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Abstract 

Background:  The tiller number per unit area is one of the main agronomic components in determining yield. A 
real-time assessment of this trait could contribute to monitoring the growth of wheat populations or as a primary 
phenotyping indicator for the screening of cultivars for crop breeding. However, determining tiller number has been 
conventionally dependent on tedious and labor-intensive manual counting. In this study, an automatic tiller-counting 
algorithm was developed to estimate the tiller density under field conditions based on terrestrial laser scanning (TLS) 
data. The novel algorithm, which is named ALHC, involves two steps: (1) the use of an adaptive layering (AL) algorithm 
for cluster segmentation and (2) the use of a hierarchical clustering (HC) algorithm for tiller detection among the 
clusters. Three field trials during the 2016–2018 wheat seasons were conducted to validate the algorithm with twenty 
different wheat cultivars, three nitrogen levels, and two planting densities at two ecological sites (Rugao & Xuzhou) in 
Jiangsu Province, China.

Result:  The results demonstrated that the algorithm was promising across different cultivars, years, growth stages, 
planting densities, and ecological sites. The tests from Rugao and Xuzhou in 2016–2017 and Rugao in 2017–2018 
showed that the algorithm estimated the tiller number of the wheat with regression coefficient (R2) values of 0.61, 
0.56 and 0.65, respectively. In short, tiller counting with the ALHC generally underestimated the tiller number and 
performed better for the data with lower plant densities, compact plant types and the jointing stage, which were 
associated with overlap and noise between plants and inside the dense canopy.

Conclusions:  Differing from the previous methods, the ALHC proposed in this paper made full use of 3D crop infor-
mation and developed an automatic tiller counting method that is suitable for the field environment.

Keywords:  Terrestrial laser scanning (TLS), Tiller number, Adaptive layering (AL) algorithm, Hierarchical clustering 
(HC) algorithm, Automatic method, Wheat
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Background
Wheat is one of the primary food crops, feeding more 
than half of the world’s population [1, 2]. With a predicted 

world population of 9 billion in 2050, the demand for 
wheat is expected to increase by 60%–110% [3–5]. To 
meet this demand, the annual wheat yield increment 
must rise from the current level of below 1% to at least 
1.6% [4, 5]. At present, wheat yield mainly relies on the 
increase in grain yield per unit area [6]. The increase in 
productive tiller number generally enhances yield poten-
tial over a range of environmental conditions [7]. There-
fore, an accurate and efficient method for acquiring the 
tiller number in real time under field conditions can be 
helpful for determining a reasonable group density; 
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assessing the efficiency of crop management, e.g., irriga-
tion and applying fertilizer; or functioning as a phenotyp-
ing trait for breeding practices in the field.

To date, the most common method used for measur-
ing tiller numbers is manual counting, which is extremely 
time-consuming and labor-intensive and is constrained 
by human error [8]. Remote sensing provides an alter-
native for the high-throughput evaluation of tiller num-
ber and has been widely used in the past several decades 
[10–16, 29]. The common practice is to establish a linear 
relationship between the tiller number and spectral fea-
tures from optical remote sensing imagery. Flowers et al. 
[10] used spectral information from aerial photographs 
to predict wheat tiller density through correlation with 
a series of vegetation indexes (VIs). The results demon-
strated that the VIs were reliable indicators for estimating 
wheat tiller density in the field. Since then, studies have 
tried to further prove the accuracy and reliability of VIs, 
especially the normalized difference vegetation index 
(NDVI), to forecast the tiller number [8–11]. However, 
the method for measuring tiller number using correla-
tion with VIs is influenced by environmental factors and 
changes in the external conditions, such as crop varieties 
and field management.

With the development of image processing technology, 
image-based methods have been successfully applied to 
overcome some shortcomings of VIs [10, 11]. Boyle et al. 
[12] collected RGB images of a single spring wheat plant 
at different filming angles (0°, 45°, 90°) and calculated the 
number of wheat tillers using the Frangi filter algorithm. 
More recently, Constantino et al. [13] used an image pro-
cessing system, Seight, to measure the height and number 
of tillers of a single plant, in which the Canny edge detec-
tion algorithm was utilized to detect the tillers. However, 
similar to the VIs, the counting accuracy with images 
from two-dimensional (2D) cameras is constrained by 
the illumination conditions at the time of image acquisi-
tion. Moreover, RGB images lack spatial and volumetric 
information, which is more closely related to plant func-
tion and yield-related traits [14].

