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A simple, cost‑effective high‑throughput 
image analysis pipeline improves genomic 
prediction accuracy for days to maturity 
in wheat
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and Asa Ebrahimi1 

Abstract 

Background:  High-throughput phenotyping and genomic selection accelerate genetic gain in breeding programs 
by advances in phenotyping and genotyping methods. This study developed a simple, cost-effective high-through‑
put image analysis pipeline to quantify digital images taken in a panel of 286 Iran bread wheat accessions under 
terminal drought stress and well-watered conditions. The color proportion of green to yellow (tolerance ratio) and 
the color proportion of yellow to green (stress ratio) was assessed for each canopy using the pipeline. The estimated 
tolerance and stress ratios were used as covariates in the genomic prediction models to evaluate the effect of change 
in canopy color on the improvement of the genomic prediction accuracy of different agronomic traits in wheat.

Results:  The reliability of the high-throughput image analysis pipeline was proved by three to four times of improve‑
ment in the accuracy of genomic predictions for days to maturity with the use of tolerance and stress ratios as covari‑
ates in the univariate genomic selection models. The higher prediction accuracies were attained for days to maturity 
when both tolerance and stress ratios were used as fixed effects in the univariate models. The results of this study indi‑
cated that the Bayesian ridge regression and ridge regression-best linear unbiased prediction methods were superior 
to other genomic prediction methods which were used in this study under terminal drought stress and well-watered 
conditions, respectively.

Conclusions:  This study provided a robust, quick, and cost-effective machine learning-enabled image-phenotyping 
pipeline to improve the genomic prediction accuracy for days to maturity in wheat. The results encouraged the inte‑
gration of phenomics and genomics in breeding programs.

Keywords:  High-throughput phenotyping, Image analysis, Pipeline, Genomic prediction, Days to maturity, Wheat

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The efficient and precise phenotyping of a large popu-
lation is one of the main tasks in breeding programs 
[1]. For example, the recording process of grain yield 
is currently difficult, time-consuming, and costly. The 
visual assessments are normally incapable of attaining 
small but important phenotypic variations [2]. Even 
with good scoring, only small fractions of phenotypes 
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like canopy color can be recorded with the use of visual 
assessments. The scoring methods cannot statistically 
indicate the effect of stress on diverse germplasms [1, 
2].

Such barriers in phenotyping have motivated plant 
breeders to collaborate with engineers and invent mod-
ern technologies for high-throughput phenotyping (HTP) 
in greenhouses and fields [1]. The HTP will become more 
advantageous when it is a non-invasive and non-destruc-
tive method like proximal, remote sensing, and digital 
imaging [3]. The advances in data analysis have enabled 
machine learning (ML) to provide an accurate value of 
stress-related phenotypes [1]. A pipeline with a complete 
framework for fast feature extraction from high-through-
put imaging can be used as a platform for real-time phe-
notyping [4–10].

The HTP platforms can include instruments such as 
RGB (read, green, blue), multispectral and hyperspectral 
cameras, spectrometer, normalized difference vegetation 
index (NDVI) sensors, and light detection and ranging 
(LiDAR) technology [1, 3, 11, 12]. The RGB cameras are 
widely used in field phenotyping, especially for estimat-
ing canopy coverage [13–16]. In addition, the RGB imag-
ing is used as an alternative to NDVI in some researches 
[14–17]. The assessment of senescence [18, 19], crops 
nitrogen content [20], soil water evaporation [16], early 
vigor [21], and physiological yellowing [11] are conducted 
by digital RGB image analysis. Physiological yellowing 
which shows plant senescence and occurs naturally with 
time is used as an indicator of maturity or the impact of 
abiotic stress [11, 22]. Moreover, some researches have 
provided successful protocols for designing, developing, 
and deploying high-efficiency image analysis pipelines to 
assess the quantity of plant response to biotic and abiotic 
stresses [2, 23, 24]. High-throughput image analysis by 
computer vision and ML for phenotyping iron deficiency 
chlorosis (IDC) in soybean [1], hyperspectral imaging 
for drought stress in cereals [25], and thermal imaging in 
spinach [26] are some of the recent successful reports.

