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Abstract 

Background:  The accurate estimation of potato yield at regional scales is crucial for food security, precision agricul-
ture, and agricultural sustainable development.

Methods:  In this study, we developed a new method using multi-period relative vegetation indices (rVIs) and relative 
leaf area index (rLAI) data to improve the accuracy of potato yield estimation based on the weighted growth stage. 
Two experiments of field and greenhouse (water and nitrogen fertilizer experiments) in 2018 were performed to 
obtain the spectra and LAI data of the whole growth stage of potato. Then the weighted growth stage was deter-
mined by three weighting methods (improved analytic hierarchy process method, IAHP; entropy weight method, EW; 
and optimal combination weighting method, OCW) and the Slogistic model. A comparison of the estimation perfor-
mance of rVI-based and rLAI-based models with a single and weighted stage was completed.

Results:  The results showed that among the six test rVIs, the relative red edge chlorophyll index (rCIred edge) was the 
optimal index of the single-stage estimation models with the correlation with potato yield. The most suitable single 
stage for potato yield estimation was the tuber expansion stage. For weighted growth stage models, the OCW-LAI 
model was determined as the best one to accurately predict the potato yield with an adjusted R2 value of 0.8333, and 
the estimation error about 8%.

Conclusion:  This study emphasizes the importance of inconsistent contributions of multi-period or different types of 
data to the results when they are used together, and the weights need to be considered.
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Background
Potato (Solanum tuberosum L.), a mixed grain, forage, 
and vegetable crop [1], is the fourth most important 
crop in the world [2, 3]. Since the launch of the potato 
staple food strategy in 2015 in China, potato has become 
another major staple food crop after rice, wheat, and 

corn [4]. Timely forecasting potato yield data is a vital 
reference index for variety breeding determined by the 
combination of genes and growth environment [5]. The 
accurate prediction of potato yield, especially at the 
regional level, is of great significance for ensuring food 
security and promoting the sustainable development of 
agriculture, which is related to the formulation of major 
policies and guidelines of the national economy and peo-
ple’s livelihood.

The method of crop growth models (CGM), costly, 
time-consuming, and not always accurate, is often used 
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in conventional yield estimation, which relies on a large 
amount of data collection [6, 7]. It is reported that there 
are approximately 32 types of CGM combining multiple 
data sources and methods to monitor the potato yield 
under conditions of water, nitrogen fertilizer, and CO2 
atmospheric levels [8]. However, the difficulty of obtain-
ing large amounts of input data is one of the major limi-
tations of the widespread employment of models due to 
their complexity [9–11]. Furthermore, field investigation, 
another traditional method, is a destructive estimation 
way. Although the accuracy of the final results can be 
guaranteed by comprehensive surveys, it is undoubtedly 
a laborious and time-intensive work [12, 13].

Remote estimation of yield is an approach to estab-
lish the relationship between crop spectra and yield data 
[14]. Remote sensing (RS), an emerging technique, can 
be used to effectively obtain spectral data of vegetation 
canopy from space in a non-destructive manner, which 
carries much valuable information indicating the interac-
tion between canopy and solar radiation such as vegeta-
tion absorption and scattering [15]. Vegetation canopy 
spectrum is closely related to crop growth, especially the 
visible range affected by pigment and the near-infrared 
(NIR) bands affected by cell tissue and canopy structure 
[16, 17]. Therefore, the vegetation index (VI) calculated 
by these bands has been widely used for the monitoring 
and estimation of vegetation characteristic parameters, 
such as leaf area index (LAI) [18], biomass [19], chloro-
phyll content [20], nitrogen content and carbon content 
[21], and achieved high accuracy. In addition, various VIs 
showed great differences when applied in diverse sce-
narios. For example, when the fractional vegetation cover 
(FVC) is over 50%, the ratio vegetation index (RVI) has a 
high sensitivity for vegetation [22]. The normalized dif-
ference vegetation index (NDVI) is commonly used to 
research the vegetation growth and distinguish vegeta-
tion from non-vegetation with eliminating most of the 
radiation errors, but it is prone to saturation [23]. Not 
only that, VIs also have many applications in the yield 
estimation of different crops on account of the sensitivity 
to plant photosynthesis. Gong et al. [24] found that NDVI 
is of great help to the prediction of rapeseed yield using 
unmanned aerial vehicle (UAV) imagery. Moreover, VI 
also contributes significantly to yield estimation for crops 
such as rice [25, 26], maize [27, 28], and wheat [29, 30]. 
The simulation results of crop characteristic parameters 
can be obtained by constructing the linear or nonlinear 
empirical relationship [31] or by machine learning meth-
ods [32] like support vector machine (SVM), random for-
est (RF), partial least squares (PLS) and artificial neural 
network (ANN) between VIs and these parameters. So 
far, the VI-based parameter statistics is the simplest and 
most widely studied estimation method, which has been 

extensively applied in crop growth monitoring [33]. And 
the crop growth status monitored by RS directly deter-
mines the final crop yield. Hence, remote estimation of 
crop yield based on VI exhibits good potential, especially 
in a large-scale domain of estimation scenarios [34].

