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Abstract 

Background: Restricting transpiration under high vapor pressure deficit (VPD) is a promising water-saving trait for 
drought adaptation. However, it is often measured under controlled conditions and at very low throughput, unsuit-
able for breeding. A few high-throughput phenotyping (HTP) studies exist, and have considered only maximum 
transpiration rate in analyzing genotypic differences in this trait. Further, no study has precisely identified the VPD 
breakpoints where genotypes restrict transpiration under natural conditions. Therefore, outdoors HTP data (15 min 
frequency) of a chickpea population were used to automate the generation of smooth transpiration profiles, extract 
informative features of the transpiration response to VPD for optimal genotypic discretization, identify VPD break-
points, and compare genotypes.

Results: Fifteen biologically relevant features were extracted from the transpiration rate profiles derived from load 
cells data. Genotypes were clustered (C1, C2, C3) and 6 most important features (with heritability > 0.5) were selected 
using unsupervised Random Forest. All the wild relatives were found in C1, while C2 and C3 mostly comprised high TE 
and low TE lines, respectively. Assessment of the distinct p-value groups within each selected feature revealed highest 
genotypic variation for the feature representing transpiration response to high VPD condition. Sensitivity analysis on a 
multi-output neural network model (with R of 0.931, 0.944, 0.953 for C1, C2, C3, respectively) found C1 with the high-
est water saving ability, that restricted transpiration at relatively low VPD levels, 56% (i.e. 3.52 kPa) or 62% (i.e. 3.90 kPa), 
depending whether the influence of other environmental variables was minimum or maximum. Also, VPD appeared 
to have the most striking influence on the transpiration response independently of other environment variable, 
whereas light, temperature, and relative humidity alone had little/no effect.

Conclusion: Through this study, we present a novel approach to identifying genotypes with drought-tolerance 
potential, which overcomes the challenges in HTP of the water-saving trait. The six selected features served as proxy 
phenotypes for reliable genotypic discretization. The wild chickpeas were found to limit water-loss faster than the 
water-profligate cultivated ones. Such an analytic approach can be directly used for prescriptive breeding applica-
tions, applied to other traits, and help expedite maximized information extraction from HTP data.
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Background
To reach maturity, crops under water stress must match 
water consumption to water availability [1]. For the 
majority of crops, and particularly those of the semi-
arid tropics, this implies having to deal frequently with 
high Vapor Pressure Deficit (VPD) in the air, which cre-
ates a situation of an atmospheric water stress [2, 3]. In 
this regard, ‘the capacity to restrict or limit transpiration 
under high VPD’ is a promising trait that alleviates that 
stress, allows water saving, and increases yield through 
sustained growth under terminal drought conditions [2, 
4]. Many researchers suggest the inclusion of this trait in 
the cultivars typically grown in water-limited environ-
ments [5, 6].

So far, the capacity to restrict transpiration under 
increasing VPD conditions has been mostly measured 
in growth chambers using constant light and increas-
ing VPD levels [7–9]. The features used to compare 
genotypes were the slopes of the linear models repre-
senting the transpiration response, and possible VPD 
breakpoints where those slopes would change. Further-
more, in some cases VPD is increased by altering only the 
relative humidity percentage [10], although temperature 
is also known to influence the ability to control transpi-
ration in response to VPD [11]. Such analyses not only 
suffer from a very low throughput, but the transpiration 
profiles obtained thereof only partially represent the 
natural conditions (since light or temperature remain 
constant during those experiments). Therefore, the theo-
retical representation of this trait (i.e. a limited maximum 
transpiration rate (TR) value in the high VPD hours of 
the day) described in a crop model [4] is also partially 
featured. Only few measurements have been done under 
natural conditions [12–16], with both temperature and 
relative humidity changing simultaneously over the 
course of the day. Those studies measured the expression 
of genotypic differences in the transpiration response to 
VPD only from the maximum transpiration values under 
high VPD conditions, and also had low throughput. No 
study has attempted to exhaustively identify additional 
features that could represent the transpiration profile dif-
ferences under high VPD, at a high throughput level and 
precision, and in a systematic manner.

Existing High-Throughput Phenotyping (HTP)-based 
analysis of canopy-conductance mechanisms majorly 
employ daily estimates of evapotranspiration (ET) [17, 
18]. However, under field conditions canopy-conduct-
ance patterns among plants are quite dynamic and 

diverse within a day due to simultaneous changes in envi-
ronmental variables [13, 19]. Capturing that diversity 
requires measurement of transpiration at high frequen-
cies [19]. Until recently, very few studies have meas-
ured transpiration at high frequencies (although under 
controlled conditions) viz. 3  min [20] and 10  min [15]. 
Therefore, in this paper, data from the HTP platform, 
LeasyScan (LS) [13] is used. The LS experimental set up 
has been expanded to 1488 load cells (LC), the gravimet-
ric sensors that weigh each tray or sector every 15  min 
from which ET is calculated. Plant leaf area is simul-
taneously measured through 3-dimensional (3D) laser 
scanners, and allows the assessment of in-vivo canopy 
conductance traits. Thus, the LS platform enables HTP of 
crop ET over time.

However, data generated in such platforms is not only 
huge but also contain noise, that mostly occur due to 
occasional fluctuations in the millivolt signals produced 
by the load cells, which alter the load cell readings. Noise 
also prevails around irrigation or rain events that cause 
sharply increasing and decreasing trajectories in the 
profiles of sector weights [13, 20]. Therefore, conver-
sion of raw load cell data into interpretable transpiration 
responses requires: (i) meticulous de-noising of the load 
cell readings considering the variations in ambient con-
ditions; (ii) developing clean transpiration profiles from 
which features that distinguish genotypic differences in 
the transpiration response to VPD can be systematically 
extracted. The existing articles on HTP of such func-
tional traits have not yet considered the importance of 
these aspects, and have used simple averaging of load 
cell readings to generate smooth transpiration profiles 
[15, 20]. This limits the information that can be gath-
ered from these transpiration profiles, for instance how 
the environmental factors drive the changes in water loss 
patterns. Thus, there remains a gap in the availability of 
generic and efficient approaches to enable convenient 
handling of such voluminous HTP data, and maximizing 
information extraction.