More advanced than 2D RGB cameras, some sensors 
have the capability to collect three-dimensional informa-
tion from the target objects. Innovative research was per-
formed by Yang et  al. [15] in which a high-throughput 
system (H-SMART) based on a conventional X-ray com-
puted tomography (CT) system that was developed to 
automatically measure rice tillers could achieve a perfor-
mance with a mean absolute error (MAE) of 0.22 at the 
tillering stage. Despite the high accuracy, the CT system 
requires a rigorous experimental environment to ensure 
the safety of the experimenter and to prevent genetic 
mutation in experimental objects. Inspired by the work of 
Yang’s team, Huang et al. [16] applied magnetic resonance 

imaging (MRI), which features nondestructive methods 
without radiation to acquire the number of rice tillers. 
However, these experiments are only applicable to the 
laboratory or the assembly line, and very few studies have 
explored methods to acquire tiller information automati-
cally and efficiently in field environments.

Light detection and ranging (LiDAR), which is an active 
sensor, overcomes many of the disadvantages of passive 
sensing because it is capable of operation regardless of the 
ambient light conditions and directly provides highly accu-
rate three-dimensional (3D) information [17–19]. While 
LiDAR use in forestry has been well established for decades 
[20–23], its application to cereal crops is still in the early 
stages [24]. Recently, LiDAR has drawn extensive atten-
tion in plant phenotyping, which has made the method 
popular as the key technical component for developing 
next-generation plant phenotyping techniques [19]. Cur-
rently, research is focused on rapid determination of bio-
mass, plant height, and leaf area [20, 24–28]. However, 
there are few reports about the detection of tiller number 
using LiDAR. To our knowledge, Guo et  al. [29] devel-
oped a high-throughput crop phenotyping platform, Crop 
3D, which included a fractional module that used LiDAR 
to scan single rice plants into point clouds. The classi-
cal k-means clustering algorithm was used to calculate 
the tiller number, with an accuracy (R2) that reached 0.80. 
Although the k-means algorithm is simple and efficient, 
it is necessary to define the number of classes in advance, 
which does not apply to cases where the class number is 
unknown. Moreover, unlike the individual plants on the 
assembly line in Guo’s research, the canopy is much denser 
in the field, which is compounded by other uncontrollable 
factors such as wind, which also means much more severe 
occlusion between plants. Overall, direct tiller segmenta-
tion or detection in a field population based on large quan-
tities of LiDAR point data and the inevitable accompanying 
noise is still a major challenge.

Therefore, the main objectives of this study were (1) to 
propose an automatic approach suitable for counting tiller 
number under field conditions based on TLS data for 
wheat and (2) to validate the applicability of the method 
under different treatments and growth stages. For the sec-
ond objective, different wheat cultivars, plant densities, and 
nitrogen fertilization rates were designed in three field tri-
als. This method is expected to provide a new perspective 
for the detection of wheat tiller number in three dimen-
sion and to enhance the practical use of TLS in precision 
agriculture.
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Methods
Plant materials and growth conditions
2016–2017 field trial configuration
Experiment A (Exp. A): The field trial was conducted at 
the Rugao Experimental Demonstration Base (32°15′ 
N, 120°38′ E) of the National Information Agricultural 
Engineering Technology Center in Rugao City, Jiangsu 
Province. Two wheat cultivars, ‘Yangmai 15′ (V1) and 
‘Yangmai 16′ (V2), were selected to represent compact 
and diffuse plant types, respectively. Three nitrogen 
rates of 0 kg/ha (N0), 150 kg/ha (N1, 484.91 g/plot), and 
300 kg/ha (N2, 969.83 g/plot) were set, among which N1 
was consistent with the average nitrogen level. Fifty per-
cent of the N fertilizers were applied on the sowing day, 
and 50% were applied at the jointing stage. Two plant-
ing density levels were set for the experiment: 25  cm 
(2.4 × 106 seedlings/ha) for D1 and 40 cm (1.5 × 106 seed-
lings/ha) for D2, which corresponded to 26 rows/plot 
and 17 rows/plot. For each set of growing conditions, the 
experimental design was established with randomized 
blocks with three replicates, for a total of 36 plots, each of 
which had an area of 30 m2 (6 m × 5 m).

