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Isolation of antimicrobial peptides 
from different plant sources: Does a general 
extraction method exist?
Anna S. Barashkova1*   and Eugene A. Rogozhin1,2

Abstract 

Plants are good sources of biologically active compounds with antimicrobial activity, including polypeptides. Antimi-
crobial peptides (AMPs) represent one of the main barriers of plant innate immunity to environmental stress fac-
tors and are attracting much research interest. There are some extraction methods for isolation of AMPs from plant 
organs based on the type of extractant and initial fractionation stages. But most methods are directed to obtain some 
specific structural types of AMPs and do not allow to understand the molecular diversity of AMP inside a whole plant. 
In this mini-review, we suggest an optimized scheme of AMP isolation from plants followed by obtaining a set of 
peptides belonging to various structural families. This approach can be performed for large-scale screening of plants 
to identify some novel or homologous AMPs for fundamental and applied studies.
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Background
Plants represent a source of biologically active substances 
with various properties. Some of them can be applied in 
medicine and agriculture [1, 2]. Antimicrobial peptides 
(AMPs) are of particular interest among all groups of 
substances of plant origin. AMPs have several common 
properties: they are small molecules with a molecular 
weight of 2–10 kDa that possess amphiphilic properties, 
and are usually positively charged at neutral and physi-
ological pH values [3, 4]. Meanwhile, AMPs have sig-
nificant differences in primary and secondary structures. 
However, it is worth noting that most plant-based AMPs 
are characterized by the presence of a compact spatial 
structure, which is achieved by the presence of intramo-
lecular disulfide bonds [3, 5]. This also provides stability 
in relation to temperature, enzymes, and chemical agents 
[5]. Plant AMPs are divided into several families based 

on the similarity of the amino acid sequence, cysteine 
motifs, and the location of disulfide bonds, as well as sec-
ondary structure elements [3, 4]. The main AMP fami-
lies are defensins, thionins, α-hairpinins (hairpin-like 
peptides), hevein-like peptides, knottins, snakins, lipid-
transfer proteins, and cyclotides. Some peptides do not 
belong to these families, among them peptides with unu-
sual Cys-motif, lacking disulfide bonds, cyclic peptides 
without cysteine knot and glycine-, histidine-, alanine-
rich peptides [3, 5–11]. According to the Data Reposi-
tory of Antimicrobial Peptides (DRAMP) (URL: http://
dramp​.cpu-bioin​for.org/brows​e/Plant​AmpsD​ata.php), 
currently, more than 800 peptides have been annotated 
in plants.

AMPs are an important element of the innate immu-
nity of plants, especially to biotic stress factors [5]. AMPs 
have a wide spectrum of activities (antibacterial, anti-
fungal, insecticidal, and antiviral), and some AMPs also 
inhibit hydrolases and protein biosynthesis [12]. Due to 
their chemical properties, plant AMPs also demonstrate 
antiproliferative action [13, 14]. The above properties of 
AMPs can be used for the development of new drugs or 
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biological plant protection products [9, 15]. It was estab-
lished that AMPs are presented in each plant, while each 
species within a particular taxon (e.g., genus, family) has 
a certain molecular diversity of peptides belonging to dif-
ferent structural families [16–19]. AMPs can be obtained 
from all parts of plants: vegetative [20] and generative 
[19, 21–24], aboveground [17, 25, 26] and underground 
[27–30]. It has been shown that the largest number and 
variety of AMP is isolated from seeds [9]. In this regard, 
seeds and fruits are of the greatest interest as sources of a 
diversity AMPs.

At present, transcriptomic and proteomic methods in 
plant AMP research are important and widely introduced 
[31–33]. Despite this, AMP isolation is still of relevance 
in investigations of structure–function relationships of 
AMPs at the cellular and organism levels, when the sub-
stance is required as it is [34–36]. Some new peptides 
that are still not involved in the actual plant AMP clas-
sification [4] have been isolated by the classical approach 
through extraction from plants [7, 28]. So, it seems rel-
evant to summarize all the experience accumulated. The 
presence of isolation scheme, which allows extracting a 
wide variety of peptides, as well as comparing the results, 
seems to give new opportunities in AMP research.