Therefore, considering these challenges and gaps, a 
machine learning (ML) -based framework is presented 
that majorly employs two state-of-the-art ML algorithms, 
Random Forest (RF) and Neural Networks (NN) besides 
others. In this study, RF is employed for optimally clus-
tering the genotypes and identifying the most signifi-
cant transpiration rate (TR) features, while NN is used 
to model the relationships between TR of each cluster 
and the weather variables, at different levels of changing 
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ambient conditions. RF is an ensemble ML algorithm 
that uses bagging (random subsets of samples; here 
genotypes) and feature randomness (random subsets of 
TR features, in this case) to train a multitude of uncor-
related trees, independently. The final model outcome is 
based on the decisions of the ensemble as a whole, and 
not as a single tree model. Thus, RF inherently handles 
the limitations of sensitivity and bias through bagging 
and feature randomness, respectively [21]. It is also one 
of the best-known feature selection algorithms [22, 23], 
besides being implemented for both supervised and 
unsupervised learning [23, 24]. NN, on the other hand is 
one of the best suited algorithms for efficient modeling 
of complex relationships between multiple responses and 
multiple predictors e.g. plant-environment interactions 
[25–27]. The network can be designed with several layers 
between the inputs and the output(s), where each layer 
(hidden) leverages some activation function to succes-
sively distill important patterns from its inputs and trans-
mit to the next layer. In essence, by controlling the hidden 
layers and activation functions, any level of complexities 
or non-linearities can be precisely captured by the net-
work. Finally, the user is offered with the most informa-
tive patterns of the data while also being abstracted 
from the details of signal transmissions among the neu-
rons. Both RF and NN make no prior assumptions of the 
underlying structure of data, and are therefore preferred 
for modeling non-linear relations like plant-environment 
interactions [23, 28].

The specific objectives of the study are thus, to:

 i. Seamlessly convert high-frequency load cell data 
into continuous TR profiles (without compromis-
ing the frequency of the original load cell time 
series),

 ii. Extract and select potential data-driven TR fea-
tures, that could best serve as proxy phenotypes 
for clustering genotypes based on the differences in 
their water-saving trait,

 iii. Precisely quantify the breakpoint (i.e. the VPD lev-
els at which maximum TR of each cluster starts 
limiting) through sensitivity analysis of the plant-
environment interactions.

Materials and methods
Test‑site and HTP data description
The time series data set analyzed in this work comprised 
load cell weights collected every 15  min’ interval, from 
20th February to 6th March 2017 (see Additional file 1: 
Table  S1 for details on observed environmental con-
ditions in that duration). The dataset represented the 
growth profile of 48 chickpea genotypes, measured in an 

Alpha-Lattice design with 4 replications, at the LS HTP 
platform, ICRISAT-Patancheru (17.5111° N, 78.2752° 
E). Plants were grown in large trays (40 × 60 × 30  cm, 
length–width-height) filled with vertisol collected from 
the ICRISAT farm, and containing 8 plants per tray. The 
trays in which plants were cultivated were adjacent to 
one another and were arranged in blocks of 12 × 2 trays 
(4.8  m × 1.3  m), so that the canopy of one tray eventu-
ally joined the canopy of the following tray and created a 
field-like canopy over the extent of each block. Planting 
was done on 6th February so that plants were at a veg-
etative stage for the time series data set considered here. 
Soil was fertilized with di-ammonium phosphate (DAP) 
at sowing at a rate of 6 g per tray. Trays were maintained 
fully irrigated throughout the experiment with a drip irri-
gation system, every 3–4 days back to field capacity, and 
received 4 irrigations in the timeframe of the analysis (see 
Fig.  1a). The 48 genotypes included 16 wild relatives of 
chickpea (i.e. the wild group) and 32 cultivated chickpea 
genotypes. Among the cultivated lines, 12 were culti-
vated checks, 10 genotypes were previously found to have 
high transpiration efficiency (TE) i.e. the highTE group, 
whereas the other 10 genotypes had low TE, the lowTE 
group (Vadez, personal communications). From these TE 
differences, those genotypes could be expected to have 
different patterns of transpiration under high VPD [1].

Extraction of TR from load cells time series
Conversion of load cells observations to evapotranspiration 
time series
Load cells data collected from the platform were noisy 
at times, due to noise inherent to the electronic systems 
(low frequencies, or amplitude, over the entire duration). 
Other fluctuations occurred during the days of irriga-
tion with anomalous spikes in sector weights caused by 
watering and drainage of excess water (i.e. high frequen-
cies, corresponding to large changes in the patterns of the 
load cell weights, that are present for short durations, for 
instance when irrigation water is applied and enter the 
trays, or when drainage occurs post-irrigation). Hence, it 
was important to pre-process or de-noise the raw data in 
three stages: 1st: Removal of the extremely noisy or spiky 
points that occurred during irrigation, prior to convert-
ing the load cell observations into evapotranspiration 
profiles  (ETr); 2nd: Filtering the remaining noisy data 
points from the variations in  ETr that corresponded with 
the sudden changes in ambient conditions; 3rd: Smooth-
ing the resultant  ETr profiles.

For the first stage, a wavelet based approach, Maxi-
mum Overlap Discrete Wavelet Transform (MODWT) 
was implemented, since wavelets can inherently capture 
localized information in any signal through the scale 
and translation parameters in the wavelet function, that 
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control the location of the wavelet at any given point of 
time. Hence, wavelets are regarded as one of the most 
suitable methods to de-noise a time series that con-
tains high frequencies in short time periods [29, 30], i.e. 
those caused during irrigation events for instance. Here, 
MODWT was preferred to Discrete Wavelet Trans-
form method, since MODWT allows direct correspond-
ence between the time series and its decomposition at 
each level, unlike Discrete Wavelet Transform [31]. The 
Daubechies wavelet (db2) was executed on the load cell 
time series of each genotype up to a maximum of eight 
levels, and the apt level of decomposition was chosen 
such that data was de-noised without substantial loss of 
information i.e. only the high frequency coefficients are 
removed and the remaining variations are retained. In 

wavelet decomposition, the coefficients get smoother 
as the wavelet level increases [32]. Therefore, through 
trial and error, it was found that the smoothness of the 
data series at the third level seemed most appropri-
ate (for eliminating anomalies from irrigation events) 
[33, 34]. The locations of the boxplot-based outliers in 
the MODWT coefficients of the first three levels were 
then retrieved and the corresponding observations were 
removed from the dataset. The missing values were lin-
early interpolated, and differenced at lag 1 to obtain the 
 ETr profile with 15 min frequency, of each genotype.

For the second stage, it was essential to first distin-
guish random noise from fluctuations caused by changes 
in environmental variables, since frequent changes in 
temperature (T in °C), relative humidity (RH in %), VPD 

Fig. 1 a An example of raw load cell data (black lines) and its time series after MODWT-based outlier removal (red points) shown for the duration 
19.02—07.03.2017. The ETr of wild (G5), highTE (G28) and lowTE (G34) genotypes obtained b before and c after smoothing are overlaid with the 
reference ET  (ET0) time series and shown for the duration 22—25.02.2017. d Theoretical representation of the water-saving trait that suggests 
restriction of maximum transpiration rate at high VPD conditions
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(in kPa), wind speed (WS in  ms−1) and solar radiation 
(RAD in  MJm−215  min−1) under non-controlled condi-
tions, can lead to sudden changes in  ETr [19]. Therefore, 
although complete de-noising of the load cell data could 
be done through the wavelet method, the Penman–Mon-
teith evapotranspiration,  ET0 (mm/15  min) was chosen 
as the benchmark to selectively filter the  ETr profiles. 
 ET0 was computed every 15 min, using the weather vari-
ables collected from the Campbell sensors installed at the 
LS platform. The Penman Monteith equation  (ET0) was 
adapted (Eq. 1) to represent the 15 min interval by divid-
ing the constant 900 by 96 (i.e. the frequency per day), as 
suggested by Zotarreli et al. [35].

where

where, ETo = reference evapotranspiration (mm 
15 min−1), Rn = the net radiation flux  (MJm−215 min−1), 
G = the sensible heat flux into the soil  (MJm−215 min−1), 
γ = psychrometric constant (kPa °C−1), T  = temperature 
(°C), WS = Wind Speed  (ms−1), es = saturation vapor 
pressure (kPa), ea = actual vapor pressure (kPa), (es − ea) 
= saturation vapor pressure deficit (kPa), RH = relative 
humidity (%).