Experiment B (Exp. B): The second field trial was con-
ducted at the Xuzhou Agricultural Research Institute 
in Xuzhou City, Jiangsu Province (34°19′ N, 117°2′ E). A 
total of 17 varieties were used: ‘Jimai 211′, ‘Saidema 5′, 
‘Cunmai 11′, ‘Zhengmai 119′, ‘Loumai 956′, ‘Anke 1405′, 
‘Zhumai 328′, ‘Xinong 528′, ‘Ruihua 1426′, ‘Luomai 
6010′, ‘Xinong 501′, ‘Huaichuan 365′, ‘Zhengmai 1836′, 
‘Zhumai 305′, ‘Xinong 364′, ‘Zhoumai 18CK’, and ‘Yan-
zhan 4110CK1′. In this trial, the nitrogen rate was set at 
225 kg/ha (348.60 g/plot). Fifty percent of the N fertiliz-
ers were applied on the sowing day, and 50% were applied 
at the jointing stage. The field density was set with a uni-
fied line spacing (23 cm, 2.2 × 106 seedlings/ha, 38 rows/
plot). The experimental design was established in rand-
omized blocks with three replicates for a total of 51 plots, 
each of which had an area of 13 m2 (8.3 m × 1.6 m).

2017–2018 field trial configuration
Experiment C (Exp. C): The field trial was conducted at 
the Rugao Experimental Demonstration Base. Two wheat 
cultivars, ‘Shengxuan 6′ (V1) and ‘Yangmai 16′ (V2), were 
selected to represent compact and diffuse plant types, 
respectively. All other experimental conditions were 
identical to those in Exp. A.

The specific conditions for each trial (Exp. A, B, C) are 
shown in Table 1. Orthophotographs of the trials (A, B, 
C) are shown in Figs. 1, 2.

Data acquisition
Terrestrial laser scanning measurements
The terrestrial LiDAR system used in this study is a 
RIEGL-VZ 1000 (RIEGL, Austria, https​://www.riegl​
.com), which is a pulsed 3D scanner that emits near-
infrared lasers. The instrument operates on the principle 
that laser pulses are emitted from the instrument and, 
using a series of built-in rotating prisms, the laser lights 
are projected at different angles. The detector receives 
the signal reflected from the target object and records the 
target information. The specifications of the RIEGL-VZ 
1000 are shown in Table 2.

To mitigate the occlusion effects, a multiple-scan 
scheme was conducted in all trials. According to previ-
ous research on the impact of the number and position 
of the scanning site [30], we settled on an 8-station scan-
ning strategy (Fig.  3). Scanning sites outside the plots 
could not only supplement the point cloud information 
of the edge plots, but also obtained sufficient informa-
tion about surrounding objects. This off-plot information 
served the registration of the point cloud between differ-
ent scanning sites. The scan mode was set to mode 60, 
which indicated an angular resolution of 0.06° and cor-
responded to a point spacing of 10 cm at the 100 m scan-
ning range.

Table 1  Details of the field experiments

Number Ecological Site Year Number 
of Varieties

Nitrogen Rate (kg/ha) Planting Density (cm 
& rows/plot)

Area of plot 
(m2)

Number 
of plots

Exp. A Rugao 2016–2017 2 0/150/300 25 (26) 30 36

40 (17)

Exp. B Xuzhou 2016–2017 17 225 23 (38) 13.3 51

Exp. C Rugao 2017–2018 2 0/150/300 25 (26) 30 36

40 (17)

https://www.riegl.com
https://www.riegl.com
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Manual field measurements
In all three trials, the total tiller numbers were counted 
in two one-meter row sections per plot, and then, the 
number of tillers per unit area was calculated. The man-
ual-counting data were used as the observed value to 
evaluate the algorithm. The manual measurements were 
performed at two stages (tillering and jointing), and the 
terrestrial LiDAR measurements were collected simulta-
neously (Table 3).

Data processing and analysis
The preprocessing of TLS data was carried out in profes-
sional software bundled with the scanner. The coordinate 
registration was the first step. An iterative closest point 
(ICP) algorithm was applied to register each independ-
ent scanner coordinate to the same reference coordinate 
system. ICP calculated the transformation matrix by a 
least-squares method based on the corresponding points 
[31]. The coordinate registration was completed with an 
average error of 0.006  m for each campaign. Abnormal 
points floating above, which was caused by insects or 
small airborne particles, was removed manually. Then 

Fig. 1  Images of the field experiment area in Rugao (Exp. A &C with two varieties, two planting density levels and three nitrogen rates) & Xuzhou 
(Exp. B with the same nitrogen rate and planting density level for 17 varieties); the left: the location of experiment sites; the right: the orthophotos 
captured by the UAV system
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we manually intercepted a random row of data from each 
plot. Finally, the data of each area was exported into sep-
arate files.