Drought stress in the Middle East usually occurs at 
the end of the growing season when spike has already 
appeared and seed is at the development stage. In the 
Persian plateau, where most of the environments are arid 
or semi-arid, farmers are well-trained over the centuries 
to store rainwater throughout spring and irrigate farms 
with the stored water at the end of the growing season. 
The Persian farmers irrigate their farms two to four more 
times with the stored water after spike appearance to 
avoid yield loss due to late-season drought stress. This 
strategy leads to a significant increase in wheat grain 
yield [27]. The impact of drought stress and irrigation 
at the end of the growing season on different genotypes 
needs further investigations.

Genomic prediction (GP) [28] methods use all genomic 
information irrespective of their position, status [quanti-
tative trait locus (QTL), causal mutation, linked marker, 
etc.], and the specific effect on the trait of interest. The 
GP model trained in the training set (TS) will be applied 
to the validation set (VS) to estimate the accuracy of 
predictions. HTP and genomic selection (GS) acceler-
ate genetic gain in breeding programs [3]. The use of a 
major QTL as a fixed effect in a GP model increases the 
accuracy of GP [1]. In wheat, the selection is accelerated 
by adding traits like canopy temperature (CT) and NDVI 
as secondary traits or covariates in GP models [3, 23, 29, 
30].

Motivated by this, this study reported the impact of 
terminal drought stress (TDS) and well-watered (WW) 
conditions on days to maturity (DTM) in a highly diverse 
bread wheat germplasm through an ML-based image-
phenotyping pipeline.

Methods
Plant materials and field trials
The association panel used in this study included 286 
bread wheat accessions from Iran historical germplasm 
(199 landraces identified during 1931–1968 in the Per-
sian plateau and 87 cultivars released during 1942–2014 
in Iran). The plant materials were kindly provided by the 
University of Tehran (UT) and Seed and Plant Improve-
ment Institute (SPII), Karaj, Iran. The detailed informa-
tion about the association panel is provided in Additional 
file  1: Tables S1 and S2. The experiments were car-
ried out at the Kheirabad Agricultural Research Station 
(36°31′51.7″N and 48°45′29.9″E) in Zanjan province 
during the 2017–2018 cropping season using two sepa-
rate alpha lattice designs [31] with two replications for 
each. The plots were 1  m in length, 1  m in width, and 
0.5 m apart. Drip irrigation method was used for water-
ing with the use of two tapes for each plot. Irrigation was 
conducted every ten days until the spike appearance. 
Then, TDS was inducted by terminating irrigation for 
one design whereas another design WW for three more 
times.

Genotyping and quality control
We used the genotyping-by-sequencing (GBS) [32] 
method for genetic fingerprinting and Poland et al. [33] 
method for library construction. The genotyping method 
has been described for the association panel, previously 
[34, 35]. Briefly, DNA was extracted by a modified cetyl-
trimethylammonium bromide (CTAB) method [36] and 
double-digested with PstI and MspI restriction enzymes, 
barcoded adapters were ligated to each DNA sample 
using T4 ligase, polymerase chain reactions (PCRs) were 
done using primers complementary to both adaptors, 
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size-selection for 250–300  bp fragments was conducted 
using an E-gel system (Life Technologies, Inc.), and the 
size-selected library was sequenced on an Ion Proton 
sequencer (Life Technologies, Inc.). Sequence reads were 
trimmed to 64  bp sequences, and identical reads were 
grouped. Then, unique sequence tags were assigned to 
the sequence groups. The unique tags were aligned inter-
nally, whereas up to 3  bp interval alignment mismatch 
was allowed. The Trait Analysis by aSSociation Evolution 
and Linkage (TASSEL) software [37] was used to utilize 
the Universal Network Enabled Analysis Kit (UNEAK) 
pipeline [38] for SNP calling. SNPs with a missing rate of 
more than 20% and SNPs with a minor allele frequency 
(MAF) of less than 5% were removed. Unanchored SNPs 
were excluded too. The remaining missing data of the 
whole SNP data set were imputed in one step using the 
LD KNNi method [39] in the TASSEL software [37], 
whereas K = 10 was used in LD KNNi. Finally, 9047 SNPs 
were used for further analysis.