The ratios of observed  ETr to  ET0 were subsequently 
calculated, and the threshold ratio of 1.0 for day-time 
(solar radiation greater than 0) and 1.5 for night-time 
(solar radiation equal 0) were empirically identified for 
the filtering process. Every observation which resulted in 
a ratio beyond 1.0 or 1.5, for day and night-time respec-
tively, was filtered out before smoothing the  ETr time-
series. Filtered data were then interpolated as explained 
above. An average of 110 data points was removed per 
sector. So, given that each sector comprised 1440 data 
points in total (15 days × 96 values/day), 7.6% values were 
removed per sector.

In the third stage, the thresholded  ETr profiles were 
smoothed using the cubic smoothing splines [36]. In 
this study, the smoothing parameter, λ was determined 

(1)

ETo =

0.408�(Rn − G)+ γ

(

900/96
T+273

)

WS(es − ea)

�+ γ (1+ 0.34WS)

(2)� =

4098

[

0.6108exp
(

17.27×T
T+237.3

)]

(T + 237.3)2

(3)es = 0.6108exp

[

17.27× T

T + 237.3

]

(4)ea = es

[

RH

100

]

by the generalized cross-validation method and 20 
knots were used in fitting polynomials to the  ETr time 
series of all the sectors. The generalized cross-validation 
(GCV), which reportedly generates the optimal degree 
of smoothing [37] is implicitly included in the R routine 
used for implementing cubic smoothing splines [36–39]. 
Several previous researches [40, 41] have also shown the 
suitability of cubic smoothing splines for uniformly sam-
pled time series analysis. The chosen set of procedures 
also enabled computational-convenience in curating raw 
data, an essential aspect of HTP [42].

Extraction of TR from  ETr
Each smoothed  ETr profile was submitted to Eq. 5 to cal-
culate Transpiration  (Tr) from  ETr. The Leaf Area Index 
(LAI) was calculated from the empirical relationship that 
correlates the observed leaf area (LA) values with those 
obtained from the 3D laser scanners of the LS platform 
[13]. The observed LA was also calculated from those 
regressions, empirically such that Observed LA = 2.5* 
3DLA, where 3DLA is the three dimensional leaf area, 
i.e. the measurement of the leaf area taken by the scan-
ner. The value of β in Eq. 5 was taken as 0.463 which is 
considered valid for majority of agricultural canopies 
[43]. The  Tr values thus obtained were converted to Tran-
spiration Rate ( TR , i.e. the transpiration per unit of leaf 
area) by dividing  Tr of each day with the corresponding 
Observed LA (Eq. 6). At the LS, LA is scanned every two 
hours, however, the maximum LA of each day was used, 
assuming that the changes in LA and its effect on TR in 
the course of a day would be close to negligible.

Preliminary analysis of TR vs VPD
After the TR profiles were extracted, the quality of those 
values (obtained through preprocessing) was examined to 
confirm that the differences between the three putatively 
known groups (wild, highTE and lowTE) were retained, 
and remained consistent across the days. Therefore, in 
light of the desired water-saving trait, a holistic analysis 
between the three groups was carried out using maxi-
mum TR and the corresponding maximum VPD values of 
each day, as per the conventional approach to identifying 
genotypic differences [12, 44]. First, maximum TR was 
regressed on maximum VPD, individually for each group, 
and the overall trend of the relation was studied. Subse-
quently, to test the significance of the differences among 
the groups and the consistency of those differences 

(5)Tr =

[(

1− e−β×LAI
)]

× ETr

(6)TR =
Tr

ObservedLA
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across the crop growth duration, a two-way analysis of 
variance (ANOVA) between the groups and the days was 
carried out using the maximum TR values. The ANOVA 
model used was: yijk = µ+ Gi + Dj + G × Dij + eijk , 
where yijk is maximum TR values of the genotypes pre-
sent in ith group, jth day and kth replicate. Gi , Dj , G × Dij 
and eijk denote the fixed effects of the ith group, the jth 
day, the interaction effect between the ith group and the 
jth day and the residual error term respectively. To further 
explore the between-group differences, the same model 
was implemented between each pair of groups and the 
p-values were used to determine the presence of statisti-
cally-significant differences.

This analysis was however, limited to the three known 
groups (wild, highTE, lowTE) because it was expected 
that the highTE and lowTE groups could differ in their 
TR responses under high VPD conditions, and the wild 
relatives would differ from the cultivated chickpea. The 
remaining 12 genotypes i.e. the cultivated checks were 
not included, since there was no prior information about 
the expected response to high VPD. Therefore, once the 
quality of the extracted TR profiles was authenticated in 
these three groups, clustering and feature selection was 
performed to enable discretization of all the genotypes 
based on the inherent characteristics in their response 
to VPD, and independently from their putative a priori 
grouping.

Clustering genotypes using TR features
TR time Series feature extraction
Feature extraction was performed as part of the second 
objective. A total of fifteen features (Table 1) per sector 
and per day were extracted considering the diurnal cycle 

in Patancheru, Hyderabad during the period of data col-
lection: (i) sun rise occurred between 06:30 and 06:45 h 
and sun set between 19:15 and 19:30 h (here sunrise and 
sunset started when PAR sensor data started giving val-
ues either above or below 1 W m−2); (ii) the VPD effect 
was expected to mostly occur between 10:00 and 15:00 h.

Features 1–5 described day and night TR profiles, fea-
tures 6–14 represented the TR behavior during the high-
est VPD, radiation and temperature period of the day, 
and feature 15 described the similarity between the  ETr 
profile of each sector and  ET0 computed using the cosine 
similarity index, cos.sim.index [45] (Table 1).

Clustering and feature selection
Genotype clustering and feature selection were also a 
part of objective 2, partitioned into three sub-objectives: 
(i) what is the optimal number of clusters inherently pre-
sent among the genotypes; (ii) which genotypes cluster 
together (e.g. which cluster should be selected for crop 
improvement) and (iii) which features best distinguish 
the clusters (i.e. the proxy phenotypes).