In this study, the 3D point cloud data for the tillering 
and jointing stages obtained from the LiDAR measure-
ments are used to estimate the tiller number after pre-
processing, e.g., point cloud registration and detour. The 
processed data for a random row per plot are input into 
our algorithm to calculate the tiller number of this row 
(Trow). Then, the tiller density for the whole plot (Tplot) is 
calculated as follows: Tplot = Trow * r / S where r and S are 
the number of rows and area of the plot, respectively.

The automatic tiller‑counting algorithm (ALHC)
The tiller-counting algorithm employs algorithms in two 
steps: (1) the adaptive layering (AL) algorithm and (2) the 
hierarchical clustering (HC) algorithm. We developed 
our algorithm in MATLAB (version 2016, MathWorks®, 
USA). A flowchart describing the process is provided in 
Fig. 4.

Description of the adaptive layering (AL) algorithm
This step takes a random row of preprocessed point 
cloud data from each plot as the input, and the number 
of wheat clusters is the output. In this study, the princi-
ple of the adaptive layering algorithm is to identify the 

Fig. 2  a RIEGL-VZ 1000 working in the field at Rugao at a height of 1.5 m; b the TLS data of the whole experimental area (the jointing stage, Rugao, 
2017–2018) displayed in the supporting software RiCSAN PRO; ScanPos001-ScanPos008 represent the locations of the sites (colors indicate the 
canopy height); a circular blind zone with a diameter of 1 m around the sites

Table 2  The specifications of the RIEGL-VZ 1000

Parameters Characteristics

Scan performance

 Scan Principle Pulse type

 Laser Wavelength 1550 nm (near infrared)

 Angle Resolution better than 0.0005°

 Beam Divergence 0.12 mrad

 Scan Precision 5 mm @ 100 m

 Pulse Repetition Frequency 3 × 105 pulse/sec

 Scan Angle Range 360° × 100° (horizontal × vertical)

 Max Measurement Range 1400 m

  Min Measurement Range 1 m

General technical data

 Weight 9.8 kg

 External Camera NIKON D810
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Fig. 3  The scanner position schemes: a in Rugao and b in Xuzhou. The varieties in the set of three rows are consistent; the red solid circle points 
stand for the scanning positions of the LiDAR instrument. Note: D represents the line spacings (D1: 25 cm, 2.4 × 106 seedlings/ha and D2: 40 cm, 
1.5 × 106 seedlings/ha), V represents the varieties (V1: Shengxuan 6 and V2: Yangmai 16), and N represents the three levels of pure nitrogen (N0: 
0 kg/ha, N1: 150 kg/ha, N2: 300 kg/ha)

Table 3  Summary of the field sampling for the wheat experiments

Experiment Data type Method Growth stage Number 
of samples

A Field measurements Manual counting Tillering 36

TLS data LiDAR Jointing 36

B Field measurements Manual counting Tillering 17

TLS data LiDAR

C Field measurements Manual counting Tillering 36

TLS data LiDAR Jointing 36

Fig. 4  Workflow of the proposed tiller number estimation method (ALHC) using the TLS data
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interspaces between the wheat stems and to obtain the 
number of wheat clusters accordingly. A cluster of wheat 
refers to densely aggregated wheat plants, which usually 
contain several tillers and stems that may be from the 
same plant or different plants. It should be noted that the 
term "stem" here is borrowed for the tillering stage and 
redefined as the trunk of the aboveground tillers, exclud-
ing the leaves.

The specific implementation steps are as follows.
After preprocessing, a random row of wheat point data 

is obtained for each plot. The X axis is defined as parallel 
to the direction of the row, which means that the Y axis is 
perpendicular to the direction of the row and the direc-
tion of the plant height is the Z axis.