Population structure and molecular markers estimates
The population structure was evaluated by the Bayesian 
clustering approach with the use of an admixture model 
in the STRU​CTU​RE software [40]. The number of sub-
populations (K) was assessed with the use of 10,000 burn-
in and 10,000 Markov Chain Monte Carlo (MCMC) for 
K = 1–10 in 10 independent runs. The best K value was 
estimated by ΔK statistic [41] in the structure harvester 
website (https​://taylo​r0.biolo​gy.ucla.edu/struc​tureH​arves​
ter). Two subpopulations (SBP-I and -II) were identified 
within the association panel. The SNP calling was per-
formed for each subpopulation and 7714 SNPs for SBP-I 
and 5873 SNPs for SBP-II were identified. A number of 
4785 markers were common between SBP-I and SBP-II, 
which were systematically separated and named as com-
mon markers marker set (CMMS). The molecular mark-
ers estimates were assessed for each chromosome using 
the full matrix option in TASSEL software [37].

Phenotypes
Phenotypic measurements included days to heading 
(DTH), days to maturity (DTM), duration of heading-
to-maturity (DHTM), plant height (PH), and grain yield/
m2 (GY). For details on measurements of DTH, DTM, 
DHTM, PH, and GY and time of assessments, please 
refer to the manual “Physiological breeding II: a field 
guide to wheat phenotyping” [42].

Image acquisition
A Canon PowerShot SX30 IS camera was installed on a 
simple handheld phenocart. The phenocart height was 
1.7  m. A flat L-shaped metal bar with 0.5  m long was 
installed on the phenocart. The camera was mounted 

on the L-shaped metal bar upside down, whereas the 
camera with the lens opened had 1.6  m distance from 
the ground. The phenocart was on the right side of the 
plots during the imagings (Fig. 1).

The images were captured two weeks after TDS 
induction from the plots. In addition, the images were 
taken with the Scene Intelligent Auto mode of the cam-
era during two consecutive days from 10 a.m. to 2 p.m. 
when the weather was completely sunny. Therefore, no 
color correction was applied to the captured images. 
The flash function was kept off to have stable light too. 
All of the images were taken as RGB and stored in JPEG 
format with a resolution of 4320 × 3240 pixels (Addi-
tional file 2: Figure S1). In total, 1144 images were taken 
two weeks after TDS induction and used in the ML 
model.

Fig. 1  The imaging system. A Canon PowerShot SX30 IS camera 
and a global positioning system (GPS) were installed on a simple 
handheld phenocart. The phenocart height was 1.7 m. A flat 
L-shaped metal bar with 0.5 m long was installed on the phenocart. 
The camera was mounted on the L-shaped metal bar upside down, 
whereas the camera with the lens opened had 1.6 m distance from 
the ground. The GPS data are not used in the present study

https://taylor0.biology.ucla.edu/structureHarvester
https://taylor0.biology.ucla.edu/structureHarvester
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Image processing
In order to avoid shade, shoe, empty space, margin, etc. 
all of the images were cropped to 500 × 500 pixels using 
Preview software, so that the cropped images could rep-
resent the color of the canopies more precisely (Fig. 2a, 
d). A function was defined for the color threshold based 
on the CIELAB color space (L*a*b) [43] in MATLAB_
R2015b software. The cropped RGB images were con-
verted to L*a*b color space. The first channel (L, from 
black (0) to white ( + 100)) was kept intact, the second 
channel (a, from green ( − 100) to red ( + 100)) was con-
verted to half and defined from 0 to + 100, and the third 
channel (b, from blue ( − 100) to yellow ( + 100)) was also 
converted to half and defined from 0 to + 100 (Fig.  2b, 
e). The masked images were converted to binary format 
(Fig.  2c, f ). With the use of this strategy, the black pix-
els were an indicator of the range of cold colors (from 

the light illumination to the dark green and blue), and 
the white pixels were an indicator of the range of warm 
colors (from the light illumination to the dark red and 
yellow). Finally, the color proportion of the black to 
white pixels as a sign of the tolerance ratio (TOR) and the 
color proportion of the white to black pixels as a sign of 
the stress ratio (STR) were calculated for each plot and 
saved in a text file. The defined MATLAB function and 
the written code are provided in Additional file 3: Scripts 
S1 and S2.