(i) The mean of the 15 features (i.e. average of the four 
replications, and across all the days in the time series) 
of each genotype were used for clustering. The optimal 
number of clusters was first identified using the Dunn 
index, an internal cluster validation method. The index 
was computed based on the centroids obtained from the 
Euclidean distance matrix of the entire feature set [46] by 
varying the number of clusters from a minimum of two to 
a maximum of ten. The number of clusters equal to three, 
yielding the largest index value was chosen as optimal, 
and the genotypes were clustered using the unsupervised 

Table 1 Feature description and abbreviation, computed for TR time series of each sector

Feature No Description Abbreviation

1 Total area under curve on each day total.auc

2 Total area under curve between 07:00 and 19:00 h auc.07.19

3 Proportion of area under curve during day time auc.prop.07.19

4 Proportion of area under curve during night time auc.prop.night

5 Slope of the curve from 19:00 to 23:45 h slope.19.23.45

6 Maximum TR maxTR

7 Slope of the curve between 6 data points before maxTR and maxTR (i.e. 90 min) slope.maxTR.6

8 Slope of the curve between 00:00 and 07:00 h slope.00.07

9 Slope of the curve from 07:00 h till it reaches maximum TR slope.07maxTR

10 Curvature or angle of the curve at max TR curvmaxTR

11 Area under curve between 10:00 and 15:00 h auc.10.15

12 Proportion of area under curve between 10:00 and 15:00 h auc.prop.10.15

13 Standard deviation of the TR values between 10:00 and 15:00 h sd.10.15

14 Standard deviation of the TR values between 07:00 and 19:00 h sd.07.19

15 Similarity between the  ETr profile of each sector and Penman Monteith ET cos.sim.index
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Random Forest (uRF) algorithm implemented via rfUtili-
ties package in R [47].

(ii) The RF clustering method actually utilizes a user-
defined conventional clustering procedure to cluster 
the RF dissimilarity matrix (comprising a dissimilarity 
measure between every two samples) and not the raw 
data [24, 48]. In this work, PAM (Partitioning Around 
Medoids) was used for clustering the RF dissimilarity 
matrix [24]. RF dissimilarity is also proven to be scale-
invariant and preferred to Euclidean distance-based clus-
tering, although RF dissimilarity and Euclidean distances 
are shown to correlate closely [49]. To examine the uRF 
model performance, Out-Of-Bag (OOB) error rate i.e. 
the proportion of incorrect predictions of the samples 
(genotypes) left out during bagging (model training) was 
used. And, to obtain the model with the minimum OOB 
error rate, uRF was trained through tenfold cross vali-
dation by sequentially varying the ‘mtry’ parameter (the 
number of random features selected during model train-
ing), from one through ten, while the ‘Number of trees’ 
was selected as 500 [24].

(iii) The features were ranked and then the most 
informative features were selected, based on the Mean 
Decrease in Gini coefficient (MDG) that quantifies the 
degree to which a feature contributes to node homoge-
neity in a tree [50]. Higher the MDG, higher is the loss 
in node homogeneity i.e. poorer is the decision-making 
ability in the absence of that feature [51]. Therefore, 
the variables with the highest estimates of MDG were 
selected as the most important features. On many occa-
sions, such feature selection requires human interven-
tion, and tends to be subjective. Hence, change point 
analysis [52] was employed on the sorted vector of the 
MDG to facilitate systematic feature selection. The num-
ber of desired change points was restricted to one, such 
that the subset of features that lied in the higher ranking 
partition would be the most important [53]. Since MDG 
is a local criterion and used during model training, once 
the model was trained (i.e. the clusters are identified) the 
importance of a feature in correctly predicting the OOB 
(or test) samples of a given class were estimated in terms 
of class-specific Mean Decrease in Accuracy (MDA). 
MDA tells the percentage reduction in overall prediction 
accuracy or increase in the OOB error rate, if a particular 
feature is permuted or excluded [24].

Estimation of heritability and statistical significance 
of the selected features
The biological significance and the genotypic variation 
of the selected features was then investigated using the 
broad sense heritability  (H2) estimates, for crop improve-
ment and breeding applications [23]. The  H2 for each 
feature (each feature vector contained the average across 

all the days) was calculated as an estimate of its biologi-
cal significance, using the formula: σ 2(g ) / (σ 2(g ) + σ 2(e
)), where σ 2(g ) and σ 2(e ) is the genotypic and residual 
variances, respectively, that were derived from the lin-
ear model: y = 1µ+ Zgg + e , where 1 is a vector whose 
all elements are one, and µ is the grand mean. In this 
model, the average of the feature values across all the 
days, y , were modeled in terms of the genotypic values, 
Zgg , (where the vector g contains the random genotypic 
effects and Zg is the associated design matrix) and the 
residuals, e . Thus,  H2 represented the proportion of vari-
ance in the feature described by the genotypic effect.

Analysis of Variance (ANOVA) was then performed 
within each selected feature (the model used was similar 
to that of heritability estimation) and the p-values were 
examined for the presence of statistically-significant 
genotypic effect. The genotypic differences were sub-
sequently examined within each selected feature by the 
pair-wise comparison of genotypes, based on the Tukey-
HSD criterion [54].

Analyzing sensitivity of TR to the environmental variables
This third objective aimed at identifying which among 
the different environmental variables had the maximum 
influence on the TR response. For this, a multi-output 
feed-forward Rectified Linear Unit (ReLU) network 
with 1 hidden layer containing 5 units was built using 
the nnet function in R [55] for three response variables 
(i.e. average TR profile of each of the three clusters) and 
five predictors (T, RH, VPD, RAD, WS). These predic-
tors took 96 values on each day (one value every 15 min), 
and the values of the same time interval were averaged 
across 15 days. The number of epochs (i.e. the number of 
times the entire training data is presented to the model 
for learning) needed to prevent overfitting and the best-
fit model were selected through cross-validation [56], in 
which 70% and 30% of the total dataset were used as the 
training and validation sets, respectively. In this analy-
sis, the training data set was not partitioned into mul-
tiple batches, hence the number of iterations needed to 
complete an epoch was 1. The performance of the NN 
for each epoch was examined after the training process 
in terms of mean squared error (MSE) of the values pre-
dicted for the validation set. The Broyden–Fletcher–
Goldfarb–Shanno (BGFS) optimization method was used 
to adapt the model weights during the training phase 
[55], and cross-validation was repeated till a maximum of 
1500 epochs to select the model with the minimum vali-
dation loss (i.e. minimum MSE) as the best-fit model [57]. 
Subsequently, correlation coefficient (R) between the pre-
dicted TR and the input TR of the validation set was also 
evaluated from the best-fit model results, followed by 
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further exploration of the causal relationships between 
the predictors and TR of each cluster.

