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Abstract 

Background:  Tree crown extraction is an important research topic in forest resource monitoring. In particular, it is 
a prerequisite for disease detection and mapping the degree of damage caused by forest pests. Unmanned aerial 
vehicle (UAV)-based hyperspectral imaging is effective for surveying and monitoring forest health. This article pro-
poses a spectral-spatial classification framework that uses UAV-based hyperspectral images and combines a support 
vector machine (SVM) with an edge-preserving filter (EPF) for completing classification more finely to automatically 
extract tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu (D. tabulaeformis) in Jianping county of Liaoning 
province, China.

Results:  Experiments were conducted using UAV-based hyperspectral images, and the accuracy of the results was 
assessed using the mean structure similarity index (MSSIM), the overall accuracy (OA), kappa coefficient, and classifica-
tion accuracy of damaged Pinus tabulaeformis. Optimized results showed that the OA of the spectral-spatial classifica-
tion method can reach 93.17%, and the extraction accuracy of damaged tree crowns is 7.50–9.74% higher than that 
achieved using the traditional SVM classifier.

Conclusion:  This study is one of only a few in which a UAV-based hyperspectral image has been used to extract tree 
crowns damaged by D. tabulaeformis. Moreover, the proposed classification method can effectively extract damaged 
tree crowns; hence, it can serve as a reference for future studies on both forest health monitoring and larger-scale for-
est pest and disease assessment.
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Highlights

1.	 A spectral-spatial method for automatically extract-
ing tree crowns more finely is proposed.

2.	 Two edge-preserving filter algorithms are used to 
optimize each SVM classification probability map.

3.	 RGB images are used as guidance image for edge-
preserving filters.

4.	 Experiments on extracting tree crowns damaged by 
D. tabulaeformis yielded 88.97% accuracy.
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Background
In China, from 2002 to 2013, the total area affected by 
Dendrolimus tabulaeformis Tsai et Liu (D.tabulaeformis) 
was 1.5689 × 106  ha, the largest part of which was in 
Liaoning Province, at, 5.5 × 105  ha [1]. D.tabulaeformis, 
which is the typical disease-causing organism in Pinus 
tabuliformis  Carrière (Chinese pine), has contributed 
toward to great losses [2, 3]. Thus, the effecive detecion 
of D.tabulaeformis are particularly important in conifer-
ous forest healthy surveys. Although traditional field sur-
veys, especially visual inspection, are commonly used for 
forest pest investigation nowadays, they are not applica-
ble to large forested areas, and has disadvantages of sub-
jective, time-consuming and labor-intensive.

Since the late 1980s, satellite remote sensing technol-
ogy has been applied to a wide range of pest and disease 
investigations taking advantage of its multi-spectral and 
multi-temporal characteristics. Radeloff et  al. [4] used 
pre-outbreak Landsat Thematic Mapper (TM) data to 
identify factors affecting jack pine budworm population 
levels as well as peak-outbreak imagery to detect actual 
defoliation. They were the first to apply spectral mixture 
analysis to forest damage detection. From then on, Ols-
son et  al. [5], Liang et  al. [6] and many other research-
ers successfully detected forest pests and diseases with 
high accuracy on a large scale by using different resolu-
tion satellite data. However, a large-scale outbreak of D. 
tabulaeformis occurred only one month after the initial 
occurrence. Hence, satellite sensor images does not fully 
satisfy the requirements of timeliness and precise moni-
toring in small-scale and/or heavy-disease areas, because 
images can be affected by cloud cover, and the spatial res-
olution is relatively low.

The rapid development of unmanned airborne vehicle 
(UAV) technology has facilitated low-altitude remote 
sensing applications. Combined with hyperspectral 
imaging systems, UAV-based hyperspectral technology 
offers significant advantages in many fields such as land-
use and land-cover studies, agriculture, and power line 
inspection [7–10]. This technology possesses both the 
flexibility and the hyperspectral characteristics of UAVs 
and hyperspectral imaging systems [11]. The advantages 
of affordability, simple operation, fast imaging speed, 
and high spatial, spectral, and temporal resolution are 
indispensable for early detection of D.tabulaeformis [12, 
13]. UAV-based hyperspectral applications for monitor-
ing forest pests and diseases have witnessed significant 
development in recent years. Lehmann et al. [14] inves-
tigated the utility of UAV-acquired visible-near  infrared 
(VNIR) images to provide reliable remote-sensing data to 
produce maps of pest infestation levels to support inter-
vention decisions in the management of forests located 
in northwest Germany. Nasi et al. [15] operated a novel 

miniaturized hyperspectral frame imaging sensor in the 
wavelength range of 500–900  nm to identify mature 
Norwegian spruce trees (Picea abies L. Karst.) suffer-
ing from infestation, representing a different outbreak 
phase, by the European spruce bark beetle (Ips typogra-
phus L.). In the whole process of UAV-based hyperspec-
tral image analysis for forest pest investigation, efficient 
and accurate tree-crown extraction can provide the most 
favorable support for the subsequent inversion of dam-
age degree, assessment of pest loss, and mapping of pest-
related damage in disease occurrence areas. A leaf-eating 
pest such as D. tabulaeformis can cause 100% defoliation 
during a severe outbreak. In the case of high crown den-
sity or complex understory vegetation conditions, auto-
matic extraction of tree crowns with high precision can 
effectively avoid the issues of high time consumption and 
subjective errors involved in artificial plotting the range 
of the crown.

On the one hand, due to cost, spatial scale and limita-
tions in software, the application of UAV remote sens-
ing technology to forest resource surveys remains in its 
infancy and the application of hyperspectral imaging 
technology to forest pest, disease investigation and moni-
toring remains rare. On the other hand, in current stud-
ies on tree crown extraction, light detection and ranging 
(LiDAR) and high-spatial-resolution images have been 
widely used as the main data sources with the continuous 
development of related technologies [16]. The applica-
tion of UAV-based hyperspectral is relatively few. Thus, 
this study used UAV-based hyperspectral images as the 
main data source to extract damaged tree crown infor-
mation. Many algorithms have been proposed for tree 
crown extraction in the light of Airborne LiDAR and 
high-resolution UAV- or satellite-based remote sens-
ing data [17–20]. The commonly used methods include 
region growing [21], template matching [22], valley fol-
lowing [23], watershed segmentation [24], and 3D mod-
eling [25]. However, the “Hughes” phenomenon often 
occurs in some of these methods during UAV-based 
hyperspectral image data analysis, especially when the 
training data is sparse. This phenomenon leads to a 
decline in classification accuracy. On this basis, the con-
cept of spectral-spatial classification has been proposed 
for hyperspectral images to reduce the influence of high 
dimension on the image classification accuracy [26–28]. 
With continuous improvement in spatial resolution, the 
method of spectral-spatial classification has attracted 
increasing attention and has witnessed steady progress. 
At present, the spectral-spatial classification framework 
mainly focuses on two aspects. One is the construction 
of the spectral-spatial feature extraction algorithm by 
fusing the image spatial and the spectral information of 
hyperspectral images, and the other is the construction 
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of the spectral-spatial classification framework to opti-
mize pixel-wise spectral classification results represented 
by image segmentation and probability optimization.

In this study, by fully considering the characteristics of 
defoliation caused by D. tabulaeformis and the promi-
nent contours of damaged tree crowns, we used UAV-
based hyperspectral images and high-definition digital 
images (RGB) image of D. tabulaeformis-damaged Chi-
nese pine forest areas as the main data sources. We pro-
pose using a spatial–spectral classification framework to 
realize automatic extraction of damaged tree crowns. The 
main targets of this study are as follows:

1.	 To develop a spectral–spatial classification frame-
work that combines edge-preserving filter (EPF) and 
support vector machine (SVM) algorithms for UAV-
based hyperspectral image classification.

2.	 To extract D. tabulaeformis-damaged tree crowns 
by using the proposed spectral-spatial classification 
framework.

3.	 To analyze the potential of using UAV-based hyper-
spectral imaging and proposed spectral-spatial clas-
sification framework to extract damaged tree crowns.

Results
Hyperspectral classification results of SVM
The SVM classification with the G-RBF kernel was used 
to classify the land cover types of the study area into four 
categories: bare land, understory vegetation, shadows, 
and damaged Pinus tabulaeformis.

Table 1 summarizes the a part of classification results 
of the G-RBF under different parameter setting of 
grid search. Numerous experiments  showed  that, as C 
decreases, the OA first is invariable and then decreases, 

and finally tends to be the same. And as γ decreases, 
both OA and evaluating indicator has a certain degree 
of decrease. Furthermore, under the same classification 
accuracy, the program running time is increase with the 
increase of γ . Therefore, considering both the classifica-
tion accuracy and program running time (about 20 min), 
the SVM classification of the UAV-based hyperspectral 
data in the entire study area was performed using the 
parameter combination (20, 0.5) in the G-RBF kernel 
function (Fig. 1).

Optimization results of two EPFs
We compared and analyzed the probability optimiza-
tion effects of two types of EPFs with two types of guid-
ance images under different parameter settings. For the 
JBF, we set the filter kernel size ( σd ) and the proportion 
of the weight change in the local window ( σr ). Based 
on previous studies, σd was set to 1, 2, 3, and 4, and σr 
was set to 0.01, 0.1, 0.2, and 0.4, respectively. For the 
GF, we set the window radius ( r ) and control gradient 
changes ( ǫ ). Specifically, r was set to 1, 2, 4, and 8, and 
ǫ was set to 0.012, 0.12, 0.22, and 0.42, respectively. Due 
to the category of the damaged Pinus tabulaeformis we 
focused on, the optimal parameters of the EPFs were 

Table 1  A part of  classification results of  G-RBF 
under different parameters

*The italic fonts represent the best classification result

Kernel Function Parameters OA/% Kappa CADP/%

C γ

G-RBF 100 0.5 89.3258 0.8514 76.87

80 0.5 89.3258 0.8514 76.87

60 0.5 89.6067 0.8554 77.44

40 0.5 89.6067 0.8554 77.44

20 0.5 90.4494 0.8673 79.23

20 1 89.6067 0.8554 77.44

15 0.5 90.4494 0.8673 79.23

15 1 90.4494 0.8673 79.23

10 0.5 90.4494 0.8673 79.23

5 0.5 90.4494 0.8673 79.23
Fig. 1  SVM classification map with the G-RBF kernel (20, 0.5)
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determined with the accuracy of the damaged Pinus 
tabulaeformis extraction.

Evaluation of JBF effects
Table  2 summarizes the MSSIM evaluation results of 
the initial probability maps corresponding to the dam-
aged Pinus tabulaeformis category after applying JBF. 
It can be seen that, with the RGB image as the guid-
ance image, the MSSIM is higher than that of the PCA 
false-color image as the guidance image under the 
same parameter settings. Regardless of which guidance 
image was selected, when σd is fixed, as σr increases, 
the MSSIM gradually decreases; similarly, when σr is 
fixed, as σd increases, the MSSIM gradually decreases.

Figure  2 shows the effect of the JBF on the initial 
probability map of the damaged Pinus tabulaeformis. 
As can be seen, when σd and σr are small, the image 
sharpness is higher, and the edge information is clearer; 
that is, the edge-preserving effect is stronger. Con-
versely, when σd and σr are large, the image sharpness is 
lower, and the edges are blurred; that is, the edge-pre-
serving effect is weaker.

The smaller the values of σd and σr , the larger the cor-
responding MSSIM, and the more effectively the EPF 
maintains the guidance image. When σd = 1, the edge-
preserving effect of the image is better than that with 
other values of σd ; specifically, when σd = 1, the MSSIM 
values corresponding to σr = 0.01 and σr = 0.1 are both 
large and have a slight difference, and considering the 
operating rate at the same time, σd = 1 and σr = 0.1 was 
determined as the optimal parameter combination for 
the JBF.

Evaluation of GF effects
Table  3 summarizes the MSSIM evaluation results of the 
initial probability maps corresponding to the damaged 
Pinus tabulaeformis category after applying the GF. In the 

case of various parameter settings with the RGB image 
as the guidance image, the MSSIM yielded results supe-
rior to those obtained using the PCA false- color image as 
the guidance image. Moreover, regardless of the guidance 
image selected, when r is constant, the MSSIM appears 
to increase and then decrease with changes in ǫ . In most 
cases, the MSSIM has the largest value when ǫ = 0.12 . 
When ǫ is constant, the MSSIM shows a significant down-
ward trend as r increases.

As shown in Fig. 3, when r is large, the image sharpness 
is reduced, and the discrepancy increases gradually with 
ǫ . On the contrary, when r is small, the image sharpness 
does not change significantly with ǫ . Therefore, the larger 
the value of r that controls the size of the local window, the 
larger the range in which the filtering algorithm performs 
averaging and the smoother the result. Further, ǫ controls 
the gradient preserving effect; the larger the value of ǫ , the 
larger the smoothing factor of the overlay, and the effect is 
minimal when the window is small.

According to Tables  2 and 3, the MSSIM for the GF 
under different parameter settings remains the same as 
that for the JBF. The smaller r , the larger the correspond-
ing MSSIM. However, the optimal result is obtained when 
ǫ = 0.12 , and the EPF preserves the guidance image bet-
ter. When r = 1 , the MSSIM is high and the fluctuation is 
not large. Note that as ǫ is in the denominator in Eq. 9, it 
ultimately affects the image gradient preserving ability; the 
smaller ǫ , the stronger the edge preserving ability. How-
ever, the algorithm is relatively smooth in this case. After 
determining r = 1, we compared ǫ = 0.012 and ǫ = 0.12 ; 
ǫ = 0.12 was found to correspond to a better edge-preserv-
ing ability.

Comparison of the two filtering methods
By comparing and analyzing the filtering effects of the two 
filters and their MSSIM changes, we found that their sharp-
ening effects were better when the control filter kernel ( σd 
and r ) and ambiguity ( σr and ǫ ) parameters were higher; 
however, the edge-preserving ability decreased. This 
decrease occurred because a large filter kernel, or ambigu-
ity, may cause excessive smoothness, and some small-scale 
targets may be misclassified. With increasing σd and σr in 
the JBF, and increasing r and ǫ in the GF, the increase in the 
kernel size ( σd and r ) reduced the edge-preserving effect 
much more than the effect of ambiguity ( σr and ǫ ) on it. 
When the filter kernel ( σd and r ) was fixed and the ambigu-
ity ( σr and ǫ ) was adjusted, MSSIM was almost unchanged, 
and the optimized probability maps did not change signifi-
cantly; when the filter kernel ( σd and r ) was adjusted, the 
change in MSSIM was relatively large, the optimal prob-
ability maps could also show edge changes. Figures 2 and 3 
show the substantial changes of partial edge enhancement 

Table 2  MSSIM results of JBF under different parameters

*The italic fonts indicate optimized precision

Guidance image MSSIM σr = 0.01 σr = 0.1 σr = 0.2 σr = 0.4

RGB image σd = 10.8754 0.8654 0.8451 0.8348

σd = 20.8593 0.8537 0.8389 0.8386

σd = 30.8122 0.8117 0.8014 0.7909

σd = 4 0.7763 0.7690 0.7554 0.7483

PCA false color 
image

σd = 10.8478 0.8425 0.8375 0.8269

σd = 20.8217 0.8168 0.8102 0.8072

σd = 30.7986 0.7945 0.7864 0.7735

σd = 4 0.7513 0.7479 0.7412 0.7358
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of the two types of EPFs with different parameter settings 
in the case of the RGB image as the guidance image.

For the selection of the guidance image, through the 
above-mentioned analysis, for both JBF and GF, the 
MSSIM is higher when the RGB image is used as the guid-
ance image compared with when the PCA false-color 
image is used as the guidance image. As the guidance 
image, the RGB image has good texture and spatial char-
acteristics compared with the PCA false-color image, and 
its intra-class difference is reduced more effectively. The 
edge information of the feature is highlighted, which is 
consistent with the evaluation effect of the MSSIM. EPF 
optimization with the RGB image as the guidance image 
yields better results, especially in the case of GF. Based on 
the results shown in Tables 3 and 4, the optimal parameters 
for the JBF were set to σd = 1 , σr = 0.1 , and the optimal 
parameters for the GF were set to r = 1 , ǫ = 0.12.

Extraction of tree crowns of damaged Pinus tabulaeformis
By analyzing and comparing the SVM classification 
method and EPF algorithms, the best spectral-spatial clas-
sification framework for tree crowns extraction of damaged 
Pinus tabulaeformis was completed using the G-RBF (20, 
0.5) kernel function with the RGB image as the guidance 
image. Furthermore, the optimal parameter combinations 
for the initial probability maps of the SVM classification 
were determined to be σd = 1, σr = 0.1 for the JBF and r = 
1, ǫ = 0.12 for the GF. After determining the category of 
the maximum probability value of each pixel, the classifica-
tion of all the pixels was completed, and the classification 
results of the entire area were evaluated using 1250 verifi-
cation samples from the original SVM classification. Fig-
ure 4 shows the optimized results for the four classification 
types with different EPFs.

As shown in Table 4, the classification results of the opti-
mized SVM proposed in this study show higher OA and 
Kappa compared to the original SVM classification results. 
Comparing the optimized SVM classification results based 
on the two EPFs, SVM based on GF has higher classifica-
tion accuracy and the OA reaches 93.17%, which is consist-
ent with the evaluation results of MSSIM of the guidance 
image obtained using the two filter methods. Thus, GF is 
favorable for spatial information retention of the RGB 
image, and the edge-preserving effects of various fea-
tures are better. Correspondingly, after optimization of 
the SVM classification results using GF, the OA is higher, 
which means that the edge-preserving strength will directly 
affect the final classification results. Figure  5 shows the 

classification results obtained using the proposed spectral-
spatial classification.

In the above-mentioned final classification results, the 
identification of damaged Pinus tabulaeformis was com-
pleted after extracting the range corresponding to the 
damaged Pinus tabulaeformis category. The classification 
accuracy of damaged Pinus tabulaeformis extraction using 
the SVM spectral-spatial classification method based on 
the EPF (86.73% for JBF and 88.97% for GF) was higher 
than that using the original SVM classification (79.23%), 
and the optimization effect was obvious. The effect of GF 
was favorable, which corresponded to the strong edge-
preserving ability of the RGB image. Compared with the 
overall optimized effect, the edge of a single Pinus tabulae-
formis is more precise and the edge-preserving ability has a 
stronger influence on the classification results of Pinus tab-
ulaeformis. Therefore, the optimization intensity of classifi-
cation accuracy of Pinus tabulaeformis is higher.

Discussion
Using UAV‑based hyperspectral images for damaged tree 
crown extraction
For forest surveys, precise tree crown extraction is the first 
step to achieve research on forest structure parameters. It 
can provide fundamental support for forest healthy diag-
nosis and damage assessment. D.tabulaeformis is a type 
of defoliation pest. When extensive damage occurs, the 
defoliation rate of the entire plant can reach 100%. In this 
regard, damaged trees show complex shapes and crown 
contours. Hence, this phenomenon provides harsher con-
ditions for precise tree crown extraction.

UAV-based hyperspectral imaging technology can pro-
vide both spatial geometric information, such as the tree 
crown shape, size, and texture; the relationship between 
adjacent tree crowns; and exact spectral information to 
accurately detect small changes in the pigmentation, 
water content, and structure of the tree crown. Forestry 
has benefitted from the use of this technology [29] for 
tree species classification [30], health monitoring [31], 
and biodiversity assessment [32]. However, UAV-based 
hyperspectral images have not been widely applied to for-
est-health detection compared with other data sources. 
Current studies focus on first detecting tree crowns and 
then assessing tree health through crown damage symp-
toms or crown-level spectral information [33–35]. This 
process increases the amount of data processed by the 
algorithm runs and may generate double-errors.

(See figure on next page.)
Fig. 2  Optimized probability map obtained by JBF (the type of damaged Pinus tabuliformis). a The guidance image is RGB image, b the guidance 
image is PCA false-color image. JBF the joint bilateral filter
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By combining the advantages of UAV-based hyper-
spectral image data, we tried to extract the range of dam-
aged tree crowns directly using hyperspectral and RGB 
images acquired by a UAV-based imaging system. First, 
owing to the high spectral resolution, we could accu-
rately distinguish objects with similar color or texture 
features, such as severely damaged tree crowns and soil, 
healthy leaves, and undergrowth. Due to high sensitivity 
to damaged trees, especially to slight and moderate dam-
age, hyperspectral images provide tree crown extraction 
results with higher accuracy compared to high-spatial-
resolution remote sensing images. Compared with the 
process of first extracting the tree crown and then iden-
tifying the disease, the use of UAV-based hyperspectral 
images effectively overcomes the mismatch between the 
spectral data (always acquired by field spectral devices, 
the commonly used are FieldSpec® which are produced 
by Analytical Spectral Devices., Inc.) and the high-res-
olution images. Second, RGB images used as guidance 
maps provide edge structure information to improve the 
extraction accuracy. This method takes advantage of the 
spectral information of hyperspectral data and the spatial 
characteristics of RGB data. The UAV is sufficiently flexi-
ble to meet the needs of practical applications. Therefore, 
the proposed method can be used to extract the damaged 
forest range automatically and accurately, which is ben-
eficial for rapid and effective assessment of forest damage 
in large areas.

Spectral–spatial classification framework based on SVM 
and EPF for damaged tree crown extraction
Considering both high spatial and spectral resolution 
of UAV-based hyperspectral, in order to improve the 
classification performance of the hyperspectral images 

further, many studies have focused on the spectral–spa-
tial classification framework. Whether in the direction 
of feature extraction algorithm construction or spectral 
classification result optimization, hyperspectral image 
spectral–spatial classification is widely used for many 
applications [36, 37].

In the first step of the proposed method, the SVM 
pixel-wise spectral classifier is applied to the hyperspec-
tral image, and the classification results are represented 
as the initial probability map. The SVM algorithm can 
distinguish the land cover types, and the hyperspectral 
image can capture detailed spectral information. How-

ever, tree shadows, branches, and underlying objects 
may lead to the mixed pixel problem, especially for the 
edges of damaged conifers. Furthermore, the illuminated 
side and shaded side of each tree crown may produce 
different spectral signatures, leading to the double-side 
illumination problem. Thus, although the pure SVM 
classifier fuses the spectral and spatial features by kernel 
combination to some extent, it cannot satisfy the accu-
racy requirements of damaged conifer tree crown extrac-
tion and delineation [38, 39]. Hence, EPFs were used to 
extract the spatial features after using the SVM to con-
struct the spectral–spatial classification framework. The 
EPF algorithms aim to achieve local optimization of the 
initial probability map compared with other methods 
and thus are extremely suitable for damaged tree crown 
edge delineation. Both the JBF and GF have the function 
of a joint EPF, which combines the edge structure infor-
mation of the guidance image while filtering one image. 
Some errors exist in the edge obtained in the first step, 
and these errors can be reduced by processing the RGB 
image with the EPF algorithms.

Comparison of the results of spectral–spatial clas-
sification and pure SVM classification showed that the 
spectral–spatial classification method improved the 
extraction accuracy of damaged tree crowns (the CADP 
of GF reached 88.97%, which is 9.74% higher than that 
of pure SVM; see Table  4). Thus, the proposed method 
is computationally efficient and will be useful in practical 
applications.

Factors Influencing damaged tree crown extraction
Forestry remote sensing detection results always involve 
some degree of uncertainty because of the complexity of 
the forest structure, and the same is true for forest health 

Table 3  MSSIM results of GF under different parameters

*The italic fonts indicate optimized precision

Guidance image MSSIM ǫ = 0.01
2

ǫ = 0.1
2

ǫ = 0.2
2

ǫ = 0.4
2

RGB image r = 1 0.9187 0.9227 0.9064 0.9015

r = 2 0.8594 0.8646 0.8513 0.8474

r = 4 0.7482 0.7239 0.7144 0.7011

r = 8 0.6289 0.5955 0.5626 0.5449

PCA false-color 
image

r = 1 0.9097 0.9118 0.9005 0.8956

r = 2 0.8437 0.8513 0.8447 0.8331

r = 4 0.7048 0.7165 0.6946 0.6632

r = 8 0.6090 0.6132 0.5518 0.5053

Fig. 3  Optimized probability map obtained by GF (type of damaged Pinus tabuliformis). a The guidance image is RGB image, b the guidance image 
is PCA false-color image. GF the guided filter

(See figure on next page.)
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monitoring. As far as the objective factors are concerned, 
the complexity of the forest structure, the condition of 
the terrain, natural conditions such as light and wind 
speed, and the flight altitude of the UAV have certain 
effects on the classification and tree crown extraction 
results. From the aspect of efficient algorithms, the pro-
posed spectral–spatial classification framework requires 
the selection of parameters and guidance maps, and the 
resolution differences between guidance maps and clas-
sification maps, all of which will affect the final classifica-
tion results. In addition to the classification accuracy, the 
computational efficiency is an important consideration.

The classification accuracy was clearly improved to a 
certain extent by using the proposed spectral–spatial 
classification framework, especially the CADP, as shown 
in Table  4. Although the above-mentioned influencing 
factors are unavoidable, the process of selecting algo-
rithm parameters involves adaptation to the objective 
environmental impact factors. Thus, according to every 
parameter of the algorithm, the proposed spectral-spatial 
classification framework can be adapted to different envi-
ronments to a certain extent and can be considered as a 
universal framework for different forests and conditions.

Further application
As can be seen from Fig. 5, damaged tree crowns can be 
mapped after using the proposed spatial-spectral clas-
sification framework extracted the damaged trees. The 
mapped profiles represent the important regions of inter-
est (ROIs) for forest disease detection, identification, and 
damage-level analysis. At the same time, the ROIs are an 

indispensable part of remote sensing, especially hyper-
spectral remote sensing analysis.

In “Using UAV-based Hyperspectral Images for Dam-
aged Tree Crown Extraction Section”, we discussed that 
the proposed spectral-spatial classification framework 
can be directly used to classify and extract the dam-
aged tree with different damage levels. Furthermore, 
with the spectral disease indices (SDIs) developments, 
the proposed framework also can be used as the ROIs 
construction methods first, and then, the SDIs can be 
selected to determine the damage types or severity. 
Combined with the research the research presented 
by Zhang  et al.  [40], the damaged tree crown extrac-
tion can be applied before extracting average reflec-
tance of individual D.tabulaeformis damaged trees. 
This step can replace the manual drawing of tree crown 
ROIs, and realize the automatic assessment of defolia-
tion. Because this study and the previous research use 
the same set of data, we used the piecewise model in 
Zhang’s research to realize defoliation level assessment. 
Figure  6 shows the damage level assessment results. 
This is a typical further application of damaged tree 
crown extraction. Basic automatic analysis can be used 

Table 4  Comparison of  classification results obtained 
by original SVM and optimized SVM

Filter OA /% Kappa CADP/%

SVM / 90.45 0.8673 79.23

Optimized SVM Joint Bilateral Filter 91.63 0.8921 86.73

Guided Filter 93.17 0.9053 88.97

Fig. 4  Optimized probability maps for the four classification types under different EPFs with a JBF and b GF. JBF the joint bilateral filter, GF the 
guided filter
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for not only forest-damage analysis, but for all types of 
forest structural parameters, and even for carbon sinks, 
net primary productivity, and biomass estimation, as 
long as crown automatic extraction is realized.

Deficiencies and outlook
Traditional manual surveying of forest health is time-
consuming, laborious, and prone to errors and omis-
sions. Low-altitude remote sensing and hyperspectral 

Fig. 5  Final classification results of spectral-spatial classification based on optimized SVM. JBF the joint bilateral filter, GF the guided filter
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detection can identify subtle changes in tree crowns 
through detailed spectral changes. The spectral–spatial 
classification framework and UAV-based hyperspectral 
images used in this study yielded good results for dam-
aged tree crown extraction. However, this study has the 
following limitations. First, the research area selected for 
this study was an artificial pure Pinus tabulaeformis for-
est, which is only damaged by D. tabulaeformis. However, 
in most cases, forests suffer from many types of pests 
and diseases. Effective distinction between damage by D. 
tabulaeformis and that due to other hazards requires fur-
ther analysis. Second, we did not identify the tree crowns 
of healthy Pinus tabulaeformis in this study because 

there were almost no healthy Pinus tabulaeformis in the 
study area, which may raise some concerns. Finally, not 
all the crowns of damaged Pinus tabulaeformis that we 
extracted were individual tree crowns. In the case of a 
single tree, the crown that we extracted was an individual 
tree crown. In the case of multiple aggregated trees, the 
crown that we extracted was the outermost edge of the 
crown of the multiple trees.

Considering the application requirements and the 
limitations discussed above, further improvement may 
be a prerequisite for future analysis. On the one hand, 
the method can be validated by obtaining study areas 
containing healthy and damaged Pinus tabulaeformis 

Fig. 6  The assessment of D. tabulaeformis damaged level by using the proposed spatial-spectral classification framework to extract damaged tree 
crown automatically
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as conditions permit. On the other hand, by using time-
series image data, which can satisfy the biological and 
ecological characteristics of pests and diseases or the 
phenological characteristics of vegetation, different tree 
species as well as different diseases and insect pests can 
be distinguished. Furthermore, for the damaged Pinus 
tabulaeformis, the spectral characteristics of different 
degrees of damage or defoliation obtained from hyper-
spectral images and high-spatial-resolution images can 
be used to assess the degree of damage and extract the 
individual tree crowns.

Conclusion
In this study, UAV-based hyperspectral images were 
used to extract tree crowns damaged by D. tabu-
laeformis based on a spectral–spatial classification 
framework. This classification framework achieved 
the objective of precise damaged tree crown extrac-
tion by optimizing the SVM pixel-wise classification 
results using an EPF. The final tree crown extraction 
accuracy reached 86.73% and 88.97% under the JBF 
and GF algorithms, respectively. The results showed 
that (1) UAV-based hyperspectral images can be used 
as the sole data source to extract damaged tree crowns; 
(2) the damaged canopy can be feasibly identified 
by selecting appropriate parameters of the SVM (for 
G-RBF, the parameter combination of (20, 0.5) provides 
higher classification accuracy and applicability, with 
OA = 90.45%, Kappa = 0.8673, and CADP = 79.23%); 
(3) the optimized SVM based on the proposed EPF can 
effectively improve the CADP (the extraction accuracy 
of damaged tree crowns is 7.50%–9.74% higher than 
that in the case of the traditional SVM classifier); (4) 
by using the RGB image as the guidance image, bet-
ter EPF optimization can be achieved and the CADP 
can be improved with more detailed spatial informa-
tion. To the best of our knowledge, this study is one of 
only a few in which a UAV-based hyperspectral image 
has been used to extract tree crowns damaged by D. 
tabulaeformis. Moreover, the proposed classification 
method can effectively extract damaged tree crowns; 
hence, it can serve as a reference for future studies on 
both forest health monitoring and larger-scale forest 
pest and disease assessment.

Materials and methods
Study area
The study area is located in Zhu Luke, Jianping County 
of Liaoning Province, China (41°19′–41°23′N, 119°14′–
120°03′E, Fig.  7). The area has a temperate continental 
climate with dry, windy spring and autumn seasons and a 
rainy summer. The annual average temperature is 7.6 °C, 
the annual average precipitation is 614.7 mm. Vegetation 

mainly consists of forest and shrubland. The forest area 
in Jianping County is 21.83 × 104 ha, and pure pine spe-
cies occur in 50% of the total forest area.

According to the statistics of the local forest protec-
tion station, the average annual area damaged by D. 
tabulaeformis in the study area is 176,000  ha. Accord-
ing to the forest investigate records, which provided 
by the Station of Forest Protection of Jianping County, 
there are few other biotic or abiotic stress factors in the 
study area. And the simultaneous trapping experiment of 
D.tabulaeformis showed that the larva population density 
has reached severe damaged level. Based on the above 
situations and the data from 2014 shows that defolia-
tion of Pinus tabulaeformis in the study area was mainly 
caused by D.tabulaeformis [40].

Field data acquisition and preprocessing
The field survey was conducted in August 2016 in 
the northwest region Zhu Luke town. Specifically, 
an area of 29,789  m2 was established for continuous 
monitoring of the pure Pinus tabulaeformis forest, 
with trees suffering from different damage degrees of 
D.tabulaeforms. The average altitude of the study area 
is about 495  m and is relatively flat with no valleys or 
ravines. The coordinates of the corner points of this 
area were recorded by a handheld differential global 
positioning system (DGPS, Version S760, South Sur-
veying & Mapping Technology Co., Ltd. Guangzhou, 
China) with sub-meter accuracy. The diameter at breast 
height (DBH) and the heights of each tree for which 
DBH ≥ 10  cm were measured, and the location infor-
mation of all damaged trees was recorded simultane-
ously. All the records of DGPS were exported in a.txt 
file, then converted to Excel to build a.shp file.

For each sampled tree, the defoliation rate were 
calculated by survey the standard branches (which 
can can roughly represent the average defoliation of 
the tree) as the damaged level divided criterion (The 
detailed criterion were published in Zhu et  al. [41]). 
The standard branches, which clipped from the upper, 
middle and lower three layers from four directions, 
tree were clipped and counted the total number of 
pine needles and the damaged needles. As Du  [42] 
published, the degree of loss level were set as 0, 25, 50, 
75 and 100%. Final defoliation rate were calculated by 
Eq. (1):

where P is the defoliation rate of an individual sampled 
tree, Pi denotes the defoliation rate of a standard branch 
of every layer (upper, middle, and lower) of a tree, and 

(1)

{

pi =
0%∗N0%+25%∗N25%+50%∗N50%+75%∗N75%+100%∗N100%

N0%+N25%+N50%+N75%+N100%

P =

∑

Pi
3
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Nn% represents the number of needles as the leaf loss of 
n%.

Image data acquisition and preprocessing
A UAV-based hyperspectral imaging system was used 
for image data acquisition. The overall UAV-based sys-
tem employed in this study consisted of a DJI Spreading 
Wings S1000 + multi-rotor octocopter-UAV (DJI, Shenz-
hen, China), a UHD 185 snapshot imaging spectrometer 
in the visible-NIR wavelength range (Cubert GmbH, Ulm, 

Baden-Württemberg, Germany), and a Sony DSC-QX 
100 digital camera (equipped with a 13.2 mm × 8.8 mm 
Exmor R sensor with a resolution of 20.2 megapixels). 
The UHD 185 snapshot imaging spectrometer can simul-
taneously capture the low spatial resolution hyperspec-
tral cube and high-spatial resolution panchromatic image 
in one spectral channel. The main parameters of the 
UHD 185 are listed in Table 5.

UAV-based data acquisition was conducted in the test 
areas of Zhu Luke on August 5, 2016, under sunny and 

Fig. 7  The location of the study area. a, b Location of the study area in Liaoning Province. c Distribution of the study area on RGB image acquired 
from UAV on August 5, 2016. d Severe damaged trees’ photo in the field. The defoliation rate of this plot reached 100%, and almost 90% of plots are 
the same in the study area
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windless conditions. Given terrain, vegetation condition, 
and coverage of the study area, the flying height was set 
to 100 m. The focal length of the digital camera (equiva-
lent to 35 mm focal length) and the hyperspectral camera 
were set as 28 mm and 23 mm separately, and the opti-
mal resolution of digital camera was 5472 × 3648. Totally, 
four flights were performed to cover the whole area. And 
each flight, the image forward and side overlaps were set 
to 70 and 60%, respectively. The hyperspectral and RGB 
images were acquired simultaneously. The RGB images, 
which were used to indicate the digital images acquired 
using a Sony DSC-QX100 digital camera, had three 
bands: red, green, and blue.

A total of 14,082 images covering the study area were 
acquired from the UHD 185, and 7726 images acquired 
during takeoff, landing, and turning were deleted from 
each flight. In total, 6356 effective images covering the 
test area were obtained. These include panchromatic 
images (JPG format, 1000 × 1000 pixels) and hyperspec-
tral images (cub format, 50 × 50 pixels), where panchro-
matic and hyperspectral images correspond to each other 
in a uniform geographic range. The estimated ground 
sampling distances were 0.028 and 0.56  m for panchro-
matic and hyperspectral images, respectively. The pre-
processing step mainly includes image fusion, mosaic, 
geometric correction, and radiometric calibration. The 
image fusion and format conversion of original panchro-
matic images and hyperspectral images were performed 
by using the image processing software Cube-Pilot in 
UHD185 hyperspectral imager. The format of the hyper-
spectral cubes was converted from.cub to.tif and the size 
was changed from 50 × 50 pixels to 1000 × 1000 pix-
els. The resolution of hyperspectral images was 0.028 m 
through image fusion. The panchromatic images were 
used to align photos, build a dense cloud, and build a 
mesh with interpolation POS information in the Agisoft 
PhotoScan Professional Pro (Version 1.1.6, Agisoft LLC, 
Russia). On this basis, we used the hyperspectral cubes 
as substitutes for the panchromatic images in Photo-
Scan, and built the texture using the pixel values from 
the hyperspectral cubes instead of the pixel values of the 
panchromatic images. Through above steps, geometric 
correction completed and the hyperspectral orthophoto 

images were generated. Radiometric calibration was 
directly performed for hyperspectral orthophoto images 
after geometric correction. The main principle and equa-
tions, which are about the radiometric calibration, have 
already been described in detail in [43]. A total of 2087 
effective RGB images and original POS data were used to 
generate the RGB orthophoto images. This process was 
completed in PhotoScan, through aligning photos, build-
ing dense cloud, building mesh and building textures 
steps. The RGB images were resampled to 0.028 m after 
mosaic, the same as hyperspectral images. The specific 
preprocessing methods of the hyperspectral images have 
already been described in detail by the co-author in a 
previous article [40].

Spectral‑Spatial classification framework construction
Figure  8 shows the steps involved in the construc-
tion of the spectral-spatial classification framework for 
UAV-based hyperspectral images. This process roughly 
involves (i) construction of initial probability maps for 
discriminating classes by the SVM pixel-wise spectral 
classifier using the original bands of the hyperspectral 
images, (ii) optimization of the spectral classification 
results by the EPF algorithms, and (iii) mapping of the 
final classification results.

Initial probability map construction by SVM classifier
The SVM classifier is a supervised, non-parametric, sta-
tistical learning technique [44] that aims to find an opti-
mal hyperplane for solving the class separation problem 
[45]. SVM is a widely used pixel-wise classifier for hyper-
spectral image classification. The basic idea of SVM clas-
sifier is to improve the dimension and linearize the data. 
In essence, it nonlinearly transforms the defined inner 
product function, converts the entire image into high-
dimensional space, performs linear fitting, and then 
determines the optimal linear classification surface. The 
inner product function is the kernel function, which 
directly affects the final classification results [8].

Commonly used kernel functions include the linear 
kernel function, polynomial kernel function, Gaussian 
radial basis kernel function, and sigmoid kernel func-
tion. Compared with other kernel functions and other 
application researches, the Gaussian radial basis kernel 
function (G-RBF) has certain advantages in classification 
and recognition. The G-RBF can effectively deal with the 
relationship of sample nonlinearity and map it to higher 
dimensional space. It has less numerical complexity and 
is easy to adjust, especially for high-dimensional classifi-
cation features. Therefore, the G-RBF is selected for SVM 
classification in this study, the detailed kernel function 
show in Eq. (2).

Table 5  Main parameters of  the  UHD 185 imaging 
spectrometer (provided by the manufacturer)

Parameters Value Parameters Value

Total weight 470 g Wavelength range 450–950 nm

Digitization 12 bits Sampling interval 4 nm

Field of view 19° Spectral resolution 8 nm at 532 nm

Cube resolution 1.0 megapixels Spectral channels 125
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The constraint condition in here is 
∑k

i=1 αiyi = 0,0 ≤ αi
≤ C , i = 1, 2, ...k , C is a constant that represents the 
penalty coefficient of SVM; k(xi, x) is the G-RBF kernel 
function.

When using SVM with the G-RBF kernel, two param-
eters—the penalty coefficient (C) and the kernel param-
eter ( γ)—are considered. γ defines the influence of a 
single training example. The larger γ is,  the closer other 
examples must be to be affected.  C weighs the misclas-
sified sample against the simplicity of the interface. 
A low C value smoothed the interface, while a high C 
value ensured that all samples were correctly classi-
fied by increasing the number of degrees of freedom of 
the model to select more support vectors. Grid search 
algorithm, which is a typical parametric search method 
in LibSVM was used to determined the best parameter 
combination of C and γ.

By analyzing the overall situation of the study area 
comprehensively, we divided the land cover types in this 
study into bare land, understory vegetation (including 
low vegetation, grassland, etc.), shadows, and damaged 

(2)

{

f (x) = sgn[
∑k

i=1 α
∗
i yiK (xi, x)+ b∗]

K (xi, x) = exp[−�x−xi�
2

γ 2 ], γ > 0

Pinus tabulaeformis. (There are few mildly damaged 
or healthy Pinus tabulaeformis, as the study area cov-
ers the severely damaged area of Pinus tabulaeformis.). 
The SVM classification experiments were performed 
on UAV-based hyperspectral images of the entire area 
using the G-RBF with different parameter settings. We 
took samples based on pixels, each sample represented 
one pixel. A total of 5000 sample points were selected, of 
which 1250 were selected for each land cover type. The 
training and verification samples were divided in a ratio 
of 3:1. Combined with the ground survey information, 
the method of visual interpretation was used to complete 
the sample selection.

The overall accuracy (OA), kappa coefficient (Kappa, 
which is a measure index of the classification accuracy, 
it calculated based on the confusion matrix. The higher 
the Kappa is, the higher classification accuracy is.), and 
classification accuracy of damaged Pinus tabulaeformis 
(CADP) were evaluated to determine the optimal param-
eter settings for subsequent analysis. The pixel-wise clas-
sification map of each land cover type was represented 
as its corresponding probability map, and this map was 
regarded as the initial probability map of the correspond-
ing land cover type.

Fig. 8  Schematic of the proposed spectral-spatial classification framework. PCA false-color image: principal component analysis false color image
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Optimization of Initial probability maps by edge‑preserving 
filter
The initial probability maps, which were constructed 
by the SVM classifier, do not incorporate any spatial 
information. Therefore, the probability maps appear 
noisy and are not aligned with actual object boundaries. 
Incorporating the characteristics of Chinese pine and 
damaged tree crowns, two edge-preserving filter (EPF) 
algorithms—the joint bilateral filter (JBF) and the guided 
filter (GF)—were selected to solve the edge structure 
problem.

Joint bilateral filter  The joint bilateral filter (JBF) is a 
processing method that removes internal noise by com-
prehensively analyzing the image spatial domain infor-
mation and grayscale similarity to maintain the image 
edge information [46]. This method uses two Gaussian 
kernel functions that represent spatial distance ( Gσd ) 
and range distance ( Gσr ) as follows:

Then, the weight of the bilateral filter is expressed as

where W based on the input image represents the 
weight, i and j represent the pixel indices, K represents 
the normalized constant, I is the gray value of the pixel, 
σd controls the size of the local window used to filter 
a pixel, and σr represents the proportion of pixel value 
weight reduction in the local window.

For the JBF, the weight W depends on a new image 
instead of the original input image, which can be 
either a grayscale image or an RGB image and is called 
the guidance image. Further, I represents the guid-
ance image, while P and Q represent the input image 
and filter output image, respectively. The JBF can be 
expressed as.

(3)Gσd = exp(−

(

�i − j�
)

σ 2
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)

(4)Gσr = exp(−
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Based on (6), if the pixel i and neighboring pixel j 
have similar intensities or colors in the guidance image, 
and pixel j is close to pixel i , then the weight of pixel j 
will be large. On the contrary, if the neighboring pixels 
have quite different intensities in the guidance image, 
the weight will be small.

Guided filter  The guided filter (GF) defines an output 
image as a model with a local linear correlation with the 
guidance image, which effectively smooths background 
details and preserves edge variations in the scene [47]. 
Further, P, Q and I  can represent the input image, out-
put image and guidance image, respectively. Within the 
local window ω of size (2r + 1)× (2r + 1) the local lin-
ear model of the guidance image can be expressed as.

r represents the window radius, ak and bk are two 
parameters of the local linear model, and their values 
in different windows ωk are also different. Considering 
the purpose of the entire filter, the least-squares prin-
ciple is used to perform regression fitting of the local 
linear model, and the cost function is set as follows:

where ǫ controls gradient changes. It is a regularization 
parameter for determining the degree of blurring for 
GF. GF can also be expressed in the following form:

It can be understood that minimizing the cost func-
tion limits overall structural characteristics of the out-
put image, and the local linear relationship enables the 
filtered image to replicate changes in the details of the 
guidance image as much as possible. That is the key to 
GF. In the GF, as the running time is not related to the 
size of the window, compared with other algorithms, 
GF can be processed with a larger window without 
affecting the computational efficiency.

Guidance image  In addition to the filter, another 
important factor affecting the filter results is the guid-
ance image. The guidance image can provide and guar-
antee good edge structure information of the classifying 
feature to some extent. In general, the definition of an 
RGB image is slightly higher than that of a hyperspec-

(7)Qk = akIi + bk , ∀i ∈ ωk

(8)E(ak , bk) =
∑

i∈ωk

(

(akIi + bk − Pi)
2
+ ǫa2k

)

(9)

Qi =
∑

j

Wi,j(I)Pj

=
∑

j

1

|ω|2

∑

k:(i,j)∈ωk

(
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tral image when the hyperspectral sensor and high-
definition digital camera installed on the UAV acquire 
data synchronously. This difference is due to the differ-
ent field-of views of the two cameras. Although the dif-
ference is usually not very large, it cannot be ignored 
when extracting the land cover type, which contains 
prominent edge information, especially in the case of 
conifers  or  shrubs.  Furthermore, the difficulty in data 
storage and analysis in the case of RGB images is much 
lower than that of hyperspectral images. Thus, we pro-
pose two methods for acquiring guidance images:

1.	 Principal component analysis (PCA) false color 
image: PCA of the preprocessed hyperspectral image 
using the false color image obtained by the combina-
tion of the first three principal components as the 
guidance image;

2.	 RGB image: The high-definition RGB image acquired 
synchronously with the corresponding hyperspectral 
image is used as the guidance image; spatial resam-
pling is required before filtering because the spatial 
resolution of high-definition RGB images is different 
from that of hyperspectral data.

Parameter settings and  accuracy evaluation of  two 
EPFs  In this study, we set the parameters of the filters 
separately for the two types of guidance images, and we 
evaluated the optimization parameters. For the two EPFs, 
we set the filter size ( σd and r ) and the ambiguity ( σr and 
ǫ ). The same as the parameter optimization of G-BRF, 
algorithm which similar to grid search is used in deter-
mining both two EPFs’ parameter combination.

To study the edge-preserving effect, the optimized 
probability map is evaluated by the mean structure 
similarity index (MSSIM) [48]. If the guidance image 
and filtered output image are represented by I and Q, 
respectively,

where M is the number of pixels in the image; µI and 
µQ are the mean values of the guided image and out-
put image, respectively; σ 2

I  and σ 2
Q are the variances of 

the guidance image and output image, respectively; and 
σIQ represents the covariance of the guidance image 
and the output image, respectively. Further, c1 = (K1L)

2

,c2 = (K2L)
2 , L is the dynamic range of the pixel values, 

K1 = 0.01 , and K2 = 0.03 [35]. The higher the value of 
the MSSIM, the greater the similarity between the two 
images, i.e., the better the preservation of the output 
image by the guidance image.

(10)

MSSIM(I ,Q) =
1

M

M
∑

i=1

(2µIµQ + c1)(2σIQ + c2)

(µ2
I + µ2

Q + c1)(σ
2
I + σ 2

Q + c2)

Extraction of tree crowns damaged by D. tabulaeformis
By analyzing the classification effect of SVM and two 
types of EPFs under different parameter settings, the 
spectral-spatial classification framework for UAV-
based hyperspectral data in the study area was estab-
lished. First, the category of each pixel was determined 
using the maximum probability criterion by analyzing 
the optimized probability map, and the final classifica-
tion results were obtained. Second, the range corre-
sponding to the damaged Pinus tabulaeformis category 
was extracted based on the final classification results, 
and the identification of damaged pines was com-
pleted. Third, the OA, Kappa, and CADP were used 
to evaluate the extraction accuracy of damaged Pinus 
tabulaeformis.
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