Data analysis
Analysis of variance (ANOVA) was carried out for each 
phenotype under TDS and WW conditions separately 
using the proc mixed procedure in SAS software version 
9.4 [44]. The data analysis model was as follow:

Fig. 2  Image processing overview to assess tolerance and stress ratios under terminal drought stress (TDS) and well-watered (WW) conditions 
in wheat. a and d are cropped RGB images taken two weeks after drought stress induction under TDS and WW conditions, respectively. b and 
e are masked images in the Lab color space using defined function under TDS and WW conditions, respectively. c and f are masked images 
converted to binary format under TDS and WW conditions, respectively. Using this strategy, the black pixels represent non-dry tissues and the white 
pixels indicate dried tissues. The tolerance ratios were estimated as Tolerance ratio (TOR) = (Black pixels)/(White pixels)   and the stress ratios as 
Stress ratio (STR) = (White pixels)/(Black pixels)
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where yijk represents the observed phenotype of the ith 
genotype at the jth replication of the kth block within 
the jth replication, µ represents the overall mean, gi 
indicates the genetic effect of the ith genotype, rj indi-
cates the effect of the jth replication, bk(j) shows the kth 
block effect within the jth replication and εijk shows the 
residual effect following N (0, σ 2

ε  ). All effects were consid-
ered as random. The estimation of variance components 
was performed by the proc varcomp procedure, whereas 
all effects were considered as random. Heritability ( H2 ) 
estimates were calculated based on each accession mean 
with an assumption of independence of effects using the 
following equation:

where σ 2
g  , σ 2

ε  , and r represent the genotypic variance, 
residual variance, and the number of replications, respec-
tively [45]. Best linear unbiased predictions (BLUPs) of 
genetic effect for each genotype were estimated under 
TDS and WW conditions using the R package lme4 [46] 
in the same model as described for the phenotypic ana-
lyzes. Then, the BLUPs were used for GP assessments.

GP strategy
For five-fold cross-validation (CV), 20% of accessions 
were randomly assigned to a VS, whereas all of the 
remaining genotypes were used as a TS. The whole pro-
cess was repeated 100 times for each GP (The Bayesian 
analyses were implemented along with 10,000 iterations 
and 1000 burn-ins). The CMMS was used as a marker 
set for assessing genomic estimated breeding values 
(GEBVs). The accuracy of the GP was estimated as Pear-
son’s correlation coefficient among GEBVs and BLUPs 
over TS and VS. The average of accuracies was reported 
across folds and repeats [47]. The GPs were implemented 
with seven different methods including genomic best lin-
ear unbiased prediction (GBLUP), ridge regression-best 
linear unbiased prediction (RR-BLUP), Bayesian A (BA), 
Bayesian B (BB), Bayesian C π (BC π ), Bayesian LASSO 
(BL), and Bayesian ridge regression (BRR) in iPat soft-
ware [48]. A brief review of the GP methods is provided 
by Juliana et al. [49].

Four univariate (UV) GP models were defined. Five 
phenotypes (DTH, DTM, DHTM, PH, and GY) were 
evaluated in each of the UV models under TDS and 
WW conditions, separately. The UV1 model did not 
contain any covariate. TOR as a covariate was included 
in the UV2 model. STR as a fixed effect was included in 
the UV3 model. Both TOR and STR as fixed effects were 
included in the UV4 model.

yijk = µ+ gi + rj + bk(j) + εijk

H2
= σ 2

g /(σ
2
g + σ 2

ε /r)

In total, 280 analyses were conducted including 4 UV 
models, 5 phenotypes, 2 irrigation conditions, and 7 GP 
methods.

Results
Field conditions
Plantings were conducted at the Kheirabad Agricultural 
Research Station in Zanjan province in the middle of 
October and weather conditions were recorded during 
the cropping season (Additional file 4: Figure S2). Zanjan 
province is located in a cold semi-arid climate zone.