The same NN model was used to identify the causa-
tions i.e. increase or decrease in the TR is caused by 
which weather variable(s), and whether that change is 
linear, non-linear or there is no change (= no effect of a 
particular predictor) through sensitivity analysis. Sensi-
tivity analysis enables to explore every bivariate relation-
ship by keeping the other variables constant at a certain 
rate, such that only the selected predictor is allowed to 
vary across its full range and the response variable is pre-
dicted. A general approach is to keep the variables con-
stant at their means, or vary between mean + -1SD [58]. 
However, to enable exploration of a wider range of sensi-
tivity of TR (of each of the clusters) to the environmental 
variables, the predictors were sequentially kept constant 
at different rates i.e. at 0, 20, 40, 60, 80 and 100% splits 
of their quantiles [59], that represented corresponding 
levels of environmental interaction. Once the predicted 
transpiration rates were obtained, for each predictor and 
at each split, the slope or the rate of change in TR for 
every bivariate pair was calculated in terms of percent-
age, to obtain the estimates of Sensitivity Index (SI) [58, 
59]. Since the response to VPD was non-linear and the 
objective was to identify the VPD breakpoint in the TR 
response, the first linear slope was considered for SI esti-
mation [60]. Finally, the VPD level at which the slope of 
the tangent line of each TR response curve approached 
zero, was recorded for each level of environmental inter-
action as the breakpoint at which maximum TR was 
attained. Thus, sensitivity analysis provided a quantita-
tive tool for discretizing the genotypic differences in the 
water-saving trait, under varying levels of influence by 
other variables simultaneously.

Results
Preliminary analysis of genotypic differences from  ETr 
and TR profiles
During the window of measurements considered in this 
work, plants were irrigated on 4 days (21st Feb, 25th Feb, 
1st March and 5th March). Anomalous sector weight 
changes were detected and removed through MODWT 
(Fig. 1a). Hence, on converting the sector weights to  ETr 
profiles, although differences among genotypes were vis-
ible, data remained noisy around those days (Fig.  1b). 
After filtering  ETr values with respect to  ET0 (Fig.  1c), 
and smoothing the  ETr profiles, the genotypic differences 
became distinct. For instance, the wild germplasm had a 

flatter response i.e. had lower water loss during high VPD 
conditions than the highTE and lowTE ones, which was 
expected [61]. In addition, this flatter profile was con-
gruent with the hypothetical model of the water-saving 
trait, illustrated in Fig.  1d (adapted from Sinclair et  al. 
[4]). A visual analysis of the average  ETr (Fig. 2a) and TR 
(Fig. 2b) time series of the three groups (wild, highTE and 
lowTE) with respect to VPD reinforced the above infer-
ence. The group of wild accessions had the lowest  ETr 
and TR, while the  ETr and TR of the lowTE lines were 
higher than that of both the wild and the highTE groups. 
This suggested a transpiration limitation under high VPD 
in the highTE group, also expected from the theory [1, 4] 
and also in concordance with Fig. 1d. Further, the inter-
mittent fluctuations in the environmental variables (T, 
RH, VPD) and the TR profiles (Fig. 2c), and their possible 
correspondence e.g. a tendency for higher  ETr on days 
with the lowest VPD, not only showed the credibility of 
the proposed data processing procedure but also the sen-
sitivity/ability of the platform, in capturing those subtle 
variations.

As a general pattern, the change in TR followed VPD 
within a day, while maximum TR was inversely propor-
tional to maximum VPD, across the days. The negative 
slopes of a linear regression between maximum VPD 
and maximum TR of the wild (Additional file  1: Figure 
S1a), highTE (Additional file  1: Figure S1b) and lowTE 
(Additional file  1: Figure S1c) genotypes confirmed 
these inverse relation (p < 0.05; Table  2), besides reveal-
ing the increasing order of maximum TR’s sensitiv-
ity to VPD, from the wild (slope = −0.0042) to highTE 
(slope = −0.0053) to lowTE (slope = −0.0058) groups. 
As expected, the wild relatives differed significantly from 
the cultivated lines i.e. both highTE and lowTE. How-
ever, although both highTE and lowTE groups differed 
overall in their maximum TR, the difference between the 
two was not significant in every day of the testing period 
(since the interaction effect was not significant, p > 0.05). 
Hence, it could be inferred that either maximum TR was 
not sufficient in completely capturing the differences 
among the cultivated varieties or prior grouping informa-
tion was not optimal with regard to the targeted trait.

Identification of genotypic clusters and the most 
important TR features
The fifteen features extracted from the TR time series are 
illustrated through density plots in Fig.  3, which helped 
with four important inferences: (1) The probability 

(See figure on next page.)
Fig. 2 a Average ETr and b TR time series of wild, highTE and lowTE groups plotted with respect to VPD (kPa). c The normalized values of VPD, T and 
RH plotted along with average TR time series of wild, highTE and lowTE groups to enable simultaneous inspection of the time series variations
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Table 2 Results from  two-way ANOVA conducted for  all the  three groups (Wild-highTE-lowTE) and  between  each pair 
of  groups i.e. highTE-lowTE, wild-highTE and  wild-lowTE to  understand the  significance of  the  effects of  Day, Group 
and the interaction between Day and Group on the transpiration rate (TR) values

*p-val < 0.05

**p-val < 0.01

***p-val < 0.001

Sources of Variation Wild‑HighTE‑LowTE HighTE‑LowTE

Df SS MS F value Pr(> F) Df SS MS F value Pr(> F)

Day 14 0.03875 0.002768 68.49  < 2E−16*** 14 0.02591 0.001851 14  < 2E−16***

Group 2 0.02152 0.010761 266.27  < 2E−16*** 1 0.00021 0.000214 1 0.0242*

Day × group 28 0.0043 0.000154 3.8 1.11E−10*** 14 0.00019 1.34E-05 14 0.9918

Residuals 1755 0.07093 0.00004 975 0.04092 0.000042 975

Sources of variation Wild-HighTE Wild-LowTE

Df SS MS F value Pr(> F) Df SS MS F value Pr(> F)

Day 14 0.02536 0.001811 42.965  < 2E−16*** 14 0.02881 0.002058 54.788  < 2E−16***

Group 1 0.01644 0.016438 389.942  < 2E−16*** 1 0.01331 0.013307 354.301  < 2E−16***

Day × group 14 0.00325 0.000232 5.503 2.26E−10*** 14 0.00258 0.000185 4.913 5.88E−09***

Residuals 1245 0.05248 0.000042 1290 0.04845 0.000038

Fig. 3 Density plots of the fifteen features extracted from the TR time series, that illustrate the differences in the distributions of the wild, highTE, 
lowTE and cultivated check varieties
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density functions (PDFs) overlapped for many features 
implying similar feature values across the groups. Hence, 
based on an overall visual assessment of the individual 
distributions (PDFs), there appeared to be optimally two 
or three clusters; (2) The distribution of only the wild 
group was conspicuous across the feature set, besides 
having the lowest values thereby implying better effi-
ciency in limiting transpiration during high evapora-
tive conditions; (3) The overlapping PDFs, visible in 
almost every feature (e.g. maxTR, total.auc, auc.07.19 
and auc.10.15—‘auc’ is the area under the curve), largely 
belonged to the highTE, lowTE and the cultivated checks. 
This implied that the composition of the clusters inher-
ently present in the feature set might differ from the 4 
groups known a priori; (4)  The features that contained 
overlapping PDFs primarily belonged to the night time 
and were therefore less suitable for distinguishing the 
genotypes. Contrarily, the day time features like maxTR, 
auc.07.19, slope.07.maxTR, etc. showed maximum con-
trast among the PDFs and were expected to significantly 
contribute in optimally clustering the genotypes.