LAI is one of the vital parameters of crop canopy struc-
ture that related to photosynthesis, respiration, and tran-
spiration [35]. Peng et  al. [36] proved that LAI can be 
applied to estimate yield in oilseed rape using UAV data 
with the estimation error below 15%. Liu et al. [37] cal-
culated the canopy density (Chl) using LAI and then con-
structed the simple linear prediction model of rice yield 
with an R2 value of 0.81. Therefore, LAI can be deter-
mined for yield estimation.

Employing RS technique including UAV, satellite, and 
ground measurement, massive data of multiple time 
series can be obtained. However, there are still some 
issues worthy of our attention. The atmospheric environ-
ment, soil background, and solar radiation conditions 
all will change during the process of obtaining data for 
many times [38]. Actually, eliminating the interference 
caused by illumination, aerosol, and background envi-
ronment among multi-period data is a prerequisite for 
accurate yield estimation. For example, some reference 
whiteboards can be used for radiometric correction of 
remotely sensed images, but it is still difficult to obtain 
absolutely accurate data [39]. Therefore, we try to use the 
method of relative variables by subtraction to reduce the 
differences of data caused by the external environment.

In our experiment, the whole-stage canopy spectra of 
potato field were remotely measured from ground plat-
forms, which had the advantage of reflecting the field 
variations well. Meanwhile, the LAI data in the same 
period were obtained. With potato grown under different 
water and nitrogen fertilizer treatments, our objectives 
are (1) to determine the optimal VI for single-stage yield 
estimation of potato; (2) to determine the optimal single 
stage for potato yield prediction, and (3) to compare the 
performance of rVI-based and rLAI-based models using 
single-stage and weighted stage data, and determine the 
final potato yield prediction model.

Methods
Study area
The experiment area (Fig. 1a) was located at the experi-
mental base of Economic Plants Research Institute 
(43.45°N, 124.99°E), Jilin Academy of Agricultural Sci-
ences, Gongzhuling City, Jilin Province, China. The 
greenhouse experiment (Fig. 1c) was conducted in May–
September 2018. Shepody [40], a widely planted potato 
variety in Jilin Province, was selected as the experimental 
object. Potatoes were sown on May 2nd and harvested 
on September 10th including the whole growth stages. 



Page 3 of 14Luo et al. Plant Methods          (2020) 16:150 	

Through the combination of nitrogen fertilizer and water, 
27 plots (Fig. 1d) including three nitrogen levels (N1: half 
of the normal nitrogen fertilizer, N2: normal nitrogen fer-
tilizer, and N3: two times normal nitrogen fertilizer) and 
three water levels (EM: excessive moisture, NM: normal 
moisture, and IM: insufficient moisture) were set up. The 
water–nitrogen combination experiment was divided 
into 9 treatments, and each treatment was repeated 3 
times randomly. To ensure that there is no water inter-
ference between the treatments, two partitions between 
IM and NM, and three partitions between EM and NM 
were set. The same potato variety was planted in the field 
experiment (Fig.  1b) to avoid the influence of sampling 
on the greenhouse experiment. The field experiment was 
used to study the change of dry weight with time to simu-
late the growth of potato, while the greenhouse experi-
ment was applied to estimate potato yield by measuring 
hyperspectral and LAI.

The experimental area was located in the middle of the 
Songliao Plain, with a temperate continental monsoon 
climate, an average temperature from May to August 
of 18–20 °C, and abundant natural resources. It is a key 
commodity grain base in China and a demonstration area 
for potato cultivation.

Data collection and multi‑period data processing
The collection of data covered five key stages of potato 
growth: seeding stage (SS), tuber formation stage (TFS), 
tuber expansion stage (TES), starch accumulation stage 
(SAS), and harvest stage (HS). The field data, includ-
ing LAI and hyperspectral, were collected for five times 
from SS (14 June), TFS (28 June), TES (23 July), SAS (9 
August), to HS (27 August).

The SUNSCAN Canopy Analysis System (Delta-T 
Devices, Ltd., Burwell, Cambridge, UK) [41] was used 
to acquire the potato LAI data under conditions of 

windless and stable light. Since potatoes were planted 
following the ridges, our measurements were made 5 
times parallel to the ridges and perpendicular to the 
ridges, respectively. Five different places were selected 
for measurement in each plot, and the mean values of 
25 measurements in total were taken as canopy LAI 
values of the plot.