Population structure and distribution of molecular markers
The existence of two main subpopulations was identified 
using the ΔK statistic (Additional file 5: Figure S3). The 
cluster membership coefficients (Q) indicated that the 
SBP-I contained 77 cultivars and 71 landraces, and the 
SBP-II included 128 landraces and ten cultivars (Addi-
tional file  6: Table  S3). In the whole association panel, 
the highest number of markers was on chromosome 2B 
(419), while the lowest number of SNPs was on chro-
mosome 4D (34) (Table 1). The genetic map length was 
the longest for chromosome 3A (171.063 cM), while the 
shortest length was for chromosome 2D (85.027  cM) 
(Table  1). The highest marker density was on chromo-
some 2B (3.76 Marker/cM), while the lowest marker den-
sity was on chromosome 4D (0.38 Marker/cM) (Table 1). 
The B genome had the highest number of markers (2197), 
followed by the A (1794) genome and the D genome 
(794) (Table 1).

Phenotypic data summary
The descriptive statistics, variance parameters ( σ 2

G and 
σ 2
E ), and heritability ( H2 ) were estimated for all traits 

under TDS and WW conditions, separately (Table 2). All 
traits had higher phenotypic values under the WW con-
ditions (except STR) compared to the TDS conditions 
(Table  2). In addition, the higher estimates of σ 2

G , σ 2
E , 

and H2 were observed for all traits (except STR) under 
the WW conditions (Table 2). Pearson correlation coef-
ficients were calculated for all traits under both TDS 
and WW conditions (Table  3). The DTH and DHTM 
indicated the highest correlations under TDS and WW 
conditions (−  0.68 and −  0.73, respectively) (Table  3). 
Furthermore, the DTH and PH were correlated under 
TDS and WW conditions (0.57 and 0.60, respectively) 
(Table 3). The DTM and DHTM were positively (0.58 and 
0.44, respectively) correlated under TDS and WW condi-
tions (Table 3). However, the DHTM and PH were nega-
tively (− 0.35 and − 0.40, respectively) correlated under 
TDS and WW conditions (Table 3). The GY correlation 
with DHTM was low under TDS and WW conditions 
(0.19 and 0.20, respectively) (Table 3). TOR had positive 
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correlation with DTM (0.32) under TDS conditions, and 
with DTH (0.19), DTM (0.28), and PH (0.19) under WW 
conditions (Table 3). STR demonstrated negative correla-
tions with DTM (−  0.36 and −  0.26) and TOR (−  0.46 
and − 0.27) under TDS and WW conditions, respectively 
(Table 3).

GP
The prediction accuracies varied from −  0.06 to 0.45 
(Table  4). None of the traits indicated high prediction 
accuracy in the UV1 model, where no fixed effect was 
utilized in the GP models to estimate GEBVs (Table  4). 
The prediction accuracy was increased for DTH (0.19), 
DTM (0.39), DHTM (0.16), PH (0.11) and GY (0.16) 
under TDS conditions and for DTH (0.23), DTM (0.37) 
and PH (0.23) under WW conditions using the UV2 
model, where TOR was included as a covariate in the GP 
models (Table  4). Further, the prediction accuracy was 

improved for DTH (0.16), DTM (0.42), DHTM (0.21), 
PH (0.15) and GY (0.13) under TDS conditions and for 
DTM (0.36), DHTM (0.23) and GY (0.19) under WW 
conditions using the UV3 model, where STR served as 
a fixed effect in the GP models (Table 4). The prediction 
accuracy was higher for DTM (0.45) under TDS condi-
tions and for DTM (0.42), DHTM (0.23), PH (0.25) and 
GY (0.19) under WW conditions using the UV4 model, 
where both TOR and STR were included as covariates in 
the GP models (Table 4). None of the highest of accura-
cies was identified using the BA and BB methods in the 
UV2, UV3, and UV4 models (Table  4). The prediction 
accuracies of the DTM were increased three to four times 
using the UV2, UV3, and UV4 models under both TDS 
and WW conditions (Table 4).