Plant AMP isolation: general approaches
The first AMP of plant origin was isolated by Okada and 
Yoshizumi from barley (Hordeum vulgare) endosperm 
in 1970 [37]. Since that time, many approaches to AMP 
extraction from plant material have been described. 
There are three main stages of plant AMP isolation: plant 
material homogenization, extraction, and saturation and 
purification of the extract. The extract obtained is usually 
fractionated by a series of liquid chromatography meth-
ods (Fig.  1). Each of these stages will be considered in 
detail.

Plant material preparation
AMPs can be sourced from different parts of a plant: 
roots, tubers, bulbs, leaves, flowers, fruits, seeds, or the 
whole plant. At the stage of homogenization, parts of the 
plant undergo mechanical destruction. Sometimes plant 
material is subjected to additional processing before 
homogenization, if necessary. Vegetative parts of plants 
are dried or frozen in liquid nitrogen [7, 23, 25, 27, 28], 
juicy fruits are cleared from seeds [22], seeds are dried, 
sometimes peeled, and lyophilized [38, 39]. The disinte-
gration method is selected due to the physical properties 
of the plant material. Seeds, as well as the dried parts of 
the plants, are ground in a coffee mill. Frozen parts of 
the plants are crushed in liquid nitrogen using a mortar 
and pestle. Fruits are ground in a blender in the pres-
ence of an extraction buffer. Some plants or their parts 

accumulate significant content of high and/or low molec-
ular weight metabolites: inulin in roots, storage proteins 
or fatty oil in seeds, and tannins in leaves and stems. If 
necessary, additional steps are included in the extrac-
tion process, such as heating [40], prefractionating [41], 
removing excess protein, defatting [42, 43], or removing 
of tannins [44].

Choosing of solvent
In the first publications devoted to plant AMP isola-
tion, the general approaches to the protein isolation 
were implemented. Aqueous solutions of salts, buffer 
solutions, or diluted acids were used as extraction buff-
ers [45, 46]. Purothionins, the first AMPs obtained from 
plants, were extracted with a sulphuric acid solution [37]. 
In some cases, the approach developed and approved for 
the extraction of peptides of vertebrate origin is applied. 
Park and colleagues [8] used the previously developed 
method of AMP isolation from Asian toad (Bufo bufo 
gargarizans) stomach for isolation of glycine- and his-
tidine-reach plant-derived peptides. Later, this method 

Fig. 1  Schematic diagram of AMPs isolation from different plant 
sources
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became widely applied in AMP isolation from plants [16, 
24, 42, 47, 48].

Currently, two groups of extractants are used to extract 
AMP from plant sources. The first is represented by 
water and water-based solutions including salt, acids, and 
buffer solutions; the second includes organic-based solu-
tions, including water solutions of ethanol (Fig.  1). The 
most common approaches to AMP extraction are given 
in Table 1.

Water‑based solvents
Buffer solutions are the most common extractant for the 
isolation of plant AMPs. The following principle of AMP 
extraction and further fractionation is applied. The iso-
lation of the maximum variety of proteins and peptides 
occurs during the extraction process. Then, separation by 
mass and charge is used to obtain the peptide fraction. 
Finally, the characteristics of the individual components 
are carried out by investigation purposes, if required. 
Phosphate buffer is the most used extractant for AMP 
isolation [7, 22, 38, 49–54]. The pH value used is close 
to neutral (7.4–7.5) or low acidic, close to physiological 
(5.4–5.5), or lower. When working with seeds with high 
protein content (cereals, beans, nuts), phosphate buffer 
saline (PBS) is used with salt concentrations of about 
100–200 мM NaCl or KCl [22, 38, 49, 50, 53]. Tris–HCl 
buffer (10 mM) at pH 7.0–7.6 [17, 29, 41, 55, 56] and ace-
tate buffer at pH 5.0 [30, 57] are also used.