The USB 2000 spectrometer (Ocean Optics, Inc., 
Dunedin, Florida, United States) [42] was adopted 
to collect potato canopy hyperspectral under cloud-
less and windless conditions, with a spectral sampling 
interval of 0.46  nm. The spectral measurement was 
performed daily from 10:00 to 14:00 with the field-of-
view angle of 25°, the probe vertically downward and 
about 1 m away from the top of the potato canopy. The 
observation was repeated five times for each plot, and 
the average value was regarded as the canopy spectral 
reflection. The reference whiteboard (chemical compo-
sition is BaSO4) was used for relative radiometric cor-
rection prior to measurement.

Dry weight measurements of potato plants (includ-
ing stems, leaves, roots, flowers, etc.) were conducted 
by destructive sampling. In each growth stage, the sam-
pling interval is 3–6  days. Ten points were randomly 
selected for each measurement. The collected plants 
were dried in the laboratory after drying in the field 
until their weights remained unchanged when weighing 
again. The average value was taken as the dry weight 
data of this measurement. In total, 17 times of sam-
pling were taken on June 14 (SS), June 22, June 25, June 
28, July 1 (TFS), July 9, July 13, July 16, July 19, July 23 
(TES), July 31, August 3, August 6, August 9, August 16, 
August 21 (SAS), and August 27 (HS), respectively.

At HS, the potatoes in all plots were harvested 
manually. Then plot-level potatoes were weighed 
immediately.

Fig. 1  Study area location and plot distribution: a location of the study area; b field experiment; c greenhouse experiment; d water and nitrogen 
combination diagram of greenhouse
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For LAI and VI of multiple periods, the utilization of 
relative VI (rVI) and relative LAI (rLAI) is expected to 
reduce the limitation of uncertain information about 
background, light and atmospheric conditions at differ-
ent growth stages. Firstly, plot-level rVI and rLAI were 
proposed under the premise of the hypothesis that solar 
radiation, atmospheric conditions, and field background 
were similar at each data acquisition. A standard plot 
can then be selected as a reference to help diminish the 
difference caused by time. In this study, rVI, rLAI, and 
relative yield were calculated based on a reference of an 
appropriate plot. The calculation of rVI, rLAI, and rela-
tive yield was carried out through the differences of VI, 
LAI, and yield between the study plot and reference plot 
(Eqs.  1–3). The method of eliminating the influence of 
external factors by subtraction can keep the correlation 
between original data unchanged.

where rLAI is the plot-level relative LAI, LAI(mea) is the 
measured LAI of a study plot, LAI(Ref ) is the measured 
LAI of reference plot.

where rVI is the plot-level relative VI, VI(mea) is the plot-
level VI calculated by measured spectra, VI(Ref ) is the VI 
calculated by measured spectra of reference plot.

where yield(mea) is the measured yield of a study plot, 
yield(Ref ) is the measured yield of the reference plot.

Vegetation index selection
Many scholars have determined that the optimal bands for 
studying the relationship between vegetation spectra and 
biophysical parameters lie in the visible and near-infra-
red ranges [43, 44]. According to this, VIs of NDVI, CIred 

edge, CIgreen, EVI2, NDRE, and MTCI (Table  1) calculated 
by the green (550 nm), red (670 nm), red edge (720 nm), 

(1)rLAI = LAI (mea) − LAI(Ref )

(2)rVI = VI (mea) − VI(Ref )

(3)relative yield = yield(mea) − yield(Ref )

and near-infrared (800  nm) bands were built. The reason 
why these six VIs were selected is that many scholars have 
achieved good results in relevant studies.

Algorithms for determining the weights of growth stages
Slogistic model
The curve expression of the Slogistic model is shown as 
Eq. (4). With the increase of independent variable, the value 
of the dependent variable increases slowly at first, but rap-
idly in a certain range later. When the independent variable 
reaches a certain limit, the growth of the dependent vari-
able tends to be slow, and the whole curve shows a shape of 
flat "S". This equation is extensively used in epidemiology 
and agrometeorology [50].

where a refers to the maximum value of the dependent 
variable, b and k are the characteristic parameters of the 
Slogistic curve equation.

The first-order and second-order partial derivatives of the 
independent variable of Eq.  (4) were calculated to obtain 
Eqs. (5) and (6). According to the trend of curve change, the 
Slogistic model can be divided into three parts: the range 
of [0 ∼ [lnb− ln(2+

√
3)]/k] is the gradually increasing 

stage, [[lnb− ln(2+
√
3)]/k ∼ [lnb+ ln(2+

√
3)]/k] is the 

rapidly increasing stage, and [[lnb+ ln(2+
√
3)]/k ∼ ∞] 

is the slowly increasing stage. When the independent vari-
able is lnb/k, the increasing speed of the dependent vari-
able reaches the maximum value. The establishment of 
the model is helpful to judge the potato growth stages and 
determine their weights.