Discussion
Phenotypes with stable heritability are less sensitive to 
the GP method [50, 51]. DTH, PH, and NDVI showed 
high heritability and were used as fixed effects in some 
studies [3, 23, 29, 45]. Heritability and correlation among 
traits are important factors to attain higher prediction 
accuracy [3]. High broad‐sense heritability (>  0.57) was 
observed for wheat vegetation indices with the use of 
unmanned aerial systems (UAS) [23]. In addition, the 
visual and digital assessments showed a 0.95 correlation 
for the physiological yellowing in wheat, whereas the 
digital assessments had 0.76 heritability [11]. In the pre-
sent study, regardless of the correlation values, all agro-
nomic traits had a positive correlation with TOR and a 
negative correlation with STR under both TDS and WW 
conditions, respectively. The heritability of TOR was 
0.76 under TDS conditions, and the heritability of STR 
was 0.29 under WW conditions. As a conclusion, posi-
tive correlation and high heritability of TOR with DTM 
under TDS conditions, as well as negative correlation and 
low heritability of STR with DTM under WW conditions 
indicated the high adaptability of the association panel to 
drought stress.

In this study, the whole association panel was a mixed 
population (87 cultivars and 199 landraces). More accu-
rate results were reported from mixed populations 
because more diversity in TS and more inbred genotype 
in VS would be available during the CVs [52–55]. In the 
breeding programs, a diverse or an inbred VS would be 
compared with a large and diverse TS containing high 
genetic diversity [53]. This approach will prevent the 
occurrence of a full relationship among genotypes in 
TS and VS, and consequently, more reliable results will 
be obtained [56, 57]. Higher marker density will provide 
better prediction accuracy [58, 59]. However, if MS cov-
ers the whole genome appropriately, the GP can predict 
all QTLs with stable linkage disequilibrium (LD) across 

Table 1  Distribution of  molecular markers 
in  an  association panel including  286 Iran bread wheat 
accessions

Genome Chromosome Molecular markers distribution

Number 
of markers

Genetic 
map 
length 
(cM)

Marker 
density 
(marker/
cM)

A genome 1A 261 117.878 2.21

2A 314 92.517 3.39

3A 227 171.063 1.33

4A 195 152.121 1.28

5A 190 111.967 1.70

6A 246 99.391 2.48

7A 361 135.625 2.66

Total 1794 880.562 2.04

B genome 1B 299 113.814 2.63

2B 419 111.506 3.76

3B 364 121.909 2.99

4B 110 102.696 1.07

5B 349 155.004 2.25

6B 301 97.872 3.08

7B 355 118.551 2.99

Total 2197 821.352 2.67

D genome 1D 166 123.978 1.34

2D 140 85.027 1.65

3D 97 126.448 0.77

4D 34 90.119 0.38

5D 74 170.702 0.43

6D 121 121.074 1.00

7D 162 157.445 1.03

Total 794 874.793 0.91

Whole genome 4785 2576.707 1.85
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subpopulations [28, 60, 61]. The present study used the 
markers which were common between subpopulations 
to obtain higher prediction accuracy [62]. RR-BLUP and 
GBLUP are mathematically equivalent [49]. RR-BLUP 
demonstrates more reliable results for QTLs with small 
effects [50]. If TS is closely related to the selected candi-
dates, the GBLUP method will obtain a more nonadditive 
genetic variance [63]. The Bayesian methods can provide 
better results when the number of QTLs decreases and 
effect increases [51]. The genetic architecture of pheno-
types would change GEBV [64, 65]. In addition, adding 

secondary traits or covariates to the UV and multivariate 
(MV) GP models would increase prediction accuracy [3, 
29, 45]. The results of the present study showed that all of 
the GP methods had the highest prediction accuracy for 
DTM (0.38–0.45) when both TOR and STR were used in 
the UV4 model under both TDS and WW conditions.

The CT and NDVI as secondary traits in wheat 
improved the prediction accuracy of GY by 70% [29]. 
Furthermore, the manually taken images indicated 0.61–
0.78 correlation with the visual scoring of the physiologi-
cal yellowing in wheat [11]. The GP accuracy was about 

Table 2  Descriptive statistics and  variance parameters for  seven traits in  an  association panel including  286 Iran 
breed wheat accessions grown under  terminal drought stress (TDS) and  well-watered (WW) conditions in  semi-arid 
environments, Iran