The Dunn index values (Additional file  1: Figure S2) 
confirmed that the optimal number of clusters was three, 
which validated the first intuitive inference made from 
Fig.  3. Subsequently, the three clusters (Fig.  4) obtained 
from the uRF (unsupervised Random Forest) model with 
the least OOB error rate of 6.2% (Additional file  1: Fig-
ure S3) i.e. with a prediction accuracy on new test data 
of 93.77%, were inspected to identify the genotypes that 
clustered together (Fig. 4a). The average TR of each clus-
ter was also plotted (Fig. 4b) to visualize the differences 
in their TR profiles. Interestingly, all the wild chickpeas 
belonged to the first cluster (C1) and C1 had the least 
TR across the entire duration of the experiment, thereby 
substantiating the second inference from Fig.  3. With 
regard to the cultivated lines, a majority of the lowTE 
varieties (i.e. 6 out of 10) were found in the third clus-
ter (C3) together with most of the cultivated checks (i.e. 8 
out of 12), while highTE lines seemed dispersed between 
C2 and C3. Additionally, the TR values of C2 were con-
sistently lower than C3, the cluster with the highest TR. 
These results corroborated the third inference from 
Fig. 3.

Finally, the mean decrease in Gini (MDG) values of the 
day time features (maxTR, auc.10.15, sd.07.19, auc.07.19, 
slope.07.maxTR, total.auc) were much higher than oth-
ers, implying higher importance in making those clusters 
(Fig. 5a), and validating the fourth inference from Fig. 3. 
The corresponding overall mean decrease in accuracy 
(MDA) values (Fig. 5a) of the selected feature set further 
ascertained that excluding those features had the high-
est impact on the overall classification accuracy of the 
uRF model. From the class-specific MDA of the selected 

feature set (Fig.  5b), exclusion of maxTR, auc.10.15, 
auc.07.19 and total.auc reduced the prediction accuracy 
of the C1 genotypes by ~ 14.5, 11, 9 and 6%, respectively. 
This meant that these features of the transpiration under 
high VPD conditions very strongly characterized the 
genotypes of C1. Similarly, accurate prediction of the C2 
and C3 genotypes could mostly be ascribed to maxTR, 
sd.07.19 and slope.07.maxTR. Thus, the six selected fea-
tures could be aptly regarded as the proxy phenotypes 
that best discretized the genotypes with respect to the 
differences in their transpiration response to increasing 
VPD conditions, the desired trait.

Analysis of genotypic diversity within each selected 
feature
As shown in Fig. 6, the number of distinct p-value groups 
obtained from the Tukey-HSD pair-wise comparison 
of genotypes within a feature, was the highest i.e. 30, 
for auc.10.15. It was followed by total.auc, auc.07.19, 
sd.07.19, maxTR and slope.07.maxTR with 27, 26, 26, 24 
and 19 statistically distinct groups, respectively. Thus, 
these results showed a very large range of diversity in the 
traits related to the TR response to increasing VPD, tem-
perature and radiation in this set of genotypes, and the 
maximum diversity could be captured during the peak 
conditions. It was further noted that genotypes belong-
ing to C1 and C3 were predominantly found in the lower 
and higher end of the spectrum of each feature, respec-
tively, while the central portion comprised varieties from 
both C2 and C3. These results, therefore augmented the 
previous inference i.e. genotypes in the first cluster pos-
sessed higher water-saving characteristics than others 
during high evaporative demands. In terms of heritability 
estimates, five out of the selected features had  H2 greater 
than 0.5 viz. total.auc (0.81), auc.07.19 (0.76), slope.07.
maxTR (0.61), auc.10.15 (0.58) and maxTR (0.56).

Analysis of the sensitivity of TR to the environmental 
variables
The NN cross-validation results and the best-fit NN 
used to model the relationship between the environmen-
tal variables and TR of C1, C2 and C3 are illustrated in 
Fig. 7. From the variation in mean squared error (MSE) 
corresponding to each epoch and particularly the upward 
trend of the validation set loss curve (Fig. 7a), the model 
overfitted the training set beyond the 91st epoch. Hence, 
the best-fit model was chosen at epoch 91, which had the 
minimum validation MSE (0.0078) and the correspond-
ing training MSE was 0.0049. The R between predicted 
TR and the input TR of C1 (Y1), C2 (Y2) and C3 (Y3) of 
the validation set were 0.931, 0.944 and 0.953, respec-
tively. Visual inspection of the best-fit NN model (Fig. 7b) 
revealed that VPD, RH and T had the strongest positive 
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effects (in descending order) on TR followed by RAD and 
WS with grey/black lines representing negative/positive 
weights and line thickness representing the strength of 
the connection or effect of the particular predictor on 
the response(s). It was also noticed that C2 and C3 were 
more influenced by the changes in ambient conditions 
than C1. The sensitivity analysis plots (Figs.  8, 9) sup-
ported these inferences, both quantitatively and precisely 
at different levels of environmental interaction effects.  

From the bivariate relationships (Fig. 8), the non-linear 
response of TR to VPD differed from the other predic-
tors, most of which had linear, positive relationships 
with TR. These differences in the sensitivity of TR to 
the weather variables were quantified for each cluster, 
using the slopes of the individual responses, and shown 
in Fig. 9a–e. The sensitivity of C1 and C3 were consist-
ently the lowest and highest (particularly during the high 
VPD conditions i.e. beyond the stage where VPD reached 

Fig. 4 a Genotypic clusters obtained through random forest clustering are plotted on the first two dimensions of the Multi-Dimensional Scaling 
(MDS) plot, that also denotes the a priori label information of the genotypes. b The average TR time series of the three clusters (C1, C2 and C3) are 
shown from 20.02–06.03.2017
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60% of its maximum values), respectively, as already 
found from the previous results e.g. Figure  4b. Among 
the linearly influencing variables (RAD, RH, T and WS), 
only the effect of T was found unique, since TR response 
to T transitioned from negative to insignificant to posi-
tive, as the simultaneous influence of others (i.e. RAD, 
RH, VPD and WS) progressed from minimum (split 0) 
to maximum (split 1). This meant that increase in T led 
to increased water loss only when other variables had 
greater influence (i.e. more than 80%). These four vari-
ables however did not significantly contribute to identify-
ing cluster-specific differences in the TR characteristics, 

due to almost overlapping SI profiles of C1, C2 and C3 
(Fig. 9a–d). The only variable that distinctly identified the 
TR characteristics among the clusters, was VPD (Fig. 9e). 
On inspecting the non-linear VPD-TR relationship it 
was further observed that clusters had reached respec-
tive maximum TR levels before VPD reached its maxi-
mum. The increase in TR was found linear only until a 
certain level of VPD, beyond which further rise in VPD 
led to decline in TR, thereby breaking the linearity (also 
clearly noticeable in Fig.  8). The breakpoints for all the 
clusters and at each level of environmental influence 
are presented in Fig. 9f. The three clusters showed three 