(4)y =
a

1+ be−kx

(5)
dy

dx
=

abk−kt

(1+ bk−kt)
2

(6)
d2y

dx2
=

abk−kt(abk−kt − k)

(1+ be−kt)
3

Table 1  Vegetation indices used in this study

Vegetation indices Formula References

Normalized Difference Vegetation Index (NDVI) (R800 − R670)/(R800 + R670) Rouse et al. [45]

Red edge Chlorophyll Index (CIred edge) R800/R720 − 1 Gitelson et al. [46]

Green edge Chlorophyll Index (CIgreen) R800/R550 − 1 Gitelson et al. [46]

Two-band Enhanced Vegetation Index (EVI2) 2.5(R800 − R670)/(1 + R800 + 2.4R670) Jiang et al. [47]

Normalized Difference Red edge (NDRE) (R800 − R720)/(R800 + R720) Gitelson et al. [48]

MERIS Terrestrial Chlorophyll Index (MTCI) (R800 − R720)/(R720 − R670) Dash et al. [49]
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Improved analytic hierarchy process
Analytic hierarchy process (AHP) is a system analy-
sis method that combines qualitative and quantitative 
analysis, which was put forward by T.L. Saaty, a famous 
American operational research scientist in the early 
1970s [51]. The judgment matrix of the traditional AHP 
adopted a nine-scale method (1–9). The subjective fac-
tors of experts play a leading role, which will lead to 
the deviation of the evaluation results. In addition, if 
the judgment matrix is not consistent in the consist-
ency test, it will destroy the main function of the AHP’s 
scheme optimization and sorting, with a large amount 
of calculation and low accuracy. The improved analytic 
hierarchy process (IAHP) developed a new three-scale 
method (0–2), which made it easy for experts to make 
a comparison of the relative importance of the two fac-
tors, without the need for a consistency test. Moreo-
ver, IAHP can greatly reduce the number of iterations, 
improve the convergence speed, and meet the require-
ments of calculation accuracy [52]. The specific calcula-
tion steps are as follows:

1.	 Construction of comparison matrix A(aij).

As shown in Eq. (7), according to the relative impor-
tance of potato growth stages, a comparison matrix 
A(aij)5×5 was constructed.

where 0 indicates that the stage i is not as important as 
stage j; 1 indicates that the stage i is as important as stage 
j; 2 indicates that the stage i is more important than stage 
j.

2.	 Construction of judgment matrix B(bij).

Firstly, the importance coefficients ( rj =
∑5

i=1 bij ) of 
five potato growth stages were calculated, and then the 
judgment matrix B(bij) was constructed as shown in 
Eq. (8):

where rmax = max
{

rj
}

 , rmin = min
{

rj
}

 , k = rmax/rmin.

3.	 Calculation of transfer matrix C(cij) and quasi-opti-
mal uniform matrix C* (cij

*).

(7)A
�

aij
�

=











1 0 0 0 0
2 1 0 0 2
2 2 1 2 2
2 2 0 1 2
2 0 0 0 1











(8)B
�

bij
�

=







ri−rj
rmax−rmin

× (k − 1)+ 1ri ≥ rj
� |ri−rj|
rmax−rmin

× (k − 1)+ 1
�−1

ri < rj

The elements in transfer matrix C(cij) and quasi-opti-
mal uniform matrix C* (cij

*) need to meet Eqs.  (9) and 
(10).

4.	 Weight determination.

The maximum eigenvalue and the maximum eigenvec-
tor of the quasi-optimal matrix C* were calculated, and 
the weight of each growth stage can be obtained after 
normalization.

Entropy weight method
The entropy weight method (EW) determines the index 
weight according to the variation degree of each index 
value. It is an objective weighting method, which has 
been widely used in the fields of economy, engineer-
ing, and finance [53]. The advantage of this method is 
that it can avoid the influence of human factors, but it 
ignores the importance of the index itself. Sometimes the 
weight of the index determined is far from the expected 
result, and the dimension of the evaluation index cannot 
be reduced [54]. The data matrix of G(gij)5×5 was con-
structed based on the potato characteristic parameters 
of different plot-level in different stages, then the entropy 
value (ej) and the difference coefficient (dj) of each growth 
stage were calculated as shown in Eqs. (11) and (12).

The weight wj of the growth stage j can be obtained 
by normalizing the difference coefficient dj as shown in 
Eq. (13).

Optimal combination weighting method
An optimal combination weighting method (OCW) was 
employed to solve the proportion of weights in the com-
bined decision-making based on obtaining subjective and 

(9)C
(

cij
)

=
1

5

5
∑

t=1

(

lg
bit

bjt

)

(10)C∗(cij
∗) = 10cij

(11)ej = −
1

lnn

n
∑

i=1

(

gij
∑n

i=1 gij
ln

gij
∑n

i=1 gij

)

(12)dj =
1− ej

5−
∑5

j=1 ej

(13)wj =
dj

∑5
j=1 dj

(0 < wj < 1,

5
∑

j=1

wj = 1)
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objective weights, then the decision weights considering 
both subjective will and objective existence were obtained 
[55]. To select a set of weights with the largest total dis-
tance (R) between the subjective weights and objective 
weights, the weight determined by the subjective weighting 
method was written as W1 = (w1

1, w
2
2, w

3
3, w

4
4) , the weight 

determined by the objective weighting method was written 
as W2 = (w2

1, w
2
2, w

2
3, w

2
4) , and the combined weight deter-

mined by OCW was written as W = (w1, w2, w3, w4) . The 
optimal combination weight can be obtained by construct-
ing the optimization model of Eq. (14) below.