σ 2

G
 genotype variance, σ 2

E
 residual variance, H2 heritability, DTH days to heading, DTM days to maturity, DHTM duration of heading-to-maturity, PH plant height (cm), GY 

grain yield (kg/m2), TOR tolerance ratio, STR stress ratio

Condition Trait Descriptive statistics Variance parameters

Min Mean Max σ
2

G
σ
2

E
H
2

TDS DTH 196 217.22 230 29.01 8.35 0.87

DTM 251 264.37 276 10.38 8.58 0.71

DHTM 27 47.17 68 2.10 2.04 0.67

PH 65 114.28 151 18.33 10.14 0.78

GY 0.16 0.29 0.59 0.15 0.14 0.68

TOR 0.13 3.55 30.81 5.36 11.97 0.47

STR 0.03 0.72 7.82 0.41 0.26 0.76

WW DTH 200 217.26 230 30.91 8.64 0.88

DTM 256 270.96 280 15.27 9.40 0.76

DHTM 36 53.71 71 3.58 2.85 0.72

PH 68 118.36 164 26.35 11.29 0.82

GY 0.19 0.37 0.71 0.18 0.15 0.71

TOR 0.36 33.16 503.03 606.33 1900.4 0.39

STR 0.00 0.13 2.77 0.01 0.05 0.29

Table 3  Pearson correlation coefficients for  seven traits in  an  association panel including  286 Iran bread wheat 
accessions grown under terminal drought stress (TDS) and well-watered (WW) conditions in semi-arid environments, Iran

The numbers under the diagonal indicate correlation under TDS conditions. The numbers above the diagonal indicate correlation under WW conditions

DTH days to heading, DTM days to maturity, DHTM duration of heading-to-maturity, PH plant height (cm), GY grain yield (kg/m2), TOR tolerance ratio, STR stress ratio
ns   non-significant
*  P ≤ 0.05
**  P ≤ 0.01

Trait DTH DTM DHTM PH GY TOR STR

DTH 0.30** − 0.73** 0.60** − 0.11* 0.19** − 0.02 ns

DTM 0.21** 0.44** 0.23** 0.14** 0.28** − 0.26**

DHTM − 0.68** 0.58** − 0.40** 0.20** 0.03 ns − 0.17**

PH 0.57** 0.17** − 0.35** − 0.12* 0.19** − 0.02 ns

GY − 0.10* 0.14** 0.19** − 0.11* 0.02 ns − 0.16**

TOR 0.12** 0.32** 0.14** 0.09* 0.12** − 0.27**

STR − 0.12** − 0.36** − 0.17** − 0.13** − 0.10* − 0.46**
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0.30 using CT and NDVI as covariates in the UV mod-
els [45]. In this study, the prediction accuracies were 
increased to 0.39 and 0.42 for DTM using TOR and STR 
as separated covariates in the UV2 and UV3 models, 
under TDS conditions compared to the UV1 GP model. 
Further, the prediction accuracies increased for DTM to 
0.37 and 0.36 using TOR and STR as separated covari-
ates in the UV2 and UV3 models, under WW conditions 
compared to the UV1 GP model. A combination of TOR 
and STR as joint covariates in the UV4 model increased 
prediction accuracies for DTM to 0.45 and 0.42 under 
TDS and WW conditions, respectively. Therefore, the 

present study concluded that adding TOR and STR to the 
UV GP models can improve prediction accuracies. The 
above-mentioned results showed an improvement in the 
GP accuracy for DTM in a cost-effective way.

Conclusions
The present study activated an ML-enabled image analy-
sis pipeline to identify TOR and STR impact on the GP 
of the DTM under TDS and WW conditions. The results 
revealed the reliability of this pipeline for quantifying 
small phenotypic variations and integrating its advan-
tages in genomic studies. The high prediction accuracy 

Table 4  Genomic prediction (GP) accuracy for  five agronomic traits in  an  association panel including  286 Iran bread 
wheat accessions grown under terminal drought stress (TDS) and well-watered (WW) conditions using high-throughput 
image analysis results as fixed effects in the univariate (UV) GP models

The average of accuracies was reported across folds and repeats. No covariate was used in the UV1 model. TOR as a covariate was used in the UV2 model. STR as a 
covariate was used in the UV3 model. Both TOR and STR as covariates were utilized in the UV4 model