Fig. 5 a The Mean Decrease in Gini (MDG) and the Mean Decrease in Accuracy (MDA, %) estimates obtained for each feature from the best-fit 
random forest model are plotted in the increasing order of MDG, and the change point (black dotted line) demarcates the set of least important 
features from the most important ones. b For the most important features i.e. those with the highest MDG and MDA in Fig. 5a (selected feature set), 
the corresponding class-specific (i.e. for each cluster, C1, C2 and C3) MDA are shown
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distinct patterns in the shift of their breakpoints, as the 
influence of other environmental variables advanced 
from minimum to maximum. While the breakpoint for 

C1 gradually increased from 56 to 62%, that of C3 was 
found almost consistent around 79%. These values shown 
are considering the maximum VPD experienced as 

Fig. 6 The number of distinct p-value (> 0.05) groups obtained from Tukey-HSD pairwise comparison of the genotypes for each selected feature is 
illustrated. The feature values are sorted from highest to lowest, and hence the X-axis labels (denoting the Genotype_ID) are sequenced accordingly. 
Each spectrum of feature values is also annotated with the corresponding cluster label of the genotypes
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6.29 kPa, the 100% VPD level. The detail of VPD break-
points for each cluster at each level of influence of other 
environmental variables (% split) are shown in Additional 
file  1: Table  S3. This probably showed the resistance or 
independence of C3 to the influence of other variables, 
besides its evidently sharp sensitivity to VPD. In case of 
C2, the breakpoint surprisingly reduced from 81 to 68%, 
which proved that the TR response characteristics of C2 
were closer to C1, under peak VPD conditions. Thus, this 
NN-based modeling of causal relationships helped quan-
tify the genotypic differences in terms of the VPD levels 
where TR restriction occurred (Fig. 1d).

Discussion
In this work, load cell data of a diverse chickpea popula-
tion (wild, highTE, lowTE and cultivated check varieties) 
were used to develop a generic data analysis framework 
to characterize the transpiration response profiles to 
increasing VPD (Fig. 1d), using HTP data from a chick-
pea experiment carried out outdoors and under high 
VPD conditions. Major results obtained from this work 
were: (i) The data analysis framework generated highly 
relevant and reliable TR profiles, in line with an  ET0 
benchmark; (ii) The feature selection algorithm of the 

framework revealed additional key features of the TR 
response to VPD than the usual maximal TR values, and 
these could be used in crop selection; (iii) The framework 
also clustered the genotypes in a highly relevant way and 
allowed a detailed and quantitative genetic analysis of the 
identified features, showing high genotypic variation and 
high heritability of the main TR response features; (iv) 
Among the various environmental variables eliciting the 
TR response, VPD had by far the highest influence. These 
topics are further discussed below.

Relevance of the framework‑generated TR profiles
The data analysis framework generated highly relevant 
transpiration profiles, and in this smoothing process, 
the use of  ET0 as a benchmark for the  ETr profiles was 
indeed crucial and showed that subtle variations could 
be retained. The choice of genotypes was such that gen-
otypic differences were expected in the diurnal transpi-
ration profiles, after converting the load cell values to 
 ETr profiles (as shown in Fig. 1b, c). Indeed, subsequent 
analyses delineated genotypic differences in transpiration 
response patterns, where the wild relatives transpired 
the least, whereas the lowTE ones transpired the most, 
as expected [1]. The influence of maximum VPD values 

Fig. 7 a The Mean Squared Error loss observed during Neural Network cross-validation, for both the train and test set at each epoch, where 
maximum epoch size is 1500 and b the Neural Network architecture of the best-fit model between the environmental variables (Relative 
Humidity-RH, Temperature-T, Vapour Pressure Deficit –VPD, Solar Radiation-RAD and Wind Speed-WS) and the average TR time series of cluster 
C1 (Y1), C2 (Y2) and C3 (Y3). The thicker lines imply variables with greater impact on the TR values than the thinner ones, and black lines indicate 
positive influence while grey imply negative effect. The neurons in the input, hidden and output layers are annotated with I, H and O, respectively. 
The bias neurons are B1 and B2, and can be considered similar to intercepts in linear regression models
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on maximum TR across different days (Fig.  2c; Addi-
tional file 1: Figure S1) also remained clearly visible after 
preprocessing and conversion procedure. The negative 
relationship between maximum TR and maximum VPD 
suggested that transpiration declined in all genotypes 
when VPD reached high level. This deduction was con-
gruent with previous studies that have also used linear 
regression and ANOVA to examine the relation between 
maximum TR and maximum VPD [12, 62]. A large differ-
ence between  ET0 and  ETr was however observed. This 
could be explained by the fact that the meteorological 
variables used in the calculation of  ET0 were collected 
from the cemented LS platform, and therefore not under 
standard meteorological station conditions. It could also 
have occurred because, as far as we know, the Penman–
Monteith equation does not consider any VPD response, 
which influenced the collected transpiration profiles. 
Additional work would be needed to analyze the collin-
earity of TR profiles with  ET0 across seasons with vary-
ing VPD levels. However, from such conventional ways 

of analysis, it was difficult to infer: (i) if it was sufficient 
to use only maximum TR for characterizing the latent 
genetic variation in the desired trait, (ii) the simultane-
ous effect(s) of other environmental variables in driving 
those response characteristics among genotypes, and (iii) 
the precise VPD levels that resulted in the restriction of 
maximum TR.

Significance of feature engineering in identifying 
genotypic differences in the water‑saving traits
The smooth TR profiles generated from the framework 
opened an opportunity to go beyond classifying geno-
types merely on the basis of their maximum TR, by iden-
tifying additional features of the TR profiles. Therefore, 
feature engineering was adopted in this work to iden-
tify additional important features (besides maximum 
TR) that could characterize the genotypic differences in 
TR response. Machine learning-based studies that deal 
with large and complex datasets (e.g. raw load cells data/
the TR time series) for specific pattern recognition (e.g. 

Fig. 8 Results of the sensitivity analysis illustrating the predicted average TR (mm m−2 15 min−1) profiles of C1 (Y1), C2 (Y2) and C3 (Y3) obtained 
with respect to changes in each of the environmental variables, when the simultaneous influence of the remaining variables progressed from 
minimum (split 0) to maximum (split 1). The values shown on X-axis are normalized between 0–1, denoting transition from minimum to maximum
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maximum TR restriction under high VPD), predomi-
nantly use features instead of the raw data [63]. This is 
because diligently engineered features most accurately 
represent the underlying structure of the data and can 
therefore yield the best interpretable model results [64]. 
However, in the context of HTP, feature-based analysis 
has rarely been considered for exploring continuous plant 
processes like the diurnal variations in TR. One of the 
best ways to generate prudent features is by the utiliza-
tion of domain knowledge, such that the features explic-
itly characterize the desired patterns [65]. Among the 
fifteen features that were designed, six had the highest 
importance, especially auc10.15 that quantified the water 
saved during peak VPD hours. Those features also had 
high  H2 estimates. Expectedly, the night-time features 
were less important as per the uRF model, with the least 
MDA and MDG estimates (Additional file  1: Table  S2). 