(14)

{

maxR =
∑2

m=1(1−
√

1
5

∑5
j=1 (wj − wm

j )
2)

∑5
j=1 wj = 1

Leave‑one‑out cross‑validation
The technical flow chart (Fig.  2) demonstrates the 
experimental methodology in this study, including 
experimental design, data collection, data processing, 
methods, and writing logic. The estimation and vali-
dation models of potato yield were established using 
leave-one-out cross-validation (LOOCV). This method 
is widely employed in model construction and valida-
tion to reduce the dependence on a single random 
part of the calibration and validation datasets [56]. 
Firstly, the original population samples were divided 
into K mutually exclusive sets (K = 26 in this study), 
of which K  −  1 sets were used iteratively as train-
ing data for calibrating the coefficients (Coefi) of the 
algorithm, and then the remaining single sample was 
retained as the validation to obtain R2

i and the estima-
tion error (E(yi) − yi). The whole training and validation 
process should be repeated K times until each sample 

Fig. 2  Technical flow chart in this study
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participates in the validation process. After K itera-
tions, the coefficients and precision of the final algo-
rithm can be expressed as follows:

where E(y) is the actual observed value, and y is the pre-
dicted value simulated by the model.

Results
Determination of the optimal rVI
Each VI in this study was converted to rVI through the 
transformation of Eq.  (2). The correlation coefficients 
between rVIs of different growth stages and relative 
yield are shown in Fig. 3. It can be seen that the correla-
tion coefficients between each rVI and its correspond-
ing relative yield showed an overall trend of increasing 
first (SS to SAS) and then decreasing (SAS to HS) dur-
ing the whole growth stage. Correlated with relative 
yield, correlation coefficients of all selected rVIs in 
different stages exhibited consistent changes: reach-
ing maximum values at SAS (with a correlation coeffi-
cient of 0.867 for rCIred edge, 0.860 for rEVI2, 0.845 for 
rNDRE, 0.841 for rNDVI, 0.817 for rCIgreen, and 0.803 
for rMTCI.) and showing smaller values at SS and HS. 
At each potato growth stage, there was the strongest 
correlation between rCIred edge and relative yield. There-
fore, it can be concluded that SAS is the most effective 

(15)Coef =
∑K

i=1Coef i
K

(16)R2 =
∑K

i=1R
2
i

K

(17)RMSE =

√

∑K
i=1(E

(

yi
)

− yi)
2

K

stage for potato yield estimating using VI, and rCIred 

edge has the best performance. When using rVI to con-
struct yield models, only rCIred edge will be considered.

Simulation of potato growth based on Slogistic model
As shown in Fig.  4, the dry weight data of the whole 
growth stage were used to construct the Slogistic model 
to characterize the growth process of potatoes. It can 
be found that the simulation accuracy is high, with the 
adjusted R2 close to 0.9. Generally speaking, the growth 
speed of potato is relatively slow in the early and late 
stages, and faster in the middle stage. Equations (5) and 
(6) were utilized to calculate the length of the growth 
stage, and the time nodes of the gradually increasing 
stage, the rapidly increasing stage, and the slowly increas-
ing stage were 60th and 86th days, respectively. Based on 
these three stages, the five growth stages of this study can 
be obtained by increasing the seeding stage and harvest 
stage. The importance degree of each growth stage rela-
tive to yield can be sorted according to the growth rate of 
different stages. Combined with the actual planting expe-
rience, the final importance ranking was determined as 
TES > SAS > TFS > HS > SS. This result can provide a ref-
erence for the determination of the weights of different 
growth stages.

Estimation of potato yield based on a single 
developmental stage
The new VI (rVI) and LAI(rLAI) datasets were com-
pared with the relative yield data at five different 
developmental stages respectively. Adjust coefficient 
of determination (R2) and root mean square error 
(RMSE) of all estimation models of single-stage rLAI 
and rCIred edge at each growth stage are shown in 
Table 2. At the same time, F-test was conducted on the 

Fig. 3  Comparison of correlation coefficients between different 
relative vegetation indices and yield

Fig. 4  Variation of potato dry weight with time during the whole 
growth stage
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whole regression models at 0.01 probability level, and 
the results were measured by P-value. Potato rLAI and 
rCIred edge at TES closely related to the relative yield 
having the adjusted R2 above 0.7, much lower correla-
tions were found at SS and HS. From the perspective 
of different stages, TES is the optimal stage when using 
rVI and rLAI to estimate potato yield, and the mod-
els’ expressions are shown in Eqs. (18) and (19). In this 
stage, the prediction performance of VI is better than 
that of LAI (Adjusted R2 of 0.7415 vs. 0.7034, RMSE of 
0.2671 vs. 0.2864).

y is the relative yield

where yield(VI) is the estimated potato yield using single-
stage rVI (rCIred edge at TES in this study).

where yield(LAI) is the estimated potato yield using single-
stage rLAI.