GBLUP genomic best linear unbiased prediction, RR-BLUP ridge regression-best linear unbiased prediction, BA Bayesian A, BB Bayesian B, BC π Bayesian C π , BL 
Bayesian LASSO, BRR Bayesian ridge regression, DTH days to heading, DTM days to maturity, DHTM duration of heading-to-maturity, PH plant height (cm), GY grain 
yield (kg/m2), TOR tolerance ratio, STR stress ratio

Model Method TDS WW

DTH DTM DHTM PH GY DTH DTM DHTM PH GY

UV1 RR-BLUP 0.10 0.10 0.10 0.06 0.06 0.09 0.08 0.04 0.06 0.05

GBLUP 0.12 0.10 0.10 0.06 0.07 0.09 0.08 0.04 0.06 0.06

BA 0.11 0.11 0.10 − 0.05 0.11 0.09 0.09 0.02 − 0.04 0.12

BB 0.11 0.11 0.10 − 0.02 0.10 0.10 0.09 0.03 − 0.02 0.12

BC π 0.12 0.11 0.10 − 0.01 0.10 0.09 0.09 0.04 − 0.01 0.11

BL 0.11 0.12 0.10 − 0.06 0.08 0.11 0.08 0.03 − 0.04 0.12

BRR 0.11 0.10 0.10 − 0.03 0.10 0.10 0.09 0.03 − 0.01 0.11

UV2 RR-BLUP 0.15 0.38 0.16 0.11 0.15 0.23 0.37 0.01 0.23 − 0.03

GBLUP 0.17 0.38 0.15 0.10 0.12 0.21 0.36 − 0.01 0.23 − 0.03

BA 0.18 0.37 0.15 0.01 0.15 0.19 0.32 0.03 0.13 0.11

BB 0.18 0.38 0.15 0.02 0.15 0.21 0.34 0.03 0.16 0.10

BC π 0.18 0.38 0.16 0.03 0.16 0.22 0.34 0.03 0.18 0.09

BL 0.19 0.37 0.15 − 0.02 0.14 0.19 0.34 0.02 0.10 0.07

BRR 0.19 0.39 0.16 0.04 0.16 0.22 0.34 0.04 0.19 0.09

UV3 RR-BLUP 0.15 0.42 0.19 0.15 0.12 − 0.05 0.36 0.23 − 0.06 0.19

GBLUP 0.14 0.42 0.19 0.13 0.09 0.01 0.35 0.22 − 0.02 0.17

BA 0.15 0.39 0.20 0.02 0.12 0.09 0.31 0.17 − 0.04 0.18

BB 0.15 0.41 0.20 0.05 0.12 0.08 0.31 0.18 − 0.02 0.18

BC π 0.15 0.41 0.21 0.06 0.13 0.08 0.32 0.19 − 0.01 0.18

BL 0.16 0.40 0.20 0.01 0.11 0.06 0.30 0.16 − 0.05 0.18

BRR 0.16 0.41 0.21 0.07 0.13 0.08 0.32 0.20 − 0.01 0.19

UV4 RR-BLUP 0.14 0.44 0.17 0.14 0.13 0.22 0.42 0.23 0.25 0.18

GBLUP 0.16 0.44 0.18 0.12 0.12 0.21 0.41 0.21 0.24 0.16

BA 0.17 0.44 0.19 0.02 0.15 0.20 0.38 0.16 0.15 0.18

BB 0.17 0.44 0.19 0.05 0.14 0.20 0.39 0.17 0.18 0.18

BC π 0.17 0.44 0.20 0.06 0.14 0.21 0.40 0.19 0.20 0.17

BL 0.17 0.43 0.20 − 0.01 0.16 0.20 0.38 0.13 0.11 0.19

BRR 0.18 0.45 0.20 0.07 0.15 0.21 0.39 0.19 0.20 0.18
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proves the benefit of utilizing TOR and STR as fixed 
effects in the UV GP models for DTM. The presented 
high-throughput image analysis pipeline can be general-
ized for evaluating other crops. In addition, the installa-
tion of this pipeline into aerial and ground-based systems 
promises to accelerate genetic gain in breeding programs.
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