These results were biologically highly relevant. Thus, 
through prudent feature engineering, the uRF model 
did indeed select variables that were intuitively the most 
important. The model also resulted in credible clusters, 
since C1 contained all the wild chickpeas and had the 
lowest TR, whereas C3 mostly comprised lowTE and cul-
tivated check varieties with the highest TR. Accordingly, 
the selected feature set (Fig. 4a) maximized classification 
model accuracy (Fig. 4b), with an OOB error rate of 6% 
that showed a very good classification accuracy of 94%.

Quantifying genotypic differences in the water‑saving trait
Large genotypic differences were found for the six 
selected features (Fig.  6). These features also had high 
heritability, making them suitable in the context of a 
breeding program. From the SI estimates (Fig. 9) C1 was 
most resilient to all the variables, followed by C2 and 

Fig. 9 a–e The slopes (in %) of the TR profiles obtained through sensitivity analysis represent the Sensitivity (%) of TR (of C1, C2 and C3) to each 
environmental variable across the entire split horizon i.e. 0–100%. f The levels of VPD (%) representing the breakpoints at which maximum TR is 
restricted are plotted for each of the clusters (C1, C2 and C3) and at each level of environmental influence i.e. split 0–100%
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C3. The differences in the sensitivities were however sig-
nificant only in case of VPD, and from the breakpoints 
(Fig. 9f ) it was noticed that the genotypes in C1 started 
limiting transpirational water loss at much lower per-
centage of maximum VPD than C2 and C3. Since C1 was 
mostly composed of the wild genotypes (i.e. 16 out of 
18 C1 genotypes were the wild relatives), this result was 
consistent with previous analysis, conducted from tran-
spiration data of the wild and cultivated germplasm [61]. 
It also reinforced the inferences obtained from feature-
engineering based identification of genotypic differences 
(Fig.  4b) and showed that the wild chickpea germplasm 
indeed had the potential for water saving traits. On com-
paring the transition in the breakpoints of C1, C2 and 
C3, it was found that as the influence of other factors 
increased (i.e. during the high evaporative demand con-
ditions), the breakpoint profile of C2 started converging 
towards C1. This finding precisely demonstrated that C2 
(with more highTE and less lowTE genotypes) displayed 
a water-saving strategy closer to C1, which is consistent 
with the idea of a close relationship between transpira-
tion restriction under high VPD conditions and higher 
TE [1]. These results further confirmed that besides hav-
ing the least TR, the wild chickpea genotypes/accessions 
(contained in C1) elicit better and faster restriction of 
maximum TR to increasing VPD [66]. The exact values 
of VPD (kPa) corresponding to each breakpoint are given 
in Additional file 1: Table S3, considering the maximum 
or 100% VPD level as 6.29  kPa as observed during the 
experiment (refer Additional file 1: Table S1).

Importance of VPD in the transpiration response patterns
Once the genotypes were optimally clustered (through 
uRF modeling), those differences were explored through 
sensitivity analysis on a multi-output NN, and the spe-
cific VPD levels at which the clusters restricted their 
maximum TR were discretized. In this exercise, the 
simultaneous effects of the other environmental variables 
were considered at varying levels (splits), unlike the typi-
cal regression analysis of transpiration versus VPD [44]. 
Sensitivity analysis revealed that an increase in VPD had 
a very strong positive effect on plant water loss irrespec-
tive of the influence of other variables almost until the 
0.6 quantile, beyond which the response curve saturated, 
and further water loss was restricted. This non-linear 
trend aptly denoted the water-saving mechanism inher-
ent in the genotypes. As per the sensitivity to T, plants 
restricted transpirational water loss even if temperature 
increased only when other factors had no or little effect. 
However, it is only when other factors reached values 
beyond 60% of their maximum values that TR restric-
tion ceased to be effective, resulting in an increasing 
water loss; hence, the positive linear trend in predicted 

TR. These results were also consistent with other stud-
ies [11] showing the influence of temperature on the 
VPD response, and the fact that beyond a certain tem-
perature threshold, transpiration loses its sensitivity to 
VPD and water losses increase. RAD and RH had similar 
linear effects, while WS did not seem to have any major 
influence on TR. The effects of T, RH, RAD and WS on 
TR were however secondary, compared to that of VPD. 
Although previous studies [15, 60] have reported similar 
findings, those were not quantified as shown in Fig. 9.

Conclusions
Extracting information from raw HTP data is typically 
hindered by the unavailability of standardized and user-
friendly procedures to convert raw data into usable 
and interpretable knowledge. Such complications are 
enhanced for complex functional traits like those dis-
cussed in this paper and that are difficult to phenotype 
under natural conditions. Therefore, this paper makes 
a novel attempt to facilitate systematic extraction of 
features of the water-saving trait through an ML-based 
quantitative diagnostic framework. It systematically 
dissects the subtle genotype-specific characteristics of 
transpiration regulation in response to VPD. Through 
this framework, six biologically relevant features were 
selected from the TR profiles, and three genotypic clus-
ters were identified. C1 represented a cluster of water 
saving genotypes and comprised all the wild accessions, 
whereas C3 represented a cluster of water profligate 
genotypes containing a majority of low TE lines and 
cultivated checks. Such a genotypic differentiation was 
highly congruent with respect to the expected transpi-
ration profiles of these genotypes. Additionally, most of 
the selected features had heritability greater than 0.5 
and had great value for breeding. Auc.10.15 was one 
of the most important features for correctly classifying 
the genotypes, which also revealed maximum genotypic 
diversity. Thus, feature-based genotypic differentiation 
was highly relevant. Furthermore, weather predictors in 
the NN model could explain around 95% of the variabil-
ity in TR response, with VPD having the highest impor-
tance. From sensitivity analysis on that model, plants 
were found to restrict transpiration before reaching the 
highest VPD level, although at different levels among 
genotypic groups. Precise identification of those levels 
showed that wild chickpeas limited water-loss faster 
than water profligate cultivated genotypes. The proce-
dural and quantitative analyses presented through this 
work can be extremely beneficial for genetic analyses, 
prescriptive breeding, and can also be adopted for a 
vast number of crop types and adaptation-related traits. 
From a generic viewpoint, it also provides a way to 
overcome the bottleneck between the rate of HTP data 
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generation and information extraction. Interested read-
ers can find the R scripts on the open-source GitHub 
platform, https ://githu b.com/KSoum ya/EZTr.
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