
ance order and position on DTs structure.

Among the contributing features for forming the struc-
ture of the J48-CFS tree, two features (ave_Bs and ave_S) 
were obtained from the color information of the images 
and three features (sum_entropy_HH, correlation_LL 
and cluster_shade_LL) from the wavelet analysis of the 
images. This proves that the color and wavelet  textural 
information of the samples are both significant and effec-
tive in the distinguishment of peanuts from weeds. The 
ave_S feature was appeared two times in the structure of 
J48-CFS tree which may implies the significance of this 
feature for the product classification. According to the 
branching of the J48-CFS tree, it is evident that some fea-
tures were not included in forming a numbers of fuzzy 
rules.

Considering the shape of the plant membership func-
tions (Fig.  7), the decimal values lower than 1 and 2 in 
the functions belong to Peanut and Weed classes, respec-
tively. The non-integrity of the output values is due to 
the uncertain nature of the fuzzy-logic-based models. In 
these situations, if the fuzzy model is used in the form of 
an online classifying system, the value of the output vari-
able will be rounded to the nearest integer number.

In the case of REP-CFS tree, only two features namely 
ave_Bs (average of b* chromatic component in L*a*b 
space) and cluster_shade_LL (the cluster shade feature 
extracted from approximation subband of the one-level 
wavelet decomposed image) were used for construc-
tion of the tree (Fig.  4a). Considering its simplicity 
advantage along with high accuracy and low RMSE 

values, the capability of REP-CFS tree for classification 
becomes more prominent. This leads to the production 
of a precise fuzzy model with very simple structure. 
Due to the simplicity of utilized membership functions 
in REP-CFS based fuzzy classifier, the developed fuzzy 
model would have a high calculation and execution 
speed.

The low number of rules accelerates the execution of 
the fuzzy model when classifying peanuts and weeds. 
From Table  5, it can be observed that the antecedent 
part of the rule base is not complex compared with 
that of J48 trees. The antecedent parts were adjusted 
by the combination of up to two input variables. Due 
to the simplicity of its utilized membership functions, 
the developed fuzzy model would have a high calcula-
tion and execution speed along with high accuracy. 
The high reliability, speed of response, and accuracy of 
such model are important especially when the model is 
applied in the form of real-time classifying systems.

A very important advantage of DT based fuzzy clas-
sifier over classical and ensemble models appears when 
the classifier is used as the controller of an automatic 
weed removal system. Binary controllers get in trouble 
in the boundary regions of objects especially where the 
main plant and weed are highly overlapped. Hard splits 
between different regions, showing different plants, can 
induce several on–off shocks to the operators. Fuzzy 
controllers can overcome this problem by converting 
hard splits to soft splits because of the angular shape of 
their rule surfaces in overlapping regions.

In addition, such a robotic weeding system should be 
able to operate in a working condition which cannot be 
completely controlled like as laboratory conditions. In 
such cases, DT-fuzzy based control systems are supe-
rior to binary models, because the DT-fuzzy systems 
are less sensitive to probable environmental and work-
ing noises.

The obtained results in this study confirm the results 
of previous studies reporting the successful application 
of fuzzy logic systems for weed-crop classification. Her-
rera et al. [37], reported an accuracy of 92.9% for classi-
fication of monocots and dicots weeds at early stage of 
growth based on shape descriptors using fuzzy multicri-
teria decision making (FMDM). A similar accuracy was 
reported for real-time weed detecting in sugarcane field 
based on leaf textures and fuzzy technique [38]. Although 
the application of DT-fuzzy system has not been reported 
for weed detection, however DT-fuzzy models were suc-
cessfully applied for some other classification purposes. 
The classification accuracy of a combined logic ‐fuzzy 
logic model was reported 91.74% for classification of the 
dried figs where the structure of REP tree was used for 
fuzzy system development [42]. A J48 DT-fuzzy system 
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was also applied by Goel, Sehgal [34] for ripeness estima-
tion of tomatoes with a classification accuracy of 94.29%.

Conclusions
A fuzzy computer vision system was developed in this 
study to classify peanut plant from weeds based on image 
color and wavelet features using a combination of DT 
and fuzzy logic. PCA and CFS strategies to reduce the 
number of DT input features and to select the most sig-
nificant ones. J48 and REP trees developed using the CFS 
selected date, were the most accurate DTs for crop-weed 
differentiation. The crop-weed classification accuracy of 
J48-CFS and REP-CFS models was achieved 95.56% and 
92.78%. These two trees were also have simple configura-
tions made them appropriate to design fuzzy sets based 
on their schemes. The “if–then” statements of fuzzy rules 
were established according to nodes, branches, leaves 
and thresholds which provided in DTs. It can be claimed 
from the results of this study, that the fuzzy DT classifica-
tion technique can be applied successfully in a computer 
vision system for intelligent classification of main crop 
from weeds in peanut fields.
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