(18)
yield(VI) = 0.4421× rCIred edge[TES] − 0.1823+ yield(Ref )

(19)
yield(LAI) = 0.4305× rLAI [TES] − 0.1747+ yield(Ref )

Estimation of potato yield based on weighted growth 
stage
Three weight calculation methods (subjectivity, objectiv-
ity, and their combined form) were used to determine 
the weights of potato growth stages (Table 3). The results 
showed that the weights of each growth stage deter-
mined by EW were very close. The weights determined 
by IAHP and OCW were the largest at TES, followed at 
SAS and TFS, and the smallest at HS and SS. Based on 
the weighting results of the three methods (IAHP, EW, 
and OCW), the rVI and rLAI data of the potato’s critical 
growth stages in the study area were calculated (ie, the 
weighted rCIred edge and rLAI), and then the linear regres-
sion models between the weighted relative variables and 
the relative potato yield were obtained. It can be found 
that the correlation between the potato yield and the 
weighted variables (rCIred edge and rLAI) obtained by the 
three weighting methods was very significant (P < 0.001). 
For the three different weighting method models, the 
EW-based and OCW-based methods had the lowest and 
the highest model accuracy, respectively. But the results 
obtained by these three methods were significantly 
improved compared to the single-stage models. By com-
paring the fitting models of the two relative variables, 

Table 2  Potato yield estimation models for single stage

a1, a2, a3, a4, a5 are plot-level rVI (CIred edge in this study) at SS, TFS, TES, SAS, and HS, respectively

b1, b2, b3, b4, b5 are plot-level rLAI at SS, TFS, TES, SAS, and HS, respectively

Growth stage Regression equation Adjusted R2 RMSE Significance test

SS y = 1.9752a1 − 0.1321 0.5912 0.3361 P < 0.001

y = 1.6494b1 + 0.0935 0.4064 0.4043 P < 0.001

TFS y = 0.4626a2 − 0.1644 0.6423 0.3145 P < 0.001

y = 0.4223b2 − 0.0487 0.5661 0.3463 P < 0.001

TES y = 0.4421a3 − 0.1823 0.7415 0.2671 P < 0.001

y = 0.4305b3 − 0.1747 0.7034 0.2864 P < 0.001

SAS y = 0.3436a4 + 0.0572 0.7063 0.2844 P < 0.001

y = 0.3494b4 + 0.0593 0.6835 0.2956 P < 0.001

HS y = 0.3269a5 + 0.0961 0.4692 0.3835 P < 0.001

y = 0.3984b5 − 0.0706 0.5174 0.3654 P < 0.001

Table 3  Potato yield estimation models based on weighted growth stage

a and b represent rCIred edge and rLAI of weighted growth stage respectively. y is the relative yield of potato

Weighting 
method

Vegetation 
parameter

SS TFS TES SAS HS Regression model Adjusted R2 RMSE Significance test

IAHP CIred edge 0.0329 0.1296 0.5101 0.2638 0.0636 y = 0.4484a − 0.1318 0.8092 0.2340 P < 0.001

LAI y = 0.4717b − 0.1778 0.8127 0.2318 P < 0.001

EW CIred edge 0.1441 0.1556 0.2906 0.1633 0.2464 y = 0.5504a − 0.2357 0.7949 0.2426 P < 0.001

LAI 0.1808 0.1701 0.2958 0.1679 0.1854 y = 0.6056b − 0.3255 0.7960 0.2419 P < 0.001

OCW CIred edge 0.0663 0.1374 0.4442 0.2337 0.1185 y = 0.4775a − 0.1788 0.8225 0.2257 P < 0.001

LAI 0.0773 0.1417 0.4458 0.2350 0.1002 y = 0.5169b − 0.2330 0.8333 0.2187 P < 0.001
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the results obtained by the three weighting methods all 
showed that the weighted rLAI-based models had higher 
accuracy than the weighted rCIred edge-based models. The 
optimal estimation models of potato yield can be deter-
mined as Eqs. (20) and (21). As the final estimation mod-
els of potato yield were based on the relative yield model 
by adding the yield of the reference spot, their prediction 
ability remains unchanged (Table 3).

where yield(VI) is the estimated potato yield using rVI 
based on the weighted growth stage.

where yield(LAI) is the estimated yield using rLAI based 
on the weighted growth stage.