Using the buffer solutions as extractant leads to the 
extraction of a wide range of polypeptides, as well as 
other plant metabolites, such as carbohydrates and solu-
ble in water secondary metabolites. This reduces the total 
yield of the target compounds.

Water and  aqueous solutions of  acids  Most AMPs are 
cationic molecules [5, 9]. Therefore, during the extraction 
with aqueous solutions of acids, proteins and peptides 
with basic properties are extracted first, which simpli-
fies further fractionation. Acidic AMP extraction is the 
method by which the first thionins from barley (H. vul-
gare) and wheat (Triticum aestivum) were isolated. Okada 
and Yoshizumi used sulfuric acid solution [37]. The first 
scheme of AMP isolation and purification was proposed 
simultaneously. Purification presumed a series of repre-
cipitations. Later, this scheme was modified and applied 
for defensins isolation [58]. To carry out the acidic extrac-
tion, 50 mM H2SO4 [23, 27, 37, 56, 58] and 2% CH3COOH 
[59] were used. Also, 0.1 M HCl [60] in the presence of 
150 мM NaCl can be used to increase the ionic strength of 
the solution (e.g., when sedimentation of high molecular 
proteins is required).

Water [28, 39, 61] or neutral salt solution [62] also can 
serve as solvents for AMPs extraction. The salt solution 

was used for the first defensin (γ-putothionin) extraction 
from wheat (T. aestivum) endosperm.

Some parts of the plant do not require extraction. 
When working with coconut water, after the selection of 
the material, dialysis against the water with acetic acid 
addition up to pH 2.0 directly follows [63]. However, it 
must be emphasized that when working with plant mate-
rial containing a large number of storage proteins, the 
purification and isolation of the peptide fraction usually 
requires more stages.

Saturation and purification
The next stage after extraction is the saturation and puri-
fication of the extract. When using salt buffers, water, or 
acid solutions as extractants, the saturation of the pro-
tein-peptidic fraction is most often carried out by salting 
out the solution with ammonium sulfate [7, 17, 22, 27, 28, 
30, 38, 40, 49–52, 55, 58, 60]. This is carried out in one 
or two stages [55], if seeds with high total protein con-
tent were used. To remove salt excess, dialysis is used. It 
can be held against water, buffer solution used during the 
extraction, or solution needed for further analysis. Dialy-
sis is combined with primary purification of low molecu-
lar weight impurities using dialysis bags with pores of a 
certain size (1000–3000 cut-off). In recent years, instead 
of dialysis, so-called desalination (low-pressure chroma-
tography) is applied. This technique involves the use of 
hydrophobic sorbents (phenyl-Sepharose, reverse phases 
C8, C18) [8, 16, 61].

In some cases, the ammonium sulfate saturation is 
skipped, and the crude extract is fractionated. For exam-
ple, hevein-like peptides can be isolated by reverse phase 
chromatography of the crude water extract [39, 61]. 
Thionins were isolated from white mistletoe (Viscum 
album) by cation exchange chromatography fractionation 
of the acidic extract after acid neutralization [59]. A lipid-
transporting protein from garden pea (Pisum sativum) 
was purified from crude extract after extraction and dial-
ysis [57]. But in most cases, ammonium sulfate saturation 
is presented. Another method of extract saturation is the 
addition of trichloroacetic acid and subsequent fractiona-
tion using ammonium bicarbonate. This approach was 
used when the first defensin was isolated [62].