1.	 Layering & labeling. A row of wheat points is divided 
into 1 to n layers according to the plant height (H) 
from the top to bottom. The first layer (the 1st layer) 
along the Z axis and the last layer (the nth layer) are 
removed. The variable ‘n’ is determined as an opti-

mal value based on the degree of overcounting and 
undercounting of the clusters observed in the lay-
ers compared with the planting density after the 
trial runs. Then, starting from the second layer, the 
smaller serial number layer is labeled as the ‘leaf ’, 
and the adjacent layer in the sequence is labeled as 
the ‘stem’. Here, the labels are only used to distinguish 
among the layers. For example, layers 2 and 3 dem-
onstrate one leaf-stem combination, with 2 as the leaf 
and 3 as the stem in Fig. 5A b.

2.	 Iterating. One leaf-stem combination participates in 
each iteration. The combination is projected along 
the Z axis to the XOY plane to form one layer of the 
superimposed point cloud, which retains only the 
X and Y coordinates of the points. The overlapping 
leaves allow the leaf point cloud to be considered 
continuous, while the stem point cloud is discontinu-
ous due to the intervals between the wheat clusters. 
When the leaf and stem layers are projected along 
the Z axis to the XOY plane, the intervals are filled by 

Fig. 5  A illustrates the algorithm: a one row of wheat was layered; b a leaf layer was extracted and then a stem layer was extracted; c two layers 
were superimposed onto one mixed layer; (d) the number of wheat clusters ( Ti represented the number of wheat clusters) was calculated. b The 
workflow of the adaptive layering algorithm
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the leaf points called ‘the continuous leaf part’, while 
the part where the leaf layer meets the stem layer is 
called ‘the mixed part’ (Fig.  5A c). The criterion for 
determining a cluster of wheat is to find a continuous 
leaf part that is located between two adjacent mixed 
parts. Once an eligible part is detected, the number 
of clusters (Ti-(i-1), where i represents the layer num-
ber) is added. The entire row is traversed to obtain 
Ti-(i-1), which completes an iteration.

3.	 Counting. A total of (n-3) iteration results (T2-3, T3-

4, T4-5, …, T(n-2)-(n-1)) are compared to determine the 
leaf layer combination with the largest Ti-(i-1) as the 
separation layer between the stem and leaf. All lay-
ers above the separation layer are marked (exclud-
ing itself ) as ‘leaf ’, and the other layers are marked as 
‘stem’. The final output of this step is the result of the 
iteration in step (2), in which one of the leaf layers 
and one of the stem layers are selected as the input.

	 Thus far, the approximate number of clusters in a row 
has been calculated.

Description of the hierarchical clustering (HC) algorithm
An approximate wheat cluster number is obtained in 
the previous step. When the tillers are too close to each 
other, they cannot be distinguished with the layering 
algorithm. Therefore, the hierarchical clustering algo-
rithm is introduced to further calculate the tiller number 
in each cluster, which may contain several tillers the same 
plant or different plants.

The specific steps used in the hierarchical clustering 
[32–34] are as follows.

(1) Calculate the similarity matrix of all points within 
a cluster. If one cluster contains N points, the similarity 
measurement matrix would be produced by N*N. Taking 
six random points (N = 6, and the matrix is 6*6) from the 
same cluster containing coordinate information (xpoint, 
ypoint, zpoint) as example to comprise a group of raw data 
(Fig.  6b). We obtain the similarity measurement matrix 
by calculating the similarity between each variable in the 
group.

The similarity measurement determines the similarity 
between two classes. Commonly used similarity metrics 
include the distance coefficient, correlation coefficient, 
and the cosine of angle. The appearance of tillers is very 
similar, where the cosine of angle may not be suitable 
for. Moreover, it is hard to define correlation within the 
unstructured and unordered point data, which is also not 
our choice. However, there are differences in spatial posi-
tion. Therefore, we choose the Euclidean distance, a fre-
quently used distance coefficient, as the similarity metric 
in this study. The specific formula is as follows

where dij is the Euclidean distance between the vari-
ables i and j, n is the dimension of variables i and j, and 
xik and xjk are the data of the kth dimension for variables 
x and j, respectively.

(2) Calculate the Euclidean distance between all points, 
then merge the nearest two points into one class (Fig. 6c).

(3) Calculate the Euclidean distance between the newly 
generated class and other points, and end if the setting 

(1)dij =

√

∑n

k=1

(

xik − xjk
)2
, i, j = 1, 2, 3 . . . , m

Fig. 6  Point clouds clustered based on hierarchical clustering: a 3D point cloud of a cluster of wheat as an abstract sample, where the red dots 
marked with numbers represent sample points; b table of the original data; c the similarity matrix metric and the shortest Euclidean distance are 
marked with italicized numbers; d clustering order; and e the clustering diagram
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condition is met. Otherwise, continue the iteration until 
all points have been classified (Fig. 6d).

In our algorithm, the smallest unit is a cluster rather 
than a point. And the Euclidean distance d equaling 2 cm 
is set as the end condition of the iteration. We consider 
2 cm as the minimum distance between two tillers based 
on the characteristics of wheat in field. To be discreet, we 
conduct a series of experiments to test the sensitivity of 
the algorithm to d. The total number of tillers per row is 
the sum of the number of tillers in each cluster, which is 
the cumulative value of all iteration result.

Accuracy assessment
We evaluate the agreement between the tiller density 
computed with our method and the reference tiller den-
sity (field measurements) by the coefficient of deter-
mination (R2), calculated in Eq.  (2). We also assess the 
precision of the computed tiller density with respect 
to the reference data using the root mean square 
error (RMSE) and the root mean square relative error 
(RRMSE), which are calculated with Eqs.  (3) and (4), 
respectively, as follows:

where Oi is the ith reference attribute measurement, Pi 
is the ith computed attribute measurement and n is the 
total number of measurements being compared.

(2)
R
2
=1-

∑n
i=1 (Oi − Pi)

2

∑n
i=1

(

Oi−

−

P

)2

(3)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Oi − Pi)
2

(4)RRMSE =

√

1
n

∑n
i=1 (Oi − Pi)

2

1
n

∑n
i=1 (Oi − Pi)

× 100%

Results
Estimation of the wheat tiller with terrestrial LiDAR
The three experiments were used as examples of the 
estimation of the wheat tiller through terrestrial LiDAR 
with ALHC. Regarding the efficiency, the total calcu-
lation time was around 18 min on a PC with Intel Core 
i5-8265U CPU @ 1.6  GHz and 8  GB RAM, comparing 
with six hours one person of manual counting in our 
case. The time consumption of manual and TLS methods 
is summarized in Table 4.

The results showed performance (Fig.  7). Exp. C 
achieved the highest accuracy, with R2, RMSE, and 
RRMSE values of 0.65, 102 tillers/m2, and 22.84%, 
respectively. The lowest accuracy was observed in Exp. B 
(R2 = 0.56, RMSE = 143 tillers/m2 and RRMSE = 26.26%). 
The accuracy of Exp. A was of R2 = 0.61, RMSE = 106 
tillers/m2 and RRMSE = 34.53%, which was at the same 
ecological site as Exp. C. Overall, there was a general 
underestimation of the ALHC estimation over all three 
experiments.

Accuracy of the estimated tiller numbers in the various 
treatments
To evaluate the performance of the algorithm across mul-
tiple treatments, growth stages, and planting seasons, we 
formed a complete database with 2 years of data (Exp. A 
& C).

First, to study the influence of the growth stages on 
the algorithm, we evaluated two years of data from the 
same ecological site (Rugao) for detailed comparison 
(Fig.  8). The results demonstrated that the correlation 
between the reference data and the jointing stage data 
(R2 = 0.77, RMSE = 70 tillers/m2, and RRMSE = 18.73%) 
was stronger than that with the tillering stage (R2 = 0.67, 
RMSE = 122 tillers/m2, and RRMSE = 33.23%). The 
growth stages had an important effect on the estima-
tion accuracy, which revealed that the ALHC algorithm 
was more suitable for the jointing stage than the tillering 
stage.

Second, to explore the influences of the planting densi-
ties (Fig. 9), two years of data of shared V2 with the two 
planting densities in the jointing stage were employed. 
As expected, higher accuracy was seen with lower 

Table 4  The time consumption of manual and TLS methods

Method Time (36 plots) Total time (36 plots)

Manual 6 h/person 6 h/person

TLS

Scanning 1.6 h 2.6 h

 Preprocessing 0.7 h

 Calculation 0.3 h



Page 10 of 14Fang et al. Plant Methods          (2020) 16:132 

planting density (R2 = 0.67, RMSE = 107 tillers/m2, and 
RRMSE = 28.13%). As the planting density increased, 
the accuracy was reduced (R2 = 0.59, RMSE = 115 till-
ers/m2 and RRMSE = 37.49%). The results indicated that 
the ALHC algorithm was negatively affected by planting 
density.

Finally, to explore the influences of the varieties, we 
employed two years of data of the jointing stage for the 
loose (Yangmai 16) and compact types (Shengxuan 6, 
Yangmai 15) (Fig.  10). Differences could be observed 
between the three varieties, which indicated that the 
loose plant type negatively impacted the estimation accu-
racy. Although Yangmai 15 and Shengxuan 6 were of the 
same plant type, the latter was estimated more accurately 
than the former.

Overall, although the different treatments affected the 
estimation accuracy of the ALHC, the accuracy fluctu-
ated within a certain range.

In addition, we performed a series of experiments to 
explore the influence of the parameter (the Euclidean dis-
tance threshold d) in the algorithm on the results. Tank-
ing the data from Exp. A (V2: Yangmai 16, D2: 40 cm, the 
jointing stage) as an example, the results were shown in 
Table  4. According to the numbers, the algorithm was 
sensitive to the changes of parameter. When d changed 
from small to large, the accuracy decreases first increased 
and then decreased. The trend implied that there was an 
optimal value to be explored (Table 5).

Discussion
Pros and cons of the ALHC method with TLS data
We automatically counted the tiller number based 
on TLS data under field conditions for the first time. 

Fig. 7  The tiller number estimation results for a Exp. A, b Exp. B, and c Exp. C; the dotted line is a 1:1 line; different colors represent different levels of 
nitrogen (Orange: N0, Green: N1, Purple: N2, Red: one nitrogen level between N1 and of N2 in Xuzhou)
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Although improvements in the accuracy are required, the 
ALHC could provide a new perspective for subsequent 
studies. Compared with a previous study that used a sin-
gle clustering algorithm [29], the ALHC considered the 

spatial structure of the wheat plants in the adaptive lay-
ering step, where the dense canopy was segmented into 
small groups according to the distribution of the spaces 
between plants. Another consequence of this step was to 

Fig. 8  Comparison between the observed values and estimated values for the different growth stages (a). Field images of the plots under the same 
treatments (b: tillering stage; c: jointing stage)

Fig. 9  Comparison between the observed values and estimated values for the different planting densities (a). Field images of the plots under the 
same treatments (b: 25 cm; c: 40 cm) in the jointing stage
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sort the disordered point clouds along the X axis, which 
made the subsequent clustering step more efficient. 
Although the classical k-means algorithm adopted in 
Guo’s study [29] was versatile, the hierarchical clustering 
algorithm had the advantage of fewer input parameters 
and the lack of a need to define the number of classes 
in advance [35, 36], which was more suitable for tiller 
counting. Combining these two steps, we upgraded from 
a single plant scale to a plot scale and from indoor labora-
tories to outside fields. In fact, the theoretical max meas-
urement range of the TLS can be expanded by adding 
scanning sites. The stitching of point clouds from differ-
ent sites would also achieve the broad coverage. For vast 
fields prepared for breeding selection, TLS is very practi-
cal. Moreover, the ALHC is expected to have the poten-
tial to be transferred to other cereal crops (e.g., rice) with 
similar spatial structures in the field.

The primary limitation of the algorithm is the method 
of determining the threshold. First, in the first part of the 
adaptive layering step, the height of every layer was cho-
sen based on the degree of overcounting and undercoun-
ting of clusters that were observed in the layers compared 
with the planting density after the trail runs, which was 
an inefficient and biased method. Then, in the cluster-
ing step, the Euclidean distance threshold of ending the 
iteration in the clustering step was settled at 2 cm, which 
was considered to be the minimum distance between the 
clusters of wheat after field observation. However, the 
distance between the individual wheat plants will change 
as the crop grows, especially under different treatments. 
We could conclude from the trends (Table 4) that there 
were optimal values for the distances, which could be 
determined by the appropriate methods. A one-size-fits-
all and subjective distance threshold may cause under-
estimation in high-density plots or overestimation in 
low-density plots, resulting in a decrease in overall accu-
racy. Future work will be devoted to developing objective 
methods for determining dynamically changing thresh-
olds to eliminate empirical bias, such as the Otsu thresh-
olding method [37] and the probability density function 
(pdf). Moreover, a few variants and alternatives of the 
hierarchical clustering algorithm have been suggested for 
improving the function of the algorithm [33, 38], which 
may help with the algorithm performance under large 
numbers of disordered points and the accompanying 
noise.

Fig. 10  Comparison between the observed values and estimated values of the different varieties (b, Shengxuan 6: RMSE: 114 tiller/m2, RRMSE: 
26.23%; Yangmai 15: RMSE: 167 tiller/m2, RRMSE: 38.43%; Yangmai 16: RMSE: 218 tiller/m2, RRMSE: 38.75%). Indoor images of the plants of different 
varieties (a: compact plant type: Shengxuan 6; c: loose plant type: Yangmai 16)

Table 5  The accuracy assessments of  the  ALHC 
on  the  example data from  Exp. A  (V2: Yangmai 16, D2: 
40 cm, the jointing stage) with different d

d (cm) R2 RMSE (tillers/m2) RRMSE

0.5 0.48 170 46.38%

1.5 0.54 151 41.23%

2 0.60 136 37.11%

2.5 0.43 190 51.78%

3 0.30 272 74.21%
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Uncertainty of the ALHC counts of tiller number based 
on TLS data
This method has not only remedied the deficiency of pas-
sive remote sensing methods through using spatial infor-
mation of the 3D point clouds but also filled the gap in 
counting the tiller number in the field. However, there 
were still some shortcomings. Compared with the pre-
vious studies [8–13, 15, 16, 29], the accuracy of the TLS 
data was unexpectedly low. The main reasons could be 
concluded from two aspects: (1) noise and (2) occlusion, 
which are currently inevitable in the TLS data.

It has been proven that noise negatively impacts TLS-
derived parameters [39]. Noise may be generated by the 
common registration differences of point clouds, multi-
ple echoes for one emitted shot, or instrumental errors 
associated with the measurement range [40]. Because it 
is more complicated than a single background laboratory, 
the field environment was surrounded by multisource 
noise, such as wind-caused noise. In our case, the denser 
the canopy was (the higher the planting density was), 
the more noise points it contained, which was intuitively 
reflected in the reduced accuracy. In contrast, more noise 
came from the edges of the crop foliage and the ground 
in the tillering stage, where it was covered by leaves in the 
jointing stage, which would contribute to higher accuracy 
[26]. In addition, noise was also one of the main reasons 
for overestimation. And the other was due to the incor-
rect recognition of leaves as tillers in the clustering step. 
Robust noise filtering algorithms are needed to make 
TLS a more powerful tool for crop field phenotyping.

Occlusion causes a significant loss of data. When the 
laser beam was intercepted by canopy elements, the space 
behind these elements was not sampled, which is called 
occlusion. In contrast to the individual plants monitored 
in the indoor laboratory, the overlap between and inside 
the plants was extremely challenging in the outdoor field, 
which prevents the laser from penetrating the canopy to 
obtain information from the middle and lower parts of 
the plant. In our case, for example, the accuracy declined 
with the changes in wheat varieties from a compact type 
to a diffuse type, where the occlusion was more serious 
in the latter. The same decrease in accuracy could also 
be observed with increased planting density. The incom-
plete canopy information caused by occlusion could also 
explain the general underestimation among our experi-
ments (Fig.  7). Since the TLS was mounted on a tripod 
with a height of 2  m, the laser pulses stroke the plants 
at large incident angles (from 40° to 90°). To improve 
the laser’s penetration of the dense canopy, it would be 
beneficial to use a close to a nadir viewpoint instead of a 
gentle oblique viewpoint [41]. The airborne LiDAR could 
provide a smaller incident angle, which could penetrate 
the canopy more powerfully. Compensating for the loss 

of point cloud information by increasing the instrument 
height and increasing the number of scanning sites could 
also alleviate the problem [38].

In addition to the above methods, it is worth pay-
ing attention to methods based on machine learning, 
which could be tailored to learn complex features from 
large amounts of high-dimension data automatically 
[42]. These have the potential to outperform traditional 
methods.

Conclusion
This study proposed an automatic and nondestructive 
method for automatically counting wheat tillers in the 
field with terrestrial LiDAR data, which first separated 
the clusters with the adaptive layering algorithm and then 
detected the tillers in every cluster with the hierarchical 
clustering algorithm. The results showed that the ALHC 
method was promising and had the adaptability across 
different years, growth stages, planting densities, and 
ecological sites. However, due to the serious occlusion 
between and inside the plants and the numerous noise 
points, there was a general underestimation of the wheat 
tillers. The counting accuracy still needs to be improved 
in the ongoing work of replacing the missing points in 
the cloud and eliminating the noise points in the cloud. 
It would be meaningful to transfer the improved ALHC 
method to other cereal crops (e.g., rice) to potentially 
enhance the universality of the tiller counting algorithm.
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