Accuracy assessment using leave‑one‑out cross‑validation
The leave-one-out cross-validation (LOOCV) method 
was utilized to obtain the potato yield validation models 
(Fig. 5). R2, RMSE, and mean relative error (MRE) were 
taken as evaluation indices. The results indicated that 
the accuracy of all models was acceptable (R2 > 0.75 and 
RMSE < 0.26). In general, models with high simulation 
accuracy also have high verification accuracy, with the 
minimum error less than 9%. Based on the combination 
models of three weighting methods and two different 
variables, the EW-based LAI model has the lowest accu-
racy, while the OCW-based LAI model has the highest 
accuracy (R2 = 0.8234, RMSE = 0.2267, MRE = 0.0833), 
explaining 82% of the variability. Therefore, combin-
ing the estimation and the verification models, the LAI 
model based on the OCW method to determine the 
weights of different growth stages is the optimal model 
for potato yield estimation.

Discussion
For potato yield estimation, most scholars used to 
employ some crop growth models derived from general 
crop growth models or from gramineous (rice, wheat, 
corn, etc.) crop growth models [57]. Based on the princi-
ple and structure of the original model, the correspond-
ing parameters were modified to conform to the growth 
characteristics of potato, and the growth process of 
potato was simulated, so as to output the physiological 
characteristic parameters and yield data and realize the 
model simulation function. Quiroz et  al. [3] proposed 
that the incorporation of remotely sensed data in crop 
growth models with different temporal resolutions and 

(20)

yield(VI) = 0.4775× rCIred edge[weighted stage]

− 0.1788+ yield(Ref )

(21)
yield(LAI) = 0.5169× rLAI [weighted stage] − 0.2330+ yield(Ref )

levels of complexity could help to improve the yield esti-
mation in potato. Moreover, it was identified that LAI 
at the initiation of stem elongation stage was closely 
related to yield, thus the remote estimation of LAI at this 
stage could be used to indicate the yield in oilseed rape 
[36]. Sharma et  al. [58] tested Trimble GreenSeeker® 
(TGS) and Holland Scientific Crop Circle™ ACS-430 
(HCCACS-430) wavebands to predict potato yield using 
LAI and NDVI with R2 reaching 0.7. These studies indi-
cate that both remote sensing and LAI data have poten-
tial for yield prediction. Therefore, spectra and LAI data 
were selected in this paper to estimate potato yield.

Six VIs of NDVI, CIred edge, CIgreen, EVI2, NDRE, and 
MTCI were utilized to non-destructively estimate potato 
yield in this study (Table 1) and CIred edge showed the most 
excellent performance in the correlation with potato yield 
(Fig.  3). Gong et  al. [24] also proved that CIred edge had 
a good effect on the estimation of rapeseed yield using 
UAV data. Ma et al. [43] pointed out that at the seeding 
and bolting stage, the CIred edge exhibited good perfor-
mance compared to the other VIs. These conclusions are 
consistent with the results of this study, proving the cred-
ibility of this study.

In this study, the concepts of rVI and rLAI were pro-
posed to solve the problem that the data acquired in dif-
ferent stages would be affected by solar radiation, aerosol, 
and soil background. Under the assumption of constant 
external conditions, subtraction can effectively remove 
these interferences, so that multi-period data can be 
used in combination. Furthermore, this method has the 
advantage of not changing the degree of aggregation and 
preserving the deviation of the original data. Wang et al. 
[59] used division to construct several relative vegetation 
indices (ΔVI) to estimate rice yield with hyperspectral 
imagery. Although the influence of external conditions 
such as background can be eliminated to some extent, 
the problem of changing the aggregation degree of data is 
ignored, resulting in lower RMSE and larger R2.

The dry weight data of the whole growth period were 
used to fit the Slogistic model (Fig.  4) by analyzing the 
growth process of potato (the growth rate is slow in 
the early and late stages, and fast in the middle stage). 
According to the model, we can not only divide the dif-
ferent growth stages of potato but also provide the basis 
for determining the weights of each growth stage. There 
are few systematic and specific divisions of potato growth 
stages in the existing literature. The main reason is that 
potato tubers are buried in the soil, and the changes can 
not be observed directly by the eyes. Therefore, the joint 
utilization of potato multi-period data is subject to cer-
tain restrictions [60]. With a clear division of growth 
stages, more refined research can be carried out like 
crops such as rice [61] and wheat [62].
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At present, there are many problems about the joint 
use of multiple-period or various kinds of data. To 
improve the accuracy of the research results, many schol-
ars blindly used the data of multiple-period or diversified 
data directly. For example, Zhou et al. [63] predicted rice 

grain yield using multiple linear regression (MLR) with 
multi-temporal VIs derived from the multi-spectral and 
digital images to improve the estimation accuracy. Obvi-
ously, the contributions of different developmental stages 
to yield estimation are not consistent, so it can not be 