Organic solvents
Organic solvents are the second group of extractants. 
The most common variant is the aqueous solution of 
ethanol. Organic extraction is used if the purpose of 
the extraction is to isolate a specific group of peptides, 
especially cyclotides and thionins [26, 64–66]. During 
the extraction with organic solvents, not only peptides, 
but also various low molecular weight compounds are 
extracted to the solution. This should be considered 
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Table 1  Approaches to the isolation of different structural families AMPs from various plant material

Extractant AMP Plant species and part Extraction method Reference

Water and water-based solutions

 Water New Cysteine-Rich Peptides Potentilla anserina (roots) 1. Dried roots were extracted at 
room temperature for 1 h and 
centrifuged at 10,000 rpm for 
20 min;

2. Concentration by adding 
ammonium sulfate to 80% rela-
tive saturation;

3. Desalting was performed using 
C18 reversed-phase flash column 
at a stepwise gradient of ethanol 
(40, 60, 80%)

[24]

8-Cys hevein-like peptides Moringa oleifera, (fresh leaves) 1. Plant material was extracted 
with an equal volume of water 
while blending (6 min). The 
mixture was centrifuged at 
8000 rpm for 10 min;

2. The supernatant was filtered 
and loaded on C18 flash-column, 
elution was performed using 
increase of ethanol concentra-
tion (20, 70%)

[41]

 Acid solution 50 mM H2SO4 Defensin Nicotiana alata (flowers) 1. Flowers were ground with liquid 
nitrogen by mortar and pestle, 
then extracted with sulfuric acid 
(3 mL/g wet weight) for 1 h. 
Insoluble material was filtered 
and centrifuged (25,000g, 
15 min, 4 °C)

2. pH of supernatant was adjusted 
to 7.8 by adding NaOH, and 
stirred for 1 h, then centrifuged 
(25,000g, 15 min, 4 °C)

3. Concentration by adding solid 
ammonium sulfate to 80% 
relative saturation (stirring for 
4–16 h at 4 °C)

4. The precipitate was dissolved 
in gel-filtration buffer, heated 
to 90 °C and separated using 
Sephadex G-50 gel-filtration 
column

[42]

 Acid mixture: 1% v/v trif-
luoracetic acid (TFA), 1 M HCl, 
5% v/v formic acid, 1% w/v 
NaCl

Gly/His-rich peptides Capsella bursa-pastoris (roots) 1. Roots were homogenized 
while blending with extraction 
mixture (1:4, w:v). Homogenate 
was filtered through a paper 
filter and centrifuged at 20,000g 
30 min

2. The supernatant was concen-
trated using the reversed-phase 
C18 Sep-Pack cartridge. Peptides 
were removed from the column 
by washing with 80% acetoni-
trile with 0.1% TFA

[6]
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Table 1  (continued)

Extractant AMP Plant species and part Extraction method Reference

 Buffer solution: 0.1 M Tris–HCl 
(pH 7.2)

Defensin-like peptides Phaseolus limensis (seeds) 1. Seeds were washed and soaked 
in water for 12 h. Then homoge-
nated in a blender with buffer 
solution. The homogenate was 
centrifuged at 12,000 rpm for 
20 min at 4 °C;

2. The supernatant was fraction-
ated by two-step ammonium 
sulfate precipitation. In the first 
step, the solution was saturated 
to 20%; the resulting superna-
tant was saturated to 85%

3. After centrifugation at 
12,000 rpm for 20 min, the pre-
cipitate was collected, dissolved 
in 100 mL of 0.01 M Tris–HCl 
buffer (pH 7.2), and dialyzed 
against the same buffer and sub-
jected to the further separation

[43]

 Buffer solution: 10 mM Na2HPO4, 
15 mM NaH2PO4, 100 mM KCl, 
1,5% EDTA, pH 5.4

Thionin-like peptides Capsicum anuum (Fruits without 
seeds)

1. C. anuum fruits were extracted 
with a buffer solution in a 1 to 5 
ratio (w:v) for 2 h;

2. The extract was saturated 
with ammonium sulfate. The 
precipitate formed between 0 
and 70% relative saturation was 
redissolved in distilled water and 
heated at 80 °C for 15 min and 
centrifuged;

3. The resulting suspension was 
extensively dialyzed against 
distilled water, freeze-dried and 
subjected to further fractiona-
tion by the chromatographic 
method

[18]

Organic solutions

 MeOH/CH2Cl/0.05% TFA in water 
(4:4:1)

PawS-derived peptides Zinnia haageana (seeds) 1. Seeds (50 mg) were ground to 
a fine powder with mortar and 
pestle under liquid nitrogen with 
a pinch of 0.1 mm glass beads;

2. The extraction mixture (0.9 mL) 
was added to the seed powder, 
and the mixture was vortexed 
and centrifuged (3 min at 
16,000g). If the phases were not 
separated at this point, 0.1 mL 
of chloroform or 0.1 mL of 
0.05% TFA in water was added 
alternately, followed by short 
centrifugation after each addi-
tion, until phase separation was 
achieved;

3. After phase separation, the 
upper polar layer was collected, 
and dried under vacuum and 
re-dissolved in 0.5 mL, 5% (v/v) 
formic acid for the further pep-
tide identification

[44]

 EtOH or MeOH 20% or 50% in 
water respectively

Cyclotydes Viola odorata (aerial parts) 1. Dried plant material was finely 
ground;

2. Plant material was extracted 
with an extraction mixture in a 1 
to 20 (w:v) ratio for 6 h

[45]
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when purifying the resulting extract. The methods of 
purification, fractionation, and further saturation of the 
extract can vary (Fig. 1). An extraction scheme of cyclo-
tides was proposed by Claeson et al. [44]. This involved 
the pretreatment of plant material and additional puri-
fication. According to this scheme, plant material was 
crushed and treated by CH2Cl2. After treatment, the 
material was subjected to extraction with aqueous eth-
anol, and the extract obtained was purified from tan-
nins on a column with polyamide in acidic conditions 
[25, 44]. Later, this scheme was improved through the 
optimization of ethanol to water ratio in the extract-
ing solution, the ratio of plant material and extractant, 
as well as the time and number of repeated extractions 
[67].

The organic extraction method can be applied to the 
isolation of other cyclic peptides. In this case, the sep-
aration of the peptide fraction is achieved by increas-
ing the polarity of the solution by adding the acid [10]. 
When using organic solvents for thionins isolation, the 
aqueous-methanolic extract is subjected to successively 
partition with solvents of increasing polarity (cyclohex-
ane → dichloromethane → ethyl acetate), followed by 
precipitation by saturation of the solution with ethanol 
to 85% [66].

The use of organic solvents for AMP isolation is sim-
ple and relatively cheap, and also allows the analysis 
of small amounts of plant material [10]. However, it is 
worth noting that when using organic extractants, a 
limited amount of substances passes into the solution 
as a whole. At the same time, with a targeted search for 
AMP substances with certain properties, this method 
is easier than extraction with aqueous solutions due to 
the simplification of the fractionation procedure.

The next most common stage of purification of a pro-
tein-peptide extract following concentration is the sep-
aration by cation exchange chromatography in a linear 
or stepwise gradient of NaCl.

Plant AMP isolation: Optimized approach
An optimized scheme of AMP isolation from plants 
was proposed in the Laboratory of Neuroreceptors and 
Neuroregulators of the Institute of Bioorganic Chemis-
try of the Russian Academy of Sciences (Fig.  2). Acetic 
acid (10%) is proposed as the extractant. This scheme 
was used for the extraction of AMPs belonging to differ-
ent families: α-hairpinins [68–71], defensins [19, 48, 72], 
thionins [73, 74], and hevein-like peptides [20, 75]. Also, 
peptides that do not belong to main families were iso-
lated using this scheme, and partially characterized [21, 
76, 77].

Plant preparation and extraction
According to this scheme, plant material is ground in 
a coffee mill or blender. The extractant used is 10% 
CH3COOH with the addition of a commercial cocktail 
of proteinase inhibitors (Sigma-Aldrich, USA). This is 
added to the ground material at a 1:10 (w:v) ratio. Extrac-
tion is carried out with constant vigorous stirring for 
1 h at room temperature. The mixture is passed through 
the sieve; fine particles are separated by centrifuging at 
4700 rpm for 10 min. The supernatant is filtered through 
a Whatman paper filter. When large amounts are studied, 
the resulting supernatant is additionally concentrated 
approximately 1.5–2-times on a rotary evaporator.

Table 1  (continued)

Extractant AMP Plant species and part Extraction method Reference

 MeOH in water (1:1) Thionins Viscum album (Green and white 
parts)

1. Plant material was crushed, 
the extraction mixture was 
added (1:5, w:v), the solution 
was filtered and its volume was 
reduced;

2. The aqueous phase was 
successively partitioned with 
cyclohexane, dichloromethane, 
and ethyl acetate;

3. Ethanol was added to the 
concentrated aqueous phase to 
achieve 85% (v/v) concentration; 
the precipitate was separated by 
centrifuging (2000g; 10 min);

4. The supernatant was concen-
trated, and ethanol was added 
to 85% (v/v). The precipitates 
were pooled

[46]
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Precipitation
Organic solvent precipitation is used as a saturation 
method. Cold acetone (− 70  °C) is poured into the fil-
trate at a 1:7 ratio while gently stirring; then, the mix-
ture is placed at +4  °C for 6–8  h. After this time, the 
supernatant is discarded, and if necessary, the sus-
pension is centrifuged at 4700  rpm for 10  min to col-
lect the precipitated fraction. The fraction obtained is 
dried at room temperature. The dried precipitate was 
redissolved in 0.1% TFA and purified from low molec-
ular weight components by solid-phase extraction by 
medium or high-pressure liquid chromatography on 
a C8 column. The resulting desalted protein-peptide 
extract is evaporated using a vacuum centrifuge and 
lyophilized. The obtained lyophilisate can be used in 
antimicrobial activity tests or subjected to further frac-
tionation. It is worth noting that due to the abandon-
ment of the method of salting out with ammonium 

sulfate in favour of precipitation with an organic sol-
vent, the described technique allows for the avoidance 
of dialysis. Thus, the loss of substance can be avoided, 
and the extraction time can be significantly reduced.

Fractionation
For further fractionation, the following scheme was 
proposed. This can be simplified depending on the spe-
cific conditions (mainly, the type of biological mate-
rial used). In the first phase, the fractionation is done 
by affinity chromatography using heparin-Sepharose 
sorbent as a solid phase using increasing concentra-
tions of NaCl. This provides the separation of the mix-
ture components by a charge from negatively charged 
to highly cationic. Solid-phase desalting is carried out. 
The second step is size exclusion chromatography. This 
is necessary for plant material with a large amount of 
total protein, especially for seeds. Sometimes, step two 
can be avoided if the plant material does not contain 
reserve proteins. The last step is the fractionating of the 
mixture by reversed-phase chromatography.

Conclusion
Antimicrobial peptides can be isolated from plants in 
various ways, and the experimental conditions can be 
adapted to the extraction of certain peptides or rep-
resentatives of peptide families. This approach can be 
positioned as intensive. However, it eliminates the pos-
sibility of screening plants for a wide variety of AMPs, 
especially potentially undiscovered AMPs. Compo-
nents of the protein-peptide extract that are not of a 
special purpose mainly remain unclaimed. The plant 
AMPs isolation scheme proposed in our group allowed 
us to obtain and characterize a larger structural diver-
sity of antimicrobial peptides than is represented in 
most publications on this subject. Nevertheless, some 
AMPs require alternative isolation approaches (e.g., 
cyclotides can serve as an example).

Thus, we conclude that there is no universal scheme 
allowing the isolation of AMPs of all structural fami-
lies from plants. However, there are two general 
approaches: cyclic peptides isolation and the isolation 
of representatives of various AMP families (optimized 
extraction scheme). Using these algorithms and their 
optimization can provide a fairly complete diversity of 
the composition of plant AMPs.
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