Fig. 5  Validation models of potato yield estimation based on weighted growth stages and different variables: a IAHP-CIred edge; b IAHP-LAI; c 
EW-CIred edge; d EW-LAI; e OCW-CIred edge; f OCW-LAI
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directly used for MLR, ignoring the weights of growth 
stages. Wang et al. [64] estimated LAI of paddy rice using 
MLR, partial least squares (PLS) regression, and least 
squares support vector machines (LS-SVM) regression 
with 15 optimal hyperspectral bands to product more 
accuracy. No research has shown that the contributions 
of these 15 bands to LAI estimation are the same, so 
these data can not be directly used together. Of course, 
if multiple data are obtained in the same period, it can 
be used directly in combination. For example, Duan et al. 
[35] predicted rice LAI using SVM regression with spec-
tral features and the texture features to determine the 
texture feature effective. In this study, IAHP, EW, and 
OCW methods were employed to confirm the weights of 
different stages of potato. From the perspective of subjec-
tivity, objectivity, and the combination of them, the most 
suitable method (OCW) was selected, which solved the 
problem of joint use of multi-period data. The weighting 
results (Table 3) of different potato growth stages deter-
mined by EW are relatively close, thus they cannot reflect 
the degree of impact of different growth stages on yield. 
The calculation results of IAHP and OCW are in accord-
ance with the actual situation.

When the spectra and LAI data of a single stage were 
used to predict the potato yield, the estimation accuracy 
of each stage basically met (1) TES > SAS > TFS > HS > SS 
for the same variable, which is consistent with the rank-
ing of weights determined by IAHP, EW, and OCW; (2) 
VI > LAI for the same stage (Table  2). At HS, the simu-
lation accuracy of VI is lower than that of LAI (adjusted 
R2 of 0.4692 vs. 0.5174), and when using the variable of 

VI, the accuracy at HS is lower than at SS (adjusted R2 of 
0.4692 vs. 0.5912). The reason for this result is probably 
that the withering of potato leaves at HS resulted in the 
change of canopy spectra and the decrease of yield pre-
diction ability.

To compare the accuracy of yield estimation, the lin-
ear regression models were constructed based on plot-
level weighted variables (rVI and rLAI) and relative yield 
(Table 3). The accuracy of different models was shown in 
Fig. 6. It can be found that OCW-based models have the 
highest accuracy. Unlike the single-stage results, in the 
OCW-based models, the accuracy of the rLAI model is 
higher than that of the rVI model. Because the appear-
ance of saturation phenomenon in yield estimation 
using spectral index will limit the accuracy of models to 
some extent [25]. The LAI data is the three-dimensional 
(3D) information of the crop, and the limitations will be 
reduced.

To improve the suitability of the model, this experi-
ment was set as water and fertilizer conditions, which 
can meet the current situation of water stress in potato 
planting areas in China and even the world [65]. Our 
future work will contain more data from different plat-
forms for analysis, especially the UAV and satellite data 
because they can well express data at the spot-level. In 
addition, we will conduct experiments in more regions 
to verify the robustness of the models. And a new instru-
ment of the LI-3100C table leaf area meter, (LI-COR Inc., 
LincoIn, Nebraska, USA) [66] will be used to avoid the 
impacts of the stems and flowers on the output of LAI, 
and more realistic LAI data will be obtained to improve 

Fig. 6  Adjusted R2 and RMSE of the different models
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and validate the accuracy of potato yield estimation by 
ground-measurement data.

Conclusions
In this study, we developed a technique to improve the 
estimation of potato yield using weighted relative vari-
ables at plot-level derived from multi-period LAI and 
hyperspectral data. Plot-level relative vegetative index 
and LAI (rVI and rLAI) were proposed to eliminate the 
influence of external factors (solar radiation, aerosol, and 
soil background). The weights of different growth stages 
of potato were determined based on the Slogistic model 
and three weight calculation methods (IAHP, EW, and 
OCW). The linear regression was performed to estimate 
potato yield using single-stage and weighted multiple-
stage variables respectively. The results indicated that 
rCIred edge was the optimal index for the potato yield esti-
mation among all the test rVIs. TES is most suitable for 
potato yield estimation using a single growth stage. When 
multi-period data were applied to estimate the potato 
yield, the accuracy was greatly improved. The estimation 
model of LAI using the OCW-based method combining 
subjectivity and objectivity (OCW-LAI) showed the best 
performance with the estimation error about 8%.

Although the idea of weighted developmental stage 
based on the Slogistic model and weighting calculation 
methods proposed in this study were tested in potato 
yield estimation, this work may offer a theoretical refer-
ence for other key parameters retrieving in crops that 
have an apparent division of growth stages. In future 
work, we will attempt to apply this technique to predict 
other growth parameters in potato and other